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ABSTRACT

While the bulk of the high-entropy alloys is widely studied and characterized by

their configurational entropy, there is a lack of general information regarding

the configurational entropy of the grain boundaries. Here, we derived for the

first time the basic relationships of this thermodynamic quantity related to the

solute segregation at grain boundaries. Some examples of the appearance of the

grain boundary configurational entropy are shown, and its effect on inter-

granular properties is discussed. It is stated that the role of grain boundary

configurational entropy in interfacial properties is not completely clear and

represents a challenge for future research.

Introduction

One of the new, dynamically developing fields of

materials science, is complex concentrated systems,

also called high-entropy alloys (HEAs) [1]. The con-

cept of HEAs containing 5 or more principal elements

has attracted scientific attention since Cantor [1] and

Yeh [2] published their influential papers indepen-

dently of each other. It is generally claimed that such

complex concentrated systems exhibit high configu-

rational entropy of the random mixing of elements

leading to the formation of simple solid solutions or

their mixture and preventing the formation of inter-

metallic phases. Therefore, the tendency for the for-

mation of any clusters or precipitation of phases is

lowered [3]. The value of configurational entropy

thus mainly affects the stability of phases [4].

However, it is widely shown that the presence of

intermetallic phases is highly likely [5–8]. In work [7]

was shown that the formation of intermetallic phases

is possible only at an intermediate temperature

range. Such temperature range affects the role of

entropy which starts to lose dominance and the for-

mation of intermetallic phases is favored and trig-

gered due to sufficient diffusion. The crystallographic

structures of solid solutions are simple fcc [1, 9], bcc

[10–12], and hcp [13, 14] types depending on the

chemical composition of HEAs. The solid solutions

are kinetically stable due to the sluggish diffusion of

atoms; thereby, the possible precipitation of inter-

metallic phases is also suppressed. HEAs have

become studied intensively due to their unique

microstructure, phase composition, and mainly

adjustable properties, and opened new possibilities

and strategies in advanced alloy design. Among the
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exceptional properties belong high strength, hard-

ness, excellent wear resistance and high-temperature

strength, structure stability, and corrosion and oxi-

dation resistance [15].

As was mentioned above, one of the general char-

acteristics of these materials is the high value of the

configurational entropy which seems to be responsi-

ble for the exceptional properties of the HEAs.

However, the configurational entropy can also be

applied to the grain boundaries. Recently, a concept

of high-entropy grain boundaries was proposed

[16, 17]. The main advantage of these grain bound-

aries whose composition is affected by solute segre-

gation, is high value of the configurational entropy

which may become origin of exceptional properties

such as suppression of interfacial precipitation and

stabilization of nanocrystalline structures [16, 18].

Nevertheless, it was argued in [19] that high mix-

ing entropy may not be sufficient to prevent the

segregation of the elements, although other authors

claimed the opposite [2]. Grain boundaries generally

act as barriers for the motion of dislocations resulting

in the enhancing of the strength or hardness of alloys.

This strengthening could be reduced at the interme-

diate temperatures as the boundaries are weakened

by the segregation of solutes and/or impurities [20].

On the other hand, the ductility of alloys tested at

high temperatures increased thanks to the easy

motion of the boundaries. The pure metals with fcc

structure as well as the alloys with low stacking fault

energy (SFE) exhibit high ductility in a wide tem-

perature range. The opposite trend could be observed

in the case of the most studied HEAs, specifically

Cantor alloy with equimolar chemical composition

CoNiFeCrMn. As mentioned above, the ductility

decreased at higher temperatures, especially at the

intermediate temperatures [21], although the alloy is

single fcc-phase solid solution, as well. This was

attributed to the nanosegregation of one of the Ni, Cr,

and Mn which resulted in the decohesion of the grain

boundary [22, 23]. Schuh et al. [24] emphasized that

strengthening cannot be exclusively explained only

by the consideration of solute segregation at grain

boundaries. Further, the segregation could also neg-

atively influence the initial stage of corrosion. The

dissolution of Cantor alloy is accelerated when the

Cr-enriched phases form due to the ongoing

microsegregation [25]. However, grain boundary

segregation and grain boundary engineering have

not been studied and developed extensively in the

case of HEAs so far. Therefore, there is a substantial

lack of information. One of the unsolved fundamen-

tal problems in this respect is the relationship

between the configurational entropy and the ther-

modynamic characteristics of grain boundary

segregation.

In this context, a general question arises what the

configurational entropy of the grain boundaries is

itself, and how is related to that of the bulk material

as well as to the characteristics of the solute segre-

gation not only in HEAs but also in diluted systems.

This topic is discussed in this paper for the first time.

Thermodynamic fundamentals

The total configurational entropy, TSconf (in J K–1), in

an n-component real system is defined as

TSconf ¼
Xn

i

niS
0; conf
i ¼ �R

Xn

i

ni lnXi; ð1Þ

where ni and Xi are the number of moles and the

mole fractions in the alloy, respectively, of compo-

nent i, S0; confi (in J mol–1 K–1) is the molar entropy of

component I, and R = 8.3141 J mol–1 K–1 is the uni-

versal gas constant [26]. It is worth noting that the

configurational entropy differs from the real mixing

entropy, defined as

TSmix ¼
Xn

i

niSi ¼
THmix

T
� R

Xn

i

ni ln ai; ð2Þ

where ai ¼ ciXi is the activity of component i in the

alloy, ci is the activity coefficient of component i,
THmix (kJ mol–1), is the total mixing enthalpy and Si is

the partial molar entropy of component i [26].

