Skip to main content
Log in

An albumin-based nanosystem for cocktail therapy of breast cancer amplifies the therapeutic efficacy of combination chemotherapy with photodynamic therapy

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Combination chemotherapy is a crucial therapeutic strategy to improve the therapeutic efficacy of breast cancer in clinic. When combined with photodynamic therapy (PDT), the therapeutic efficacy can be further enhanced not only by PDT-induced phototoxicity, but also by PDT-induced photochemical internalization which facilitates the intracellular delivery and endo/lysosomes escape of drugs, therefore exhibit considerable potential in clinical treatment of breast cancer. Herein, a novel cocktail therapeutic strategy based on albumin-based nanosystem was established by covalently modifying human serum albumin (HSA) with all-trans retinoic acid (RA) and chlorin e6 (Ce6) to form HSA-RA-Ce6 (HRC) conjugate, and using paclitaxel (PTX) to induce self-assembly of HRC to form HRC@PTX nanoparticles (HRC@PTX NPs). The HRC@PTX NPs could amplify the therapeutic efficacy of combination chemotherapy of RA and PTX with Ce6-mediated PDT. The HRC@PTX NPs were characterized with a mean particle size of 174.1 ± 2.1 nm and a slightly negative zeta potential and exhibited good stability and hemocompatibility. The HRC@PTX NPs could promote the cellular uptake of drugs by MCF-7 cells and MDA-MB-231 cells and produce ROS to amplify the synergistic anti-tumor efficacy. The in vitro inhibitory effects on tumor growth investigated on monolayer and three-dimensional tumor spheroids revealed that HRC@PTX NPs exhibited significantly higher anti-tumor activity when exposed to 660-nm laser. These results demonstrated that HRC@PTX NPs could be developed as a promising cocktail therapeutic strategy for synergistic breast cancer therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Ma Y, Liu Y, Shi L, Tan Y, Zhang H, Qian Y, Yang D, Zheng J (2023) Aptamer induced nanosystem with dynamically self-monitoring and in-situ imaging for breast cancer therapy. Sens Actuators, B Chem 384:133611

    Article  CAS  Google Scholar 

  3. Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339(14):974–984

    Article  CAS  Google Scholar 

  4. Fisusi FA, Akala EO (2019) Drug combinations in breast cancer therapy. Pharm Nanotechnol 7(1):3–23

    Article  CAS  Google Scholar 

  5. Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z (2015) Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 9(5):5223–5233

    Article  CAS  Google Scholar 

  6. Yin J, Ouyang C, Shen S et al (2022) A redox-activatable and targeted photosensitizing agent to deliver doxorubicin for combining chemotherapy and photodynamic therapy. Mol Pharm 19(7):2441–2455

    Article  CAS  Google Scholar 

  7. Kang W, Shi Y, Yang Z, Yin X, Zhao Y, Weng L, Teng Z (2023) Flexible human serum albumin nanocapsules to enhance drug delivery and cellular uptake for photodynamic/chemo cancer therapy. RSC Adv 13(9):5609–5618

    Article  CAS  Google Scholar 

  8. Zhang W, Zhang C, Yang C, Wang X, Liu W, Yang M, Cao Y, Ran H (2023) Photochemically-driven highly efficient intracellular delivery and light/hypoxia programmable triggered cancer photo-chemotherapy. J Nanobiotechnology 21(1):11

    Article  Google Scholar 

  9. Cai C, Tian F, Ma J, Yu Z, Yang M, Yi C (2023) BSA-templated synthesis of Ir/Gd bimetallic oxide nanotheranostics for MR/CT imaging-guided photothermal and photodynamic synergistic therapy. Nanoscale 15(9):4457–4468

    Article  CAS  Google Scholar 

  10. Ji C, Yuan A, Xu L et al (2019) Activatable photodynamic therapy for prostate cancer by NIR dye/photosensitizer loaded albumin nanoparticles. J Biomed Nanotechnol 15(2):311–318

    Article  CAS  Google Scholar 

  11. El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P (2021) A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer Agents Med Chem 21(2):149–161

    Article  CAS  Google Scholar 

  12. Kumari P, Paul M, Bobde Y, Soniya K, Kiran Rompicharla SV, Ghosh B, Biswas S (2020) Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine (Lond) 15(29):2851–2869

    Article  CAS  Google Scholar 

  13. Chen Q, Chen J, Liang C et al (2017) Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy. J Control Release 263:79–89

    Article  CAS  Google Scholar 

  14. Hou L, Yao J, Zhou J, Zhang Q (2012) Pharmacokinetics of a paclitaxel-loaded low molecular weight heparin-all-trans-retinoid acid conjugate ternary nanoparticulate drug delivery system. Biomaterials 33(21):5431–5440

    Article  CAS  Google Scholar 

  15. Shen S, Xu X, Lin S, Zhang Y, Liu H, Zhang C, Mo R (2021) A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol 16(1):104–113

