Skip to main content

Advertisement

Log in

Nanostructured Fe-substituted NiCo2O4@NiMnCo-LDH ternary composite as an electrode material for high-performance supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An essential challenge faced by pseudocapacitive electrode materials is insufficient charge storage capability with high intrinsic electrical resistance and structural instability. With an exponential increase in the demand for a pollutant-free environment, ternary metal compounds are being extensively explored as an attractive solution to these problems. Herein, we have addressed a solution to the above-listed issues by synthesizing novel and binder-free NiMnCo layered double hydroxide (NiMnCo-LDH) nanosheets on Fe-substituted NiCo2O4 (FexNi1−xCo2O4) nanorods supported on nickel foam via a facile hydrothermal method followed by chemical bath deposition. The highly defined and well-distributed porous Fe-substituted NiCo2O4 nanorod structure integrated with the ternary NiMnCo-LDH nanosheets provide ultra-fast kinetics of charge transfer, increased charge storage capacity, and high structural stability. The nanocomposite electrode delivers a high specific capacity of 281 mAh/g at a scan rate of 5 mV/s (265 mAh/g at 1 A/g) with a capacitance retention of 92% after 5000 cycles at 2 A/g. The effect of Fe in NiCo2O4 is further validated by performing density-functional theory (DFT) calculations to obtain atomic insights on electrical conductivity using the density of states (DOS) and band structures. Finally, a symmetric supercapacitor based on FexNi1−xCo2O4@NiMnCo LDH was assembled which delivered an impressive energy density of 105 Wh/kg and a power density of 1112 W/kg, proving FexNi1−xCo2O4@NiMnCo-LDH as an electrode material to be used for applications of energy storage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9):1597–1615

    Article  CAS  Google Scholar 

  2. Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang D-M, Li H, Zhai T, Li L, Bando Y, Golberg D (2012) N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv Funct Mater 22(13):2682–2690

    Article  CAS  Google Scholar 

  3. Wang C, Zhou E, He W, Deng X, Huang J, Ding M, Wei X, Liu X, Xu X (2017) NiCo2O4-based supercapacitor nanomaterials. Nanomaterials 7(2):41

    Article  Google Scholar 

  4. Fu H, Zhang A, Jin F, Guo H, Huang W, Cheng W, Liu J (2022) Origami and layered-shaped ZnNiFe-LDH synthesized on Cu(OH)2 nanorods array to enhance the energy storage capability. J Colloid Interface Sci 607:1269–1279

    Article  CAS  Google Scholar 

  5. Iro ZS, Subramani C, Dash S (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11(12):10628–10643

    Article  CAS  Google Scholar 

  6. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912

    Article  CAS  Google Scholar 

  7. Devillers N, Jemei S, Péra M-C, Bienaimé D, Gustin F (2014) Review of characterization methods for supercapacitor modelling. J Power Sources 246:596–608

    Article  CAS  Google Scholar 

  8. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    Article  CAS  Google Scholar 

  9. Shi X, Zhang S, Chen X, Mijowska E (2019) Evaluation of nanoporous carbon synthesized from direct carbonization of a metal–organic complex as a highly effective dye adsorbent and supercapacitor. Nanomaterials 9(4):601

    Article  CAS  Google Scholar 

  10. Baig MM, Gul IH, Baig SM, Shahzad F (2021) The complementary advanced characterization and electrochemical techniques for electrode materials for supercapacitors. J Energy Storage 44:103370

    Article  Google Scholar 

  11. Baig MM, Gul IH, Baig SM, Shahzad F (2022) 2D MXenes: synthesis, properties, and electrochemical energy storage for supercapacitors—a review. J Electroanal Chem 904:115920

    Article  CAS  Google Scholar 

  12. Huang Y-Y, Lin L-Y (2018) Synthesis of ternary metal oxides for battery-supercapacitor hybrid devices: influences of metal species on redox reaction and electrical conductivity. ACS Appl Energy Mater 1(6):2979–2990

    Article  CAS  Google Scholar 

  13. Hsu C-T, Hu C-C, Wu T-H, Chen J-C, Rajkumar M (2014) How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors. Electrochim Acta 146:759–768

    Article  CAS  Google Scholar 

  14. Hong W-L, Lin L-Y, Lin L-Y (2017) Growing sequence effects of core-shell nanostructure on morphology and electrocapacitive ability for energy-storage electrodes. Electrochim Acta 255:309–322

    Article  CAS  Google Scholar 

  15. Malik S, Gul IH, Baig MM (2021) Hierarchical MnNiCo ternary metal oxide/graphene nanoplatelets composites as high rated electrode material for supercapacitors. Ceram Int 47(12):17008–17014