Equation (1) can also be rewritten to express the

molar configurational entropy as

Sconf ¼
Xn

i

XiS
0; conf
i ¼ �R

Xn

i

Xi lnXi; ð3Þ

Besides their application to the bulk, expressions

(1) and (2) can also be applied to the grain boundary

(GB),

SconfGB ¼
Xn

i

XGB
i S0; conf; GBi ¼ �R

Xn

i

XGB
i lnXGB

i ; ð4Þ

where the index GB relates the variable to the grain

boundary. Accepting
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XGB
M ¼ 1�

Xn 6¼M

i

XGB
i ; ð5Þ

where M is the host component, we can rewrite

Eq. (4) as

SconfGB ¼ �R
Xn 6¼M

i

XGB
i ln

XGB
i

XGB
M

þ lnXGB
M

 !
: ð6Þ

In contrast to Sconf , the grain boundary configura-

tional entropy, SconfGB , is temperature dependent as the

grain boundary concentrations change substantially

with temperature due to the segregation effects

which reflect the minimization of the Gibbs energy of

the system. Under some assumptions (segregation of

all solutes at the substitutional sites, full coverage of

the grain boundaries by all solutes, monolayer seg-

regation), the general segregation isotherm of the

Langmuir–McLean type for a real system can be

written as [27]

aGBI
aGBM

¼ aI
aM

exp �DG0
I

RT

� �
: ð7Þ

Alternatively,

XGB
I

1�
P

j6¼M XGB
j

¼ XI

1�
P

j6¼M Xj
exp �DGI

RT

� �
; ð8aÞ

i.e.,

XGB
I ¼ XI exp �DGI=RTð Þ

1�
P

j 6¼M Xj 1� exp �DGj=RT
� �� � ; ð8bÞ

In Eq. (7),

DG0
I ¼ DH0

I � TDS0I ; ð9Þ

T (K) is the temperature, DG0
I is the standard (ideal)

Gibbs energy of segregation of solute I at the grain

boundaries, composed of the standard enthalpy of

grain boundary segregation, DH0
I , and the standard

entropy of grain boundary segregation, DS0I . In

Eqs. (8a) and (8b),

DGI ¼ DHI � TDSI ¼ DG0
I þ DGE

I : ð10Þ

In Eq. (10), DHI and DSI are the enthalpy and

entropy of segregation, respectively, in a real system.

DGE
I is the excess Gibbs energy of segregation rep-

resenting the difference between the Gibbs energy of

segregation and the standard Gibbs energy of segre-

gation [27]. Its value is hardly measurable and

therefore, it is frequently estimated using the binary

(Fowler) and ternary (Guttmann) interaction coeffi-

cients [27, 28]. As Eq. (8b) is identical with the Butler

equation [29] if DGI ¼ exp xðr0I � r0MÞ=RT
� �

, where x

is the molar grain boundary area and r0I;M are the

molar energies of the components I and M. Never-

theless, the nature of DGI can further be extended

based on, e.g., extended Butler equation [29, 30] and

Wynblatt model [28, 31]. As the nature of DGI is not

primarily important in the relationship with grain

boundary configurational entropy, we will consider it

here only in the sense of Eq. (10). To get primary

insight into the relationship between the configura-

tional entropy and the grain boundary segregation,

we will consider a binary system for simplicity.

As follows from Eq. (2), the partial molar entropy

of component i in a binary alloy can be expressed as

Sconfi ¼ oTSconf

oni

� �

T;nj

¼ �R lnXi: ð11Þ

This expression is valid for both the bulk and the

grain boundary GB, as well as for solutes i and host

metal M. Consequently, we can adopt Eq. (6) for an

ideal binary system to get

exp � Sconf;GBI � Sconf; GBM

� 	
=R

h i

exp � SconfI � SconfM

� �
=R

� � ¼ exp �DGI

RT

� �
; ð12Þ

i.e.,

Sconf; GBI � Sconf; GBM

� 	
� SconfI � SconfM

� �

¼ oSconfGB

oXGB
I

� �

T

� oSconf

oXI

� �

T

¼ DGI

T
¼ DHI

T
� DSI

¼ DH0
I

T
� DS0I þ

DGE
I

T
: ð13Þ

Differentiation of SconfGB for binary alloy (Eq. (6)) by

XGB
I at constant temperature results in

oSconfGB

oXGB
I

� �

T

¼ �R ln
XGB

I

1� XGB
I

¼ �R ln
XI

1� XI
� DGI

RT

� �
;

ð14Þ

and differentiation by T provides

dSconfGB

dT
¼ XGB

I 1� XGB
I

� �DH0
I þ DGE

I � dDGE
I =dT

RT2
: ð15Þ

Using Eqs. (6) and (8b), we get
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SconfGB ¼ �R

P
j 6¼M Xj exp �DGj=RT

� �
ln Xj= 1�

P
j 6¼M Xj

� 	� 	
� DGj=RT

h i

1�
P

j 6¼M Xj 1� exp DGj=RT
� �� �

ð16Þ

Equation (16) provides the direct relationship

between the segregation quantities and the configu-

rational entropy in a real system.

In principle, we can also apply more sophisticated

approaches to describe the segregation isotherms,

e.g., for multilayer segregation based on the BET

(Brunauer–Emmett–Teller) approach [32].

