Skip to main content

Advertisement

Log in

Bimetallic 3D hollow-nanoshell FeCo-oxynitride/N and S co-doped carbon nanotubes as a robust bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a novel 3D hierarchically hollow-shell porous structure of iron cobalt oxynitride anchored nitrogen and sulfur-doped bamboo-like carbon nanotubes (FeCo2ON/NSCNTs) are fabricated using a pyrolysis of Fe doped-ZIF-8/67@S-doped g-C3N4. The strong synergistic effects between hollow FeCo2ON, NC nanoshells, and NSCNTs lead to accelerating the mass and electron transfer between the active sites which is favorable for electrochemical activities. The introduction of Fe into the nanohybrid and nitrogen/sulfur atoms doped on CNTs leading to increase electrical conductivity and decrease the activation energy barrier of the rate-determining step. The electrocatalyst exhibit a more half-wave potential of 0.903 V vs. RHE, outperform to Pt/C. Moreover, the low overpotential of 268 mV at 10 mA cm−1 is attained for FeCo2ON/NSCNTs. Its superiority as the air-electrode electrocatalyst corroborates in a Zn–air battery with a higher power density and specific capacity (235.4 mW cm−2, and 781 mAh g−1, respectively) than Pt/C + RuO2 (184.6 mW cm−2, and 701 mAh g−1).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Davari E, Ivey DG (2018) Bifunctional electrocatalysts for Zn–air batteries. Sustain Energy Fuels 2:39–67. https://doi.org/10.1039/C7SE00413C

    Article  CAS  Google Scholar 

  2. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:1–13. https://doi.org/10.1038/s41570-016-0003

    Article  CAS  Google Scholar 

  3. Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A (2018) Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat Energy 3:476–483. https://doi.org/10.1038/s41560-018-0132-1

    Article  CAS  Google Scholar 

  4. Tang C, Zhang Q (2017) Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater 29:1–9. https://doi.org/10.1002/adma.201604103

    Article  CAS  Google Scholar 

  5. Zhao XJ, Pachfule P, Li S, Simke JRJ, Schmidt J, Thomas A (2018) Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite. Angew Chem Int Ed 130:9059–9064. https://doi.org/10.1002/ange.201803136

    Article  Google Scholar 

  6. Akbarian P, Kheirmand M (2022) Mn3O4/graphene quantum dots hybrid nanoparticles for enhanced oxygen reduction reaction in alkaline media. J Mater Res 37:887–896. https://doi.org/10.1557/s43578-021-00436-7

    Article  CAS  Google Scholar 

  7. Ge R, Li L, Su J, Lin Y, Tian Z, Chen L (2019) Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv Energy Mater 9:1–9. https://doi.org/10.1002/aenm.201901313

    Article  CAS  Google Scholar 

  8. Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y (2019) CoP-Doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed 131:4727–4732. https://doi.org/10.1002/ange.201901409

    Article  Google Scholar 

  9. Shi Q, Liu Q, Ma Y, Fang Z, Liang Z, Shao G, Tang B, Yang W, Qin L, Fang X (2020) High-performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc-air battery and self-powered overall water splitting. Adv Energy Mater 10:1–11. https://doi.org/10.1002/aenm.201903854

    Article  CAS  Google Scholar 

  10. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53:102–121. https://doi.org/10.1002/anie.201306588

    Article  CAS  Google Scholar 

  11. Zhang L, Doyle-Davis K, Sun X (2019) Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ Sci 12:492–517. https://doi.org/10.1039/C8EE02939C

    Article  CAS  Google Scholar 

  12. Yu X, Yu ZY, Zhang XL, Zheng YR, Duan YU, Gao Q, Wu R, Sun B, Gao MR, Wang G, Yu SH (2019) “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J Am Chem Soc 141:7537–7543. https://doi.org/10.1021/jacs.9b02527

    Article  CAS  Google Scholar 

  13. Yang W, Liu X, Yue X, Jia J, Guo S (2015) Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc 137:1436–1439. https://doi.org/10.1021/ja5129132