    Article  CAS  Google Scholar 

  16. Shi G, Zheng X, Wu X, Wang S, Wang Y, Xing F (2019) All-trans retinoic acid reverses epithelial-mesenchymal transition in paclitaxel-resistant cells by inhibiting nuclear factor kappa B and upregulating gap junctions. Cancer Sci 110(1):379–388

    Article  CAS  Google Scholar 

  17. Luo T, Han J, Zhao F, Pan X, Tian B, Ding X, Zhang J (2019) Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy. Carbohydr Polym 215:8–19

    Article  CAS  Google Scholar 

  18. Zhang J, Han J, Zhang X, Jiang J, Xu M, Zhang D, Han J (2015) Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel. Carbohydr Polym 129:25–34

    Article  Google Scholar 

  19. Jeong H, Huh M, Lee SJ, Koo H, Kwon IC, Jeong SY, Kim K (2011) Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1:230–239

    Article  CAS  Google Scholar 

  20. Qu N, Sun Y, Li Y et al (2019) Docetaxel-loaded human serum albumin (HSA) nanoparticles: synthesis, characterization, and evaluation. Biomed Eng Online 18(1):11

    Article  Google Scholar 

  21. Pham LM, Poudel K, Ou W et al (2021) Combination chemotherapeutic and immune-therapeutic anticancer approach via anti-PD-L1 antibody conjugated albumin nanoparticles. Int J Pharm 605:120816

    Article  CAS  Google Scholar 

  22. Yang G, Phua SZF, Lim WQ et al (2019) A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv Mater 31(25):e1901513

    Article  Google Scholar 

  23. Yang X, Shi X, Zhang Y et al (2020) Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy. J Control Release 323:333–349

    Article  CAS  Google Scholar 

  24. Toosi Moghadam F, Mamashli F, Khoobi M et al (2022) A dual responsive robust human serum albumin-based nanocarrier for doxorubicin. Biotechnol Appl Biochem 69(6):2496–2506

    Article  CAS  Google Scholar 

  25. Girma WM, Dehvari K, Ling YC, Chang JY (2019) Albumin-functionalized CuFeS2/photosensitizer nanohybrid for single-laser-induced folate receptor-targeted photothermal and photodynamic therapy. Mater Sci Eng C Mater Biol Appl 101:179–189

    Article  CAS  Google Scholar 

  26. Wan Q, Zou C, Hu D et al (2019) Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater Sci 7(7):3007–3015

    Article  CAS  Google Scholar 

  27. Witt S, Scheper T, Walter JG (2019) Production of polycaprolactone nanoparticles with dynamic diameters below 100 nm. Eng Life Sci 19(10):658–665

    Article  CAS  Google Scholar 

  28. Hao H, Ma Q, Huang C, He F, Yao P (2013) Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm 444(1–2):77–84

    Article  CAS  Google Scholar 

  29. Yang Y, Yun K, Li Y et al (2021) Self-assembled multifunctional polymeric micelles for tumor-specific bioimaging and synergistic chemo-phototherapy of cancer. Int J Pharm 602:120651

    Article  CAS  Google Scholar 

  30. Zheng K, Liu H, Liu X, Wang Y, Li L, Li S, Xue J, Huang M (2020) Tumor targeting chemo- and photodynamic therapy packaged in albumin for enhanced anti-tumor efficacy. Int J Nanomedicine 15:151–167

    Article  CAS  Google Scholar 

  31. Huang H, Shi H, Liu J et al (2016) Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chem Commun (Camb) 53(1):212–215

    Article  Google Scholar 

  32. Chen PL, Peng SL, Wu LT, Fan MM, Wang P, Liu LH (2020) Amphiphilic tumor-targeting chimeric peptide-based drug self-delivery nanomicelles for overcoming drug resistance in cancer by synergistic chemo-photodynamic therapy. J Mater Sci 55(31):15288–15298

    Article  CAS  Google Scholar 

  33. Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J (2021) Traceable nanocluster-prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl Bio Mater 4(4):3232–3245

    Article  CAS  Google Scholar 

  34. Ben-David U, Ha G, Tseng YY et al (2017) Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 49(11):1567–1575

    Article  CAS  Google Scholar 

  35. Lazzari G, Couvreur P, Mura S (2017) Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym Chem 8(34):4947–4969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province, China (ZR2021MC091), National Natural Science Foundation of China (81703391) and the College Students’ Innovation and Entrepreneurship Training Program of Shandong Province (S202110440055).

Funding

Natural Science Foundation of Shandong Province, ZR2021MC091, Jing Zhang, National Natural Science Foundation of China, 81703391, Feng Zhao

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Wang, S., Yang, H. et al. An albumin-based nanosystem for cocktail therapy of breast cancer amplifies the therapeutic efficacy of combination chemotherapy with photodynamic therapy. J Mater Sci 58, 8952–8968 (2023). https://doi.org/10.1007/s10853-023-08590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08590-5

Navigation