Up to now, we treated the problem from the

viewpoint of averaged grain boundary composition

and corresponding averaged (= effective) thermody-

namic quantities. However, theoretical calculations

provide us with the energy of solute segregation for

individual grain boundary sites which might result in

the concentrations at these sites. To refine the above

relationships, we can rewrite Eq. (8b) according to

the White and Coghlan model [33] for a single grain

boundary as

XGB
I ¼

XN

k

nkX
GB
I;k

¼
XN

k

nk
XI exp �DGI;k=RT

� �

1�
P

j6¼M Xj 1� exp �DGj;k=RT
� �� � ;

ð17Þ

with nk being a weight factor for individual grain

boundary sites fulfilling the condition
PN

k

nk ¼ 1 and

N being the number of grain boundary sites.

Accordingly,

SconfGB ¼ �R
XN

k

nk
XN

k

XGB
k;i lnX

GB
k;i

 !
: ð18Þ

Under some assumptions, we can consider the

segregation energy as a combination of the segrega-

tion energies of sites k, DEI;k, [34]

DEI ¼
XN

k¼1

nkDEI;k: ð19Þ

Analogous expressions will hold for the other

thermodynamic quantities of grain boundary segre-

gation. Then, the above given formulas can be refined

by using Eqs. (17)–(19). For simplicity, we will deal

here with the averaged quantities. A further reason is

that we do not have representative data calculated for

individual grain boundary sites in complex multi-

component systems.

Relations between configurational entropy
and grain boundary segregation

Note to high-entropy alloys

It is evident from Eq. (14) that the maximum grain

boundary configurational entropy in a binary alloy is

obtained for its equimolar composition. It is worth

noting that the condition of maximum configura-

tional entropy also holds for equimolar composition

in an n-component alloy. Due to the similarity of

Eqs. (3) and (4), the same conclusion is also drawn for

the equimolar crystal bulk supposing it represents

the homogeneous solid solution.

This result has an important consequence. If we

have, e.g., 5-component single phase alloy with

equimolar bulk composition (i.e., atomic concentra-

tion of each solute is 0.2), then Sconf ¼ 1:609 R. How-

ever, after annealing the solutes segregate to the grain

boundary and thus, the composition of the grain

boundary is no longer equimolar. An example rep-

resenting this situation in a nearly equimolar FeMn-

NiCoCr alloy after annealing at 450 �C for various

time periods [35] is given in Table 1.

It is apparent that this annealing results in gradual

solute segregation and consequently, in the reduction

of the configurational entropy. In all cases, its values

are lower than that in the bulk and it loses the char-

acter of a HEA region if SconfGB \1:5 R [36]. This situa-

tion can also be interpreted as an ordering of the

grain boundary. In fact, this is a common feature of

the HEAs.

However, in the quinary system Fe–Mn–Ni–Co–Cr

with non-equimolar compositions, we can find con-

ditions for reaching a maximum grain boundary

Table 1 Grain boundary composition (at%) of a quinary alloy

[35]

Fe Mn Ni Co Cr Sconf=R

Bulk 18.9 19.9 20.6 20.1 20.5 1.609

GB 450 �C/6 h 15 25 34 15 11 1.525

GB 450 �C/18 h 2 38 53 4 3 1.016

GB 450 �C/48 h 1 41 54 3 1 0.896
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configurational entropy of 1.609 R. Accepting for

simplicity a very rough assumption of the ideality of

this system and accepting the values of the Gibbs

energy of segregation in bcc iron at 800 K to

be - 3.8 kJ mol–1 for Co, - 5.6 kJ mol–1 for

Cr, - 6.6 kJ mol–1 for Mn, and - 6.6 kJ mol–1 for Ni

(the absolute values of the Fowler coefficients are less

than 3 kJ mol–1) [28], the equimolar composition of a

general grain boundary and thus SconfGB = 1.609 R can be

obtained for the bulk composition of this alloy being

9 at% Fe, 16 at% Co, 25 at% Cr, 25 at% Ni and 25 at%

Mn exhibiting Sconf ¼ 1:550 R. Similarly, the maxi-

mum value of the grain boundary configurational

entropy can be reached for slightly tuned bulk com-

position at different temperatures.

Dilute binary alloys

An opposite situation occurs in the case of grain

boundary segregation in dilute alloys. Here, the

composition of the grain boundaries is characterized

by increased solute concentration and reduction of

the concentration of the host metal. This fact con-

tributes to an increase in the grain boundary config-

urational entropy compared to that of the bulk. We

can demonstrate it by the example of diluted Fe–P

alloys.

The grain boundary segregation in P-doped bcc

iron-based alloys has been studied rather frequently

since the pioneering quantitative work of Erhart and

Grabke on polycrystalline Fe–P-based alloys [37]. The

measurements of its segregation in polycrystalline

materials [37] as well as in well-characterized

bicrystals [38] resulted in the evaluation of the seg-

regation enthalpies and entropies [28]. Using the data

for phosphorus segregation at a general boundary

which is most frequently present in typical poly-

crystalline materials, DHP
0 = - 39 kJ mol–1 and

DSP
0 = ? 13 J mol–1 K–1, we did calculate the grain

boundary concentrations at a temperature range 700–

1100 K for three bulk concentrations, 0.1, 0.3, and 0.5

at% using Eq. (8b) with accounting for P–P interac-

tion in Fe, aP(Fe) = ? 4.5 kJ mol-1, and maximum

grain boundary coverage X0 = 2/3 [28]. These data

together with the values of the grain boundary con-

figurational entropy are listed in Table 2 and shown

in Fig. 1.