    Article  CAS  Google Scholar 

  14. Wang D, Yang P, Xu H, Ma J, Du L, Zhang G, Li R, Jiang Z, Li Y, Zhang J, An M (2021) The dual-nitrogen-source strategy to modulate a bifunctional hybrid Co/Co–N–C catalyst in the reversible air cathode for Zn-air batteries. J Power Sources 485:1–10. https://doi.org/10.1016/j.jpowsour.2020.229339

    Article  CAS  Google Scholar 

  15. Yang MQ, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1–24. https://doi.org/10.1002/smll.201703323

    Article  CAS  Google Scholar 

  16. Zeng F, Broicher C, Hofmann JP, Palkovits S, Palkovits R (2019) Facile synthesis of sulfur-containing transition metal (Mn, Fe Co, and Ni) (Hydr)oxides for efficient oxygen evolution reaction. ChemCatChem 12:710–716. https://doi.org/10.1002/cctc.201901493

    Article  CAS  Google Scholar 

  17. Ou L, Long W, Huang J, Chen Y, Jin J (2017) Theoretical insight into effect of doping of transition metal M (M = Ni, Pd and Pt) on CO2 reduction pathways on Cu(111) and understanding of origin of electrocatalytic activity†. RSC Adv 7:11938–11950. https://doi.org/10.1039/C6RA28815D

    Article  CAS  Google Scholar 

  18. Meng FL, Liu KH, Zhang Y, Shi MM, Zhang XB, Yan JM, Jiang Q (2018) Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn–air batteries. Small 14:1–20. https://doi.org/10.1002/smll.201703843

    Article  CAS  Google Scholar 

  19. Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ (2016) Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angew Chem Int Ed 128:8812–8816. https://doi.org/10.1002/ange.201604372

    Article  Google Scholar 

  20. Gong X, Zhu J, Li J, Gao R, Zhou Q, Zhang Z, Dou H, Zhao L, Sui X, Cai J, Zhang Y, Liu B, Hu Y, Yu A, Sun S-h, Wang Z, Chen Z (2020) Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv Funct Mater 31:1–10. https://doi.org/10.1002/adfm.202008085

    Article  CAS  Google Scholar 

  21. He Y, Hwang S, Cullen DA, Uddin MA, Langhorst L, Li B, Karakalos S, Kropf AJ, Wegener EC, Sokolowski J, Chen M, Myers D, Su D, More KL, Wang G, Litser S, Wu G (2019) Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ Sci 12:250–260. https://doi.org/10.1039/C8EE02694G

    Article  CAS  Google Scholar 

  22. Yang CC, Zai SF, Zhou YT, Du L, Jiang Q (2019) Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv Func Mater 29:1–12. https://doi.org/10.1002/adfm.201901949

    Article  CAS  Google Scholar 

  23. Balamurugan J, Nguyen TT, Kim NH, Kim DH, Lee JH (2021) Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy 85:1–12. https://doi.org/10.1016/j.nanoen.2021.105987

    Article  CAS  Google Scholar 

  24. Wang S, Li L, Shao Y, Zhang L, Li Y, Wu Y, Hao X (2019) Transition-metal oxynitride: a facile strategy for improving electrochemical capacitor storage. Adv Mater 31:1–8. https://doi.org/10.1002/adma.201806088

    Article  CAS  Google Scholar 

  25. Di J, Zhu H, Xia J, Bao J, Zhang P, Yang SZ, Dai S (2019) High-performance electrolytic oxygen evolution with a seamless armor core–shell FeCoNi oxynitride†. Nanoscale 11:7239–7246. https://doi.org/10.1039/C8NR10191D

    Article  CAS  Google Scholar 

  26. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951. https://doi.org/10.1016/j.electacta.2008.02.012

    Article  CAS  Google Scholar 

  27. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  CAS  Google Scholar 

  28. Zhong RS, Qin YH, Niu DF, Tian JW, Zhang XS, Zhou XG, Yuan XWK (2013) Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. J power sources 225:192–199. https://doi.org/10.1016/j.jpowsour.2012.10.043

    Article  CAS  Google Scholar 

  29. Yang M, Zhang CH, Li NW, Luan D, Yu L, Lou XW (2022) Design and synthesis of hollow nanostructures for electrochemical water splitting. Adv Sci 9:1–17. https://doi.org/10.1002/advs.202105135