As mentioned above, the condition for maximum

configurational entropy, XP
GB = 0.5, depends on the

temperature and bulk composition of the alloy. This

composition of the grain boundaries is reached at

lower temperatures in the case of lower bulk con-

centrations compared to higher ones. Using Eq. (9),

we may derive the value of the temperature, TMAX, of

maximum configurational entropy, 0.693 R, for the

equimolar composition of the grain boundary. For an

ideal binary system, we can write

1 ¼ XI

1� XI
exp � DGI

RTMAX

� �
; ð20Þ

and thus

ln
XI

1� XI
¼ DGI

RTMAX
¼ DH0

I

RTMAX
� DS0I

R
þ DGE

I

RTMAX
ð21Þ

i.e.,

TMAX ¼ DH0
I þ DGE

I

R ln XI= 1� XIð Þ½ � þ DS0I
: ð22Þ

It is evident that the temperature at which the

maximum configurational entropy (TMAX) is reached,

increases with increasing the bulk concentration of

the solute (Fig. 2),

Table 2 Grain boundary concentrations of phosphorus (at%) at a

general grain boundary in an Fe–P alloy containing 0.01, 0.03, and

0.05 at% P, and corresponding values of SconfGB =R. The values of

Sconf=R for the bulk of individual alloys are listed in the right

column

XP T (K) XP
GB

SconfGB =R Sconf=R

0.001 700 0.530 0.691 0.0079

800 0.418 0.680

900 0.313 0.621

1000 0.223 0.531

1100 0.169 0.454

0.003 700 0.614 0.667 0.0204

800 0.556 0.687

900 0.483 0.693

1000 0.406 0.675

1100 0.333 0.636

0.005 700 0.634 0.657 0.0315

800 0.596 0.675

900 0.543 0.689

1000 0.482 0.692

1100 0.414 0.678
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oTMAX

oXI
¼ �R

TMAXð Þ2

DH0
I þ DGE

I

1

XI 1� XIð Þ [ 0; ð23Þ

with decreasing the value of the segregation enthalpy

(i.e., increasing the absolute value of DH0
I ) (Fig. 3a),

oTMAX

oDH0
I

¼ TMAX

DH0
I þ DGE

I

\0; ð24Þ

and with decreasing the value of the segregation

entropy (Fig. 3b),

oTMAX

oDS0I
¼ � TMAXð Þ2

DH0
I þ DGE

I

[ 0: ð25Þ

Let us mention that in inequalities (23)–(25),

DH0
I



 

[ DGE
I



 

 ¼ 2 aIðMÞ


 

XGB

I , where aIðMÞ is the

Fowler coefficient [28], Further, according to Eq. (19),

the above formulas are also valid if the segregation

quantities are considered for individual sites and

Figs. 2 and 3 remain the same if these quantities are

averaged according to Eq. (19).

It is also worth noting that SconfGB possesses the same

value in binary alloys with interchanged values of

XGB
I and XGB

M . Then we must keep in mind that we

consider two cases, segregation of I in M and segre-

gation of M in I. due to different values of DGI and

DGM. The same values of SconfGB are then obtained for

different values of bulk concentrations of particular

systems (cf. Eq. (16)).

Figure 1 Temperature dependence of the configurational entropy

for grain boundary and bulk in Fe–P systems with various bulk

concentrations of P (denoted by the values in the figure).

Figure 2 Dependence of TMAX for Fe–P alloys with varied bulk

concentrations of phosphorus, XP.

Figure 3 Model dependence of the temperature of maximum

configurational entropy, TMAX, for varied bulk concentrations of a

solute, XI. a for varied segregation enthalpy (represented by the

data in kJ mol–1); b for varied segregation entropy (represented by

the data in J mol–1 K–1).
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High-entropy grain boundaries

Asthemaximumvalueof theconfigurationalentropyofa

considered equimolarHEA increaseswith the increasing

number of components, Sconf ¼ R ln n, the value of

SconfGB can reach the values corresponding to those, which

are characteristic for HEAs even in more diluted non-

HEAs. For a simple example, a maximum value SconfGB ¼
1:099R should be reached for a ternary system Fe–17

at% Cr–0.7 at% P at 800 K as estimated using the

values DH0
P ¼ �39 kJ mol-1, DS0P ¼ þ13 J mol-1 K-1,

aP(Fe) = ? 4.5 kJ mol-1,X0 = 2/3,DH0
Cr ¼ �12 kJmol-1,

DS0Cr ¼ �8 J mol-1 K-1, aCr(Fe) = ? 1.1 kJ mol-1, X0 = 1

[28], and a’P-Cr(Fe) = –17 kJ mol-1 [39]. It is worth

noting that the value of the configurational entropy in

the bulk is Sconf ¼ 0:446 R, only. Although the value of

1.099 R does not correspond yet to the HEA condition,

it is evident that the alloy composition and suit-

able temperature produce grain boundaries charac-

terized by high entropy as was shown already in Part

Note to high-entropy alloys.

Anisotropy of grain boundary
configurational entropy

Much larger differences between the values of the

configurational entropy for the grain boundary and

the bulk can be obtained in the case of quaternary

alloys. A systematic study of the temperature

dependence of the grain boundary segregation in an

Fe–3.55 at% Si alloy containing 0.0089 at% P and 0.014

at% C (Sconf ¼ 0.121 R) using Auger electron spec-

troscopy [40] resulted in the evaluation of the aver-

aged standard enthalpy and standard entropy of

solute segregation at individual grain boundaries

[41]. From the compositions of the grain boundaries,

we can also determine the values of the grain

boundary configurational entropy. The grain

boundary concentrations are listed in Table 3 and

depicted in Fig. 4.

The values of SconfGB are not so high as was shown in

the previous example. This is because the concen-

trations of the solutes do not reach the equimolar

composition at the grain boundary. However, the

values of SconfGB are still high enough compared to that

of the bulk (cf. Figure 4): the maximum shown values

are nearly by one order of magnitude higher than

Sconf of the bulk. It only confirms the fact that in

diluted alloys the grain boundary configurational

entropy is higher than that in the bulk. Even here, the

character of the anisotropy of Sconf remains identical

when the concentrations and thermodynamic quan-

tities considered for individual sites at the grain

boundary are averaged according to Eqs. (17) and

(19), respectively.

Table 3 Concentrations of

phosphorus, silicon, and

carbon (at%) at individual

grain boundaries of an Fe–Si–

P–C alloy. The average

standard error of the measured

grain boundary concentrations

is ± 0.5 at% for P, ± 1.0 at%

for C, and ± 0.4 at% for Si

[40]

T (K) 773 873 973 1073 1173

Si P C Si P C Si P C Si P C Si P C

{016} 4.1 4.3 19.4 2.5 4.3 10.1 3.6 3.4 6.0 2.5 2.3 3.2 2.3 1.9 2.4

{015} 2.2 7.8 14.4 2.4 6.9 9.2 2.5 6.1 5.9 2.4 5.1 3.5 2.4 4.6 2.4

{014} 1.1 13.3 20.8 3.2 7.3 13.2 3.7 5.6 7.2 3.9 3.6 4.6 3.8 2.7 3.1

{013} 1.0 13.6 16.2 1.5 11.8 9.7 1.9 10.0 6.6 2.1 8.9 4.6 2.5 7.7 3.1

{0kl}* 1.0 13.7 26.5 2.5 8.3 17.9 2.8 5.4 11.2 3.1 4.2 7.4 3.1 3.2 4.6

{0 7 15} 1.2 14.8 16.4 4.6 6.8 10.8 5.3 5.7 6.4 5.6 3.7 3.8 5.5 2.8 3.1

*45�[100] {0kl} is an incommensurate interface with irrational indices k and l

Figure 4 Orientation and temperature dependence of the

configurational entropy at individual grain boundaries in

bicrystals of and Fe–3.55 at% Si alloy containing 0.0089 at% P

and 0.014 at% C. The horizontal line (bulk) represents the

configurational entropy of the bulk.
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Nevertheless, there is another interesting finding.

The orientation dependence of SconfGB follows the ani-

sotropy of the absolute values of the segregation

enthalpy [42] exhibiting minima at 22.6�[100] {015}

and 36.9�[100] {013} special grain boundaries at 773 K

(Fig. 4). However, it is apparent from Fig. 4 that the

differences among the values of SconfGB of individual

grain boundaries reduce and eventually reverse, thus

exhibiting an opposite character of the anisotropy.

This is also in agreement with the anisotropy of the

values of the grain boundary concentrations [43] and

was also observed in HEAs [44].

As shown previously [42], a specific relationship

was found between the changes of the standard

molar enthalpy and standard molar entropy, both of

solute segregation at the grain boundaries, with

changes in the grain boundary structure W,

oDH0
I

oW

� �

T

=
oDS0I
oW

� �

T

¼ TCE; ð26Þ

which is called enthalpyentropy compensation effect,

and TCE is the compensation temperature.

Accordingly,

oDG0
I

oW

� �

T

¼ oDH0
I

oW

� �

T

1� TCE

T

� �

¼ oDH0
I

oW

� �

T

T � TCE

T

� �
: ð27Þ

It was concluded [42, 43] that the Gibbs energy of

segregation is constant at TCE (K) and independent of

the grain boundary structure. This fact has a conse-

quence that oDG0
I =oW

� �
T
changes its sign and thus,

the character of the anisotropy of grain boundary

concentrations is reversed above and under TCE.

As the grain boundary configurational entropy is

composed of the grain boundary concentrations, we

can expect similar dependence, which is also appar-

ent from Fig. 4. To understand the changes of SconfGB ,

we will consider a binary ideal alloy for simplicity. In

this case according to Eqs. (14) and (21)

oSconfGB

oW

� �

T

¼ �R ln
XI

1� XI

� �
� DG0

I

RT
� 1

1� XGB
I

� �

oXGB
I

oW

� �

T

�DXGB
I

RT

oDG0
I

oW

� �

T

:

ð28Þ

As

oXGB
I

oW

� �

T

¼ �XGB
I 1� XGB

I

� �T � TCE

RT

oDH0
I

oW

� �

T

; ð29Þ

using Eq. (27) we can write

oSconfGB

oW

� �

T

¼ XGB
I

T � TCE

RT
1� XGB

I

� �
ln

XI

1� XI
� DG0

I

RT

� �� �

oDH0
I

oW

� �

T

:

ð30Þ

If we accept

g Tð Þ ¼ XGB
I

RT
1� XGB

I

� �
ln

XI

1� XI
� DG0

I

RT

� �� �

¼
XGB

I 1� XGB
I

� �

RT
ln

XGB
I

1� XGB
I

\0 ð31Þ

for all temperatures and XGB
I \0:5. Then,

oSconfGB

oW

� �

T

¼ g Tð Þ T � TCEð Þ oDH0
I

oW

� �

T

: ð32Þ

It is apparent from Eq. (17) that the character of the

anisotropy of DSconfGB reverses by crossing TCE simi-

larly to that of DG0
I and XGB

I . This change is also

apparent from Fig. 4.