    Article  CAS  Google Scholar 

  30. Wang YZ, Yang M, Ding YM, Li NW, Yu L (2022) Recent advances in complex hollow electrocatalysts for water splitting. Adv Func Mater 32:1–19. https://doi.org/10.1002/adfm.202108681

    Article  CAS  Google Scholar 

  31. Du Q, Su P, Cao Z, Yang J, Price CAH, Liu J (2021) Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance. Sust Mater Tech 29:1–8. https://doi.org/10.1016/j.susmat.2021.e00293

    Article  CAS  Google Scholar 

  32. Yoon KR, Hwang CK, Kim SH, Jung JW, Chae JE, Kim J, Kim JY (2021) Hierarchically assembled cobalt oxynitride nanorods and N-doped carbon nanofibers for efficient bifunctional oxygen electrocatalysis with exceptional regenerative efficiency. ACS Nano 15:11218–11230. https://doi.org/10.1021/acsnano.0c09905

    Article  CAS  Google Scholar 

  33. Radwan A, Jin H, Liu B, Chen Z, Wu Q, Zhao X, He XD, Mu S (2021) 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 171:368–375. https://doi.org/10.1016/j.carbon.2020.09.024

    Article  CAS  Google Scholar 

  34. Zhu C, Yang P, Chao D, Wang X, Zhang X, Chen S, Tay BK, Huang H, Zhang H, Mai W (2015) All metal nitrides solid-state asymmetric supercapacitors. Adv Mater 27:4566–4571. https://doi.org/10.1002/adma.201501838

    Article  CAS  Google Scholar 

  35. Hu Y, Huang D, Zhang J, Huang Y, Balogun MSJT, Tong Y (2019) Dual doping induced interfacial engineering of Fe2N/Fe3N hybrids with favorable d-band towards efficient overall water splitting. ChemCatChem 11:6051–6060. https://doi.org/10.1002/cctc.201901224

    Article  CAS  Google Scholar 

  36. Wu Y, Shi Q, Li Y, Lai Z, Yu H, Wang H, Peng F (2015) Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction†. J Mater Chem A 3:1142–1151. https://doi.org/10.1039/C4TA03850A

    Article  CAS  Google Scholar 

  37. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed 51:6131–6135. https://doi.org/10.1002/anie.201200699

    Article  CAS  Google Scholar 

  38. Wu YJ, Wu XH, Tu TX, Zhang PF, Li JT, Zhou Y, Huang L, Sun SG (2020) Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Appl Catal B 278:1–37. https://doi.org/10.1016/j.apcatb.2020.119259

    Article  CAS  Google Scholar 

  39. Liu D, Li JC, Ding S, Lyu Z, Feng S, Tian H, Huyan C, Xu M, Li T, Du D, Liu P, Shao M, Lin Y (2020) 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 4:1–7. https://doi.org/10.1002/smtd.201900827

    Article  CAS  Google Scholar 

  40. Ren Q, Wang H, Lu XF, Tong YX, Li GR (2018) Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 5:1–21. https://doi.org/10.1002/advs.201700515

    Article  CAS  Google Scholar 

  41. Liu T, Zhao P, Hua X, Luo W, Chen S, Cheng G (2016) An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. J Mater Chem A 4:11357–11364. https://doi.org/10.1039/C6TA03265F

    Article  CAS  Google Scholar 

  42. Wang Z, Jin H, Meng T, Liao K, Meng W, Yang J, He D, Xiong Y, Mu S (2018) Fe, Cu-coordinated ZIF-DERIVED CARBON FRAMEWORK FOR EFFICIENT OXYGEN REDUCTION REACTION AND ZINC-AIR BATTeries. Adv Funct Mater 28:1–8. https://doi.org/10.1002/adfm.201802596

    Article  CAS  Google Scholar 

  43. Lee YR, Jang MS, Cho HY, Kwon HJ, Kim S, Ahn WS (2015) ZIF-8: A comparison of synthesis methods. Chem Eng J 271:276–280. https://doi.org/10.1016/j.cej.2015.02.094

    Article  CAS  Google Scholar 

  44. Son S, Lim D, Nam D, Kim J, Shim SE, Baeck SH (2019) N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction. J Solid State Chem 274:237–242. https://doi.org/10.1016/j.jssc.2019.03.036

    Article  CAS  Google Scholar 

  45. Deng Y, Chi B, Li J, Wang G, Zheng L, Shi X, Cui Z, Du L, Liao S, Zang K, Luo J, Hu Y, Sun X (2019) Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward pem fuel cells. Adv Energy Mater 9:1–8. https://doi.org/10.1002/aenm.201802856

    Article  CAS  Google Scholar 

  46. Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y (2018) Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc 140:2610–2618. https://doi.org/10.1021/jacs.7b12420

    Article  CAS  Google Scholar 

  47. Lai Q, Zhu J, Zhao Y, Liang Y, He J, Chen J (2017) MOF-based metal-doping-induced synthesis of hierarchical porous Cu-N/C oxygen reduction electrocatalysts for Zn–air batteries. Small 13:1–11. https://doi.org/10.1002/smll.201700740

    Article  CAS  Google Scholar 

  48. Bai F, Qu X, Wang J, Chen X, Yang W (2020) Confinement catalyst of Co9S8@N-doped carbon derived from intercalated Co(OH)2 precursor and enhanced electrocatalytic oxygen reduction performance. ACS Appl Mater Interfaces 12:33740–33750. https://doi.org/10.1021/acsami.0c08267

    Article  CAS  Google Scholar 

  49. Ye Z, Zhang P, Lei X, Wang X, Zhao N, Yang H (2018) Iron carbides and nitrides: ancient materials with novel prospects. Chem Eur J 24:8922–8940. https://doi.org/10.1002/chem.201706028

    Article  CAS  Google Scholar 

  50. Wang XR, Liu JY, Liu ZW, Wang WC, Luo J, Han XP, Du XW, Qiao SZ, Yang J (2018) Identifying the key role of pyridinic-N–Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv Mater 30:1–10. https://doi.org/10.1002/adma.201800005

    Article  CAS  Google Scholar 

  51. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B Environ 176:44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  52. Shi Q, Peng F, Liao S, Wang H, Yu H, Liu Z, Zhang B, Su D (2013) Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J Mater Chem A 1:14853–14857. https://doi.org/10.1039/C3TA12647A

    Article  CAS  Google Scholar 

  53. Sahu RS, Doong RA (2020) Functionalized Fe/Ni@g-C3N4 nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity. Env Sci Nano 7:3469–3481. https://doi.org/10.1039/D0EN00450B

    Article  CAS  Google Scholar 

  54. Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C: Photochem Rev 20:33–50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002

    Article  CAS  Google Scholar 

  55. Khasevani SG, Mohaghegh N, Gholami MR (2017) Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J Chem 41:10390–10396. https://doi.org/10.1039/C7NJ01968H

    Article  Google Scholar 

  56. Van Nguyen M, Mai OLT, Pham Do C, Lam Thi H, Pham Manh C, Nguyen Manh H, Pham Thi D, Do Danh B (2020) Fe-doped g-C3N4: high-performance photocatalysts in rhodamine B decomposition. Polymers 12:1–13. https://doi.org/10.3390/polym12091963

    Article  CAS  Google Scholar 

  57. Wang MQ, Yang WH, Wang HH, Chen C, Zhou ZY, Sun SG (2014) Pyrolyzed Fe–N–C composite as an efficient non-precious metal catalyst for oxygen reduction reaction in acidic medium. ACS Catal 4:3928–3936. https://doi.org/10.1021/cs500673k

    Article  CAS  Google Scholar 

  58. Zhang Y, Jiang R, Wang Z, Xue Y, Sun J, Guo Y (2020) (Fe, N-codoped carbon nanotube)/(Fe-based nanoparticle) nanohybrid derived from Fe-doped g-C3N4: a superior catalyst for oxygen reduction reaction. J Colloid Interface Sci 579:391–400. https://doi.org/10.1016/j.jcis.2020.06.057

    Article  CAS  Google Scholar 

  59. Kang T, Liu B, Wang P, Li H, Yang M (2022) N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich, molecule-doped 3D gC3N4 as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. J Mater Chem A 10:9911–9921. https://doi.org/10.1039/D2TA00750A