It was established previously that the value of

TCE = 900 K [41] is the temperature at which the

reversion occurs. However, it seems from Fig. 4 that

the reversion of the anisotropy of SconfGB takes place at a

slightly higher temperature. This discrepancy results

from the simplification of the mathematical treatment

applied to only an ideal binary system as the shift in

TCE can be affected by the real behavior of the system

[45] characterized here mainly by strong repulsive

interaction between Si and P atoms (Guttmann tern-

ary interaction parameter a
0

Si�PðFeÞ ¼ �92 kJ mol-1)

[46]. Despite the compensation temperature being the

same for all mentioned solutes and grain boundaries,

the compensation effect splits into two branches, one

for phosphorus and carbon, and the other one for

silicon [41]. This reflects in somehow diffuse transi-

tion and apparent shift of TCE. However, Fig. 4

clearly demonstrates the reversed character of the

anisotropy of SconfGB at temperatures above and under

TCE despite of the value of the compensation

temperature.
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Consequences of grain boundary
configurational entropy and future
perspectives

Materials properties are controlled by their Gibbs

energy, G, and tend to reach the equilibrium char-

acterized by a minimum of this thermodynamic

quantity. The Gibbs energy of a system can be

expressed as a combination of the ideal enthalpy, Hid
i ,

entropy, Sidi , and mixing parameter, Gmix,

G ¼
X

i

Xi H
id
i � TSidi

� �
þ DGmix

¼
X

i

Xi H
id
i � TSidi

� �
� TSconf þ DGE; ð33Þ

where DGE is the excess Gibbs energy of the alloy

[26]. It is apparent that besides the configurational

entropy, there are other entropic contributions such

as vibrational, harmonic, anharmonic, and magnetic

entropies which are included in the terms Sidi . An

expression analogous to Eq. (33) can be written for

both the bulk and the grain boundary. Therefore, the

properties of the material are affected by a synergistic

influence of individual terms contributing to the total

Gibbs energy of the system. However, here we will

discuss the effect of one of these terms, i.e., of the

grain boundary configurational entropy, despite that

we are aware of the fact that observed behavior is not

exclusively the result of the value of SconfGB .

It is widely accepted that entropy is a measure of

the disorder of the system. In some cases, high

entropy of grain boundaries can thus result in

changing the structures of the grain boundaries up to

an amorphous state [47]. The systems exhibiting high

entropy may then exhibit exceptional properties [48].

If high configurational entropy results from solute

segregation at grain boundaries, we may expect, for

example, higher resistance to any type of clustering

such as precipitation of second phases and inter-

metallic compounds [16]. It is also expected that the

interfacial segregation will be reduced at lower tem-

peratures in HEAs due to the opposite effects of the

configurational entropy and driving force of the

segregation process [49]. A similar effect might be

expected in non-HEAs when the level of segregation

induces high values of entropy. Maybe, it can also be

connected to some tendency to short range ordering

which has been observed in HEAs [50–52], and

affecting, e.g., local distortion [50]. Consequently, the

solid solubility of solutes increases at the grain

boundaries, compared to the bulk materials. This is

evident from the data for P and C listed in Table 3

which are by 1–2 orders of magnitude higher than the

solid solubility of these solutes in bcc iron. We can

also find other examples in the literature, e.g., Bi in

Cu [53] and In in Ni [54]. Additionally, we may reach

such a composition of the grain boundaries exhibit-

ing the configurational entropy on the level of HEAs,

and occurring high-entropy grain boundaries can

then serve as stabilizers of nanocrystalline structures

[16]. Such segregated grain boundaries can also

undergo various transitions in multicomponent

alloys which can result in changed width of the grain

boundaries and their structure [48].

Similarly, convoluted grain boundaries form in

HEAs. However, in the case of equimolar HEAs, the

segregated grain boundaries exhibit lower configu-

rational entropy than the bulk. It is question, how

does this fact reflect in the properties of the grain

boundaries? In this respect, we can expect similar

effects as in the case of the above-mentioned inter-

faces. Nevertheless, an impact is expected on, e.g.,

electrical, thermal, and ionic conductivities, the

coercivity of magnets, and the stability of batteries as

summarized in [48].

However, another question arises whether the

behavior of the grain boundaries is primarily con-

trolled by configurational entropy or by atomic bonds

at the interface. It is known that a high concentration

of phosphorus at the grain boundaries causes both

the loss of intergranular cohesion [39] and an increase

of the configurational entropy [55]. However, in the

case of diluted systems with several segregating ele-

ments which compete for the sites but have different

effects on the cohesion such as phosphorus and car-

bon in steels, the situation is rather complicated. For

example, grain boundary segregation of phosphorus

in Fe–Cr-based alloys increases with increasing con-

tent of chromium in the alloy while that of carbon is

decreasing [55] (Table 4). In both these alloys, the

values of SconfGB are nearly equal, but the alloys differ

substantially in mechanical behavior as that with

lower content of chromium possesses higher cohe-

sion, while that with higher content of chromium

exhibits intergranular brittle fracture [55].

This example suggests that chemical bonds play a

dominant role in materials cohesion despite nearly

identical values of the grain boundary configura-

tional entropy.
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In the case of grain boundary migration, the non-

segregated grain boundaries exhibit a larger ten-

dency to move than segregated grain boundaries

[56, 57]. From the viewpoint of the configurational

entropy, the non-segregated grain boundaries in

HEAs possess lower SconfGB (comparable to that of the

bulk) than segregated interfaces. On the other hand,

the grain boundaries in highly segregated non-HEAs

exhibit higher value of SconfGB compared to Sconf ; how-

ever, their motion is slower than that in relatively

pure metals in both cases (e.g., [58–60]). It is apparent

that the migration of the grain boundaries in all alloys

is reduced due to a solute drag despite the value of

the configurational entropy. Therefore, the effect of

the grain boundary segregation and the formation of

a solute atmosphere at the grain boundaries seems to

affect dominantly the grain boundary migration.

The grain boundaries in nanocrystalline dilute

alloys represent a special case. It is well known that

grain boundary segregation can stabilize the

nanocrystalline structures via inhibition of interfacial

migration (see, e.g., [61, 62]). However, with

decreasing the grain boundary size the volume of the

grain boundaries increases and during solute segre-

gation, the actual bulk concentration, XI, decreases

compared to the nominal (total) alloy concentration,

XT
I ,

XT
I ¼ fXGB

I þ ð1� fÞXI ð34Þ

where f is the volume fraction of the grain boundaries

[61]. For the simplest case of circular grains with the

diameter d and grain boundary thickness h, both in

nm, we can write [63]

f ¼ 1� d� h

d

� �3

: ð35Þ

Supposing a general segregation isotherm of the

Langmuir–McLean type with a single effective value

of the Gibbs energy of segregation (Eq. (8a)), we get

for a binary alloy,

XGB
I ¼

1þ f þ XT
I

� �
E� 1ð Þ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f þ XT

I

� �
E� 1ð Þ

� �2 � 4fXT
I EðE� 1Þ

q

2fðE� 1Þ ;

ð36Þ

supposing 0\XGB
I \1. In Eq. (36), E ¼

exp �DGI=RTð Þ. We can now characterize the change

of the configurational entropy with changing grain

size for example of a binary Fe–0.005 at.% P using

h = 1 nm, DHP = –29 kJ mol-1, DSP = ? 22 J mol-1

K-1, aP(Fe) = 4.5 kJ mol-1 [28], and thus, DGPð800KÞ =
–46 kJ mol-1. The corresponding dependence of SconfGB

on the grain size is shown in Fig. 5. It is apparent

from Fig. 5 that SconfGB decreases with decreasing grain

size as the grain boundary concentration of the solute

also decreases. This situation seems to be paradoxical

as consequently, the effect of stabilization of the

nanocrystalline structure due to grain boundary

segregation fades and a lower value of SconfGB suggests

better arrangement of the grain boundaries in

nanocrystalline structures compared to large bicrys-

tals. However, it may suggest that better arrangement

of the grain boundaries in nanocrystals contributes to

the reduction of grain boundary migration. Never-

theless, these paradoxes suggest that on the one

hand, SconfGB itself is not decisive for the properties of

the grain boundaries [64], but, on the other hand, its

behavior still deserves sufficient attention.

Further, the self-diffusion of nickel is higher at

grain boundaries of pure nickel compared to that in

CoCrFeNi and CoCrFeMnNi HEAs exhibiting much

Table 4 Composition of the

grain boundaries (at%) in two

Fe–Cr-based alloys containing

2.26 and 4.35 mass % Cr in

Fe P C O Cr SconfGB =R

2.26 mass % Cr alloy 68.73 13.60 8.12 6.25 3.30 1.019

4.35 mass % Cr alloy 64.13 17.64 7.49 3.28 7.46 1.091

Figure 5 Change of the grain boundary configurational entropy

with the grain size. Example data for a dilute Fe–P alloy (see the

text for details).
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higher SconfGB than the pure metal. Moreover, grain

boundary diffusivity in the CoCrFeNi HEA is larger

than that in CoCrFeMnNi one, however, at temper-

atures under 800 K, where the reversion occurs. It is

supposed that the nature of added components and

the character of their interaction play a more decisive

role [65]. Another factor affecting the elemental seg-

regation is the vacancy formation energy. The

vacancy formation energy could be positive (e.g., Co,

Fe, Ni) or negative (Cr). The negative vacancy for-

mation energy indicates a thermodynamic drive for

segregation resulting in the potential formation of the

passive layer [66].

It seems that the configurational entropy plays an

important role in the behavior of the grain bound-

aries due to the above-mentioned structural transi-

tions [47] and for example, the solubility of the

solutes at the grain boundaries is increased as we

already mentioned above. The effect of disordering at

the grain boundaries then competes with the chem-

istry and bond character. Nevertheless, there are still

many unanswered questions. Some of them can be

formulated as follows: What is the reason for the

reversion of the diffusivity in the vicinity of 800 K? Is

the enhanced solubility of solutes at the grain

boundaries really a consequence of the higher con-

figurational entropy and thus, the more open struc-

ture of grain boundaries? As there is a close

relationship between the grain boundary configura-

tional entropy and grain boundary segregation, does

configurational entropy really play an inferior role?