    Article  Google Scholar 

  60. Sun T, Zhang P, Chen W, Wang K, Fu X, Zheng T, Jiang J (2020) Single iron atoms coordinated to g-C3N4 on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chem Comm 56:798–801. https://doi.org/10.1039/C9CC07772C

    Article  CAS  Google Scholar 

  61. Ding XB, Li F, Cao QC, Wu H, Qin YH, Yang L, Wang T, Zheng X, Wang CW (2022) Core-shell S-doped g-C3N4@ P123 derived N and S co-doped carbon as metal-free electrocatalysts highly efficient for oxygen reduction reaction. Chem Eng J 429:1–8. https://doi.org/10.1016/j.cej.2021.132469

    Article  CAS  Google Scholar 

  62. Wu A, Xie Y, Ma H, Tian C, Gu Y, Yan H, Zhang X, Yang G, Fu H (2018) Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 44:353–363. https://doi.org/10.1016/j.nanoen.2017.11.045

    Article  CAS  Google Scholar 

  63. Eissa AA, Peera SG, Kim NH, Lee JH (2019) g-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe–Nx active sites for efficient oxygen reduction reaction†. J Mater Chem A 7:16920–16936. https://doi.org/10.1039/C9TA01837A

    Article  CAS  Google Scholar 

  64. Kone I, Ahmad Z, Xie A, Tang Y, Sun Y, Chen Y, Yang X, Wan P (2020) In situ growth of Co4N nanoparticles-embedded nitrogen-doped carbon nanotubes on metal-organic framework–derived carbon composite as highly efficient electrocatalyst for oxygen reduction and evolution reactions. Energy Tech 8:1–10. https://doi.org/10.1002/ente.202000409

    Article  CAS  Google Scholar 

  65. Zhang N, Yan X, Li J, Ma J, Ng DH (2017) Biosorption-directed integration of hierarchical CoO/C composite with nickel foam for high-performance supercapacitor. Electrochim Acta 226:132–139. https://doi.org/10.1016/j.electacta.2016.12.192

    Article  CAS  Google Scholar 

  66. Gautam J, Thanh TD, Maiti K, Kim NH, Lee JH (2018) Highly efficient electrocatalyst of N-doped graphene-encapsulated cobalt-iron carbides towards oxygen reduction reaction. Carbon 137:358–367. https://doi.org/10.1016/j.carbon.2018.05.042

    Article  CAS  Google Scholar 

  67. Shi Q, Liu Q, Zheng Y, Dong Y, Wang L, Liu H, Yang W (2022) Controllable construction of bifunctional Co x P@ N, P-doped carbon electrocatalysts for rechargeable Zinc-air batteries. Energy Environ Mater 5:515–523. https://doi.org/10.1002/eem2.12208

    Article  CAS  Google Scholar 

  68. Zhu Z, Xu Q, Ni Z, Luo K, Liu Y, Yuan D (2021) CoNi nanoalloys @ N-doped graphene encapsulated in n-doped carbon nanotubes for rechargeable Zn−air batteries. ACS Sustain Chem Eng 9:13491–13500. https://doi.org/10.1021/acssuschemeng.1c04259

    Article  CAS  Google Scholar 

  69. Liu G, Qiao X, Gondal MA, Liu Y, Shen K, Xu Q (2018) Comparative study of pure g-C3N4 and sulfur-doped g-C3N4 catalyst performance in photo-degradation of persistent pollutant under visible light. J Nanosci Nanotech 18:4142–4154. https://doi.org/10.1166/jnn.2018.15243

    Article  CAS  Google Scholar 

  70. Deng Y, Zheng J, Liu B, Li H, Yang M, Wang Z (2023) Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable zinc-air batteries. J Energy Chem 76:470–478. https://doi.org/10.1016/j.jechem.2022.09.031

    Article  CAS  Google Scholar 

  71. Qin X, Huang Y, Wang K, Xu T, Wang Y, Wang M, Zhao M, Gao Q (2019) Highly efficient oxygen reduction reaction catalyst derived from Fe/Ni mixed-metal–organic frameworks for application of fuel cell cathode. Ind Eng Chem Res 58:10224–10237. https://doi.org/10.1021/acs.iecr.9b01412