What is the role of the grain boundary configura-

tional entropy in the enthalpy-entropy compensation

effect? These and many other questions are still open

providing a challenge in elucidating the effect of the

grain boundary configurational entropy.

In this respect, we must add a comment. It is

apparent from Eq. (16) that SconfGB is closely related to

the characteristics of solute segregation at grain

boundaries as well as to the bulk concentration of the

solute. Both these variables determine the value of

the grain boundary configurational entropy and

control at which temperature the maximum value of

SconfGB is reached. On the other hand, the value of SconfGB

is determined simply by the grain boundary com-

position without considering the chemical nature of

the system (Eq. (4)). This apparent contradiction—

dependence only on numerical chemical composition

in the latter case but the inclusion of the chemistry in

the former case—needs a deeper grasp and elabora-

tion. Nevertheless, high value of SconfGB contributes

substantially to the total molar Gibbs energy of the

grain boundaries (cf. Eq. (33) for the grain bound-

ary): The value of its product with temperature can

reach 10 kJ mol–1 which is not negligible as com-

pared to the values of the enthalpy and other entropy

contributions. In this respect, it affects the behavior of

the system apparently. In fact, the configurational

energy is also closely related to the segregation

energy. Supposing the Gibbs adsorption isotherm

[27],

CGB
I ¼ � drGB

dlI
; ð37Þ

where CGB
I (in mol m–2) is the grain boundary excess

of component I, rGB is the grain boundary energy (in J

m–2) and lI is the bulk chemical potential of com-

ponent I, and

drGB ¼ � 1

x

X

i

G0; GB
i dXGB

i þ dGconf
GB

" #
; ð38Þ

where G0; GB
i is the molar Gibbs energy of pure

component i (in J mol–2), we get in an ideal binary

system,

dSconfGB ¼ G0; GB
I � G0; GB

M

T
dXGB

I þ XGB
I � XI

� �
d lnXI:

ð39Þ

Similarly,

dSconfGB ¼ G0; GB
I � G0; GB

M

� 	
XGB

I 1� XGB
I

� �DH0
I

RT3
dT: ð40Þ

By understanding this dialectic, the physical

meaning of the role of the configurational entropy in

various states and processes can be elucidated.

Due to the similarity with the grain boundaries, it

is also evident that high-entropy surfaces will also

exist. They should behave in very similar ways as the

grain boundaries do [67] and all above derived

expressions must also be valid for the surfaces in a

qualitative way. We can also expect exceptional

properties of high-entropy surfaces, mainly in the

field of surface segregation and adsorption which can

be reduced at lower temperatures as was mentioned

above for the grain boundaries [49]. It is known that

the materials with configurational entropy higher

than 1.5 R exhibit a slower diffusion rate than normal
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alloys, which implies higher resistance to high tem-

peratures [68]. As the high configurational entropy

impedes clustering, we may expect reduced tenden-

cies to oxidation and corrosion of such surfaces. This

can be further supported by ab initio simulations of

oxidation and the chemical resistance of the basic

material against these effects.

Conclusions

Configurational entropy is a thermodynamic quantity

which is widely mentioned concerning high entropy

alloys (HEAs) but has not been discussed generally

for grain boundaries so far. It is shown that—in

contrast to high-entropy alloys—it is larger in non-

HEAs than that in the bulk due to the segregation

effects. It is apparent that the grain boundary con-

figurational entropy is closely related to grain

boundary segregation. The basic expressions relating

the grain boundary configurational entropy to the

grain boundary segregation of solutes and/or

impurities are derived, and the basic effects of indi-

vidual variables are shown. Based on the experi-

mental data, it is shown that the grain boundary

configurational entropy exhibits pronounced aniso-

tropy which is temperature dependent, and similarly

to the segregation enthalpy, it is reversed by crossing

the compensation temperature. Similarly to grain

boundaries, high-entropy surfaces exist. Despite that

it seems that the main effect of the configurational

entropy is increased solubility of the solutes at the

grain boundaries, while other effects such as inter-

facial segregation, migration, and diffusion, are con-

trolled by the chemistry and bond character of the

system, there are many non-answered questions

suggesting that the phenomenon of the interfacial

configurational entropy still represents a challenge to

further research.
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agreement of experimental data and calculated results in

grain boundary segregation. Metals. https://doi.org/10.3390/

met12081389

[35] Li L, Li Z, Kwiatkowski da Silva A, Peng Z, Zhao H, Gault

B, Raabe D (2019) Segregation-driven grain boundary

spinodal decomposition as a pathway for phase nucleation in

a high-entropy alloy. Acta Mater 178:1–9. https://doi.org/10.

1016/j.actamat.2019.07.052

[36] Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic

MD, Tiley J (2014) Exploration and development of high

entropy alloys for structural applications, Entropy.

16:494–525. https://doi.org/10.3390/e16010494

[37] Erhart H, Grabke HJ (1981) Equilibrium segregation of

phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P,

and Fe–Cr–C–P alloys. Metal Sci 15:401–408. https://doi.

org/10.1179/030634581790426877
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