    Article  CAS  Google Scholar 

  72. Xie WW, Tian TZ, Yang M, Li NW, Yu L (2022) Formation of hollow frameworks of dual-sided Fe/Fe3C@ N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for Zn-air batteries. Appl Catal B Environ 317:1–8. https://doi.org/10.1016/j.apcatb.2022.121760

    Article  CAS  Google Scholar 

  73. Li M, Bo X, Zhang Y, Han C, Nsabimana A, Guo L (2014) Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction. J Mater Chem A 2:11672–11682. https://doi.org/10.1039/C4TA01078G

    Article  CAS  Google Scholar 

  74. Hu Q, Liu X, Zhu B, Fan L, Chai X, Zhang Q, Liu J, He C, Lin Z (2018) Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50:212–219. https://doi.org/10.1016/j.nanoen.2018.05.033

    Article  CAS  Google Scholar 

  75. Sun C, Ding J, Wang H, Liu J, Han X, Deng Y, Zhong C, Hu W (2021) Cobalt sulfides constructed heterogeneous interfaces decorated on N, S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. J Mater Chem A 9:13926–13935. https://doi.org/10.1039/D1TA02330F

    Article  CAS  Google Scholar 

  76. Xiong Q, Zheng J, Liu B, Liu Y, Li H, Yang M (2023) In-situ self-templating construction of FeNi/N co-doped 3D porous carbon from bimetallic ions-coordinated porous organic polymer for rechargeable zinc-air batteries. Appl Catal B Environ 321:1–11. https://doi.org/10.1016/j.apcatb.2022.122067

    Article  CAS  Google Scholar 

  77. Xing X, Liu R, Anjass M, Cao K, Kaiser U, Zhang G, Streb C (2020) Bimetallic manganese-vanadium functionalized N, S-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal B Environ 277:1–8. https://doi.org/10.1016/j.apcatb.2020.119195

    Article  CAS  Google Scholar 

  78. Ding J, Wang P, Ji S, Wang H, Linkov V, Wang R (2019) N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochim Acta 296:653–661. https://doi.org/10.1016/j.electacta.2018.11.105

    Article  CAS  Google Scholar 

  79. Zhu T, Sha Y, Zhang H, Huang Y, Gao X, Ling M, Lin Z (2021) Embedding Fe3C and Fe3N on a nitrogen-doped carbon nanotube as a catalytic and anchoring center for a high-areal-capacity Li–S battery. ACS Appl Mater Interfaces 13:20153–20161. https://doi.org/10.1021/acsami.1c03358

    Article  CAS  Google Scholar 

  80. Gupta S, Zhao S, Ogoke O, Lin Y, Xu H, Wu G (2017) Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts through tuning of nitrogen/carbon precursors. Chemsuschem 10:774–785. https://doi.org/10.1002/cssc.201601397

    Article  CAS  Google Scholar 

  81. Jannath KA, Huang Y, Seo KD, Park DS, Shim YB (2022) Fe3N decorated S/N doped carbon derived from a coordinated polymer as a bifunctional electrocatalyst for oxygen reduction and catecholamines oxidation. Carbon 187:1–12. https://doi.org/10.1016/j.carbon.2021.10.074

    Article  CAS  Google Scholar 

  82. Yan Z, Qi X, Bai X, Huang K, Chen YR, Wang Q (2018) Mn doping of cobalt oxynitride coupled with N-rGO nanosheets hybrid as a highly efficient electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochim Acta 283:548–559. https://doi.org/10.1016/j.electacta.2018.06.185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge from Hydrogen and Fuel cell Research Laboratory, Department of Chemistry, Yasouj University.

Author information

Authors and Affiliations

Authors

Contributions

PA contributed in conceptualization, experimental design, carried out measurements and wrote the original draft, MK were involved in supervision, responsible for resources and participated in writing—review and editing, AA carried out measurements and wrote the original draft.

Corresponding author

Correspondence to Mehdi Kheirmand.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 635 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarian, P., Kheirmand, M. & Asadi, A. Bimetallic 3D hollow-nanoshell FeCo-oxynitride/N and S co-doped carbon nanotubes as a robust bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. J Mater Sci 58, 8889–8907 (2023). https://doi.org/10.1007/s10853-023-08551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08551-y

Navigation