    Article  CAS  Google Scholar 

  16. Liu B, Kong D, Huang ZX, Mo R, Wang Y, Han Z, Cheng C, Yang HY (2016) Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale 8(20):10686–10694

    Article  CAS  Google Scholar 

  17. Kong D, Ren W, Cheng C, Wang Y, Huang Z, Yang HY (2015) Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Appl Mater Interfaces 7(38):21334–21346

    Article  CAS  Google Scholar 

  18. Liu L, Zhang H, Fang L, Mu Y, Wang Y (2016) Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@ nanomeshes for excellent capacitive property in asymmetric supercapacitors. J Power Sources 327:135–144

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang Y-Z, Gao Y-Q, Sheng G, Johan E (2020) Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy 68:104306

    Article  CAS  Google Scholar 

  20. Azad M, Hussain Z, Baig MM (2020) MWCNTs/NiS2 decorated Ni foam based electrode for high-performance supercapacitors. Electrochim Acta 345:136196

    Article  CAS  Google Scholar 

  21. Baig MM, Gul IH (2021) Transformation of wheat husk to 3D activated carbon/NiCo2S4 frameworks for high-rate asymmetrical supercapacitors. J Energy Storage 37:102477

    Article  Google Scholar 

  22. Yu J, Wang Q, O’Hare D, Sun L (2017) Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev 46(19):5950–5974

    Article  CAS  Google Scholar 

  23. Cao Y, Li G, Li X (2016) Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem Eng J 292:207–223

    Article  CAS  Google Scholar 

  24. Patel R, Park JT, Patel M, Dash JK, Gowd EB, Karpoormath R, Mishra A, Kwak J, Kim JH (2018) Transition-metal-based layered double hydroxides tailored for energy conversion and storage. J Mater Chem A 6(1):12–29

    Article  CAS  Google Scholar 

  25. Cao J, Li J, Li L, Zhang Y, Cai D, Chen D, Han W (2019) Mn-doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain Chem Eng 7:10699–10707

    Article  CAS  Google Scholar 

  26. Xia H, Li G, Cai H, Li X, Sun P, Wang P, Huang J, Wang L, Zhang D, Yang Y, Xiong J (2019) Interlaced NiMn-LDH nanosheet decorated NiCo2O4 nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. Dalton Trans 48(32):12168–12176

    Article  CAS  Google Scholar 

  27. Liu S, An C, Chang X, Guo H, Zang L, Wang Y, Yuan H, Jiao L (2018) Optimized core–shell polypyrrole-coated NiCo2O4 nanowires as binder-free electrode for high-energy and durable aqueous asymmetric supercapacitor. J Mater Sci 53(4):2658–2668. https://doi.org/10.1007/s10853-017-1742-x

    Article  CAS  Google Scholar 

  28. Luo J-M, Gao B, Zhang X-G (2008) High capacitive performance of nanostructured Mn–Ni–Co oxide composites for supercapacitor. Mater Res Bull 43:1119–1125

    Article  CAS  Google Scholar 

  29. Li X, Du D, Zhang Y, Xing W, Xue Q, Yan Z (2017) Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A 5(30):15460–15485

    Article  CAS  Google Scholar 

  30. Fu H, Zhang A, Jin F, Guo H, Liu J (2022) Ternary NiCeCo-layered double hydroxides grown on CuBr 2@ZIF-67 nanowire arrays for high-performance supercapacitors. ACS Appl Mater Interfaces 14(14):16165–16177

    Article  CAS  Google Scholar 

  31. Vlad A, Singh N, Rolland J, Melinte S, Ajayan PM, Gohy JF (2014) Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep 4(1):4315

    Article  CAS  Google Scholar 

  32. Sekhar SC, Nagaraju G, Yu JS (2017) Conductive silver nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 36:58–67

    Article  CAS  Google Scholar 

  33. Liu P-F, Zhou J-J, Li G-C, Wu M-K, Tao K, Yi F-Y, Zhao W-N, Han L (2017) A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors. Dalton Trans 46(23):7388–7391

    Article  CAS  Google Scholar 

  34. Baig MM, Mehran MT, Khan R, Mahmood K, Naqvi SR, Khoja AH, Gul IH (2021) Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni foam for high-performance supercapacitors. Surf Coat Technol 421:127455

    Article  CAS  Google Scholar 

  35. Salleh NA, Kheawhom S, Mohamad AA (2020) Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arab J Chem 13(8):6838–6846

    Article  CAS  Google Scholar 

  36. Liao J, Zhang J, Wang C-Z, Lin S (2018) Electrochemical and density functional theory investigation on the differential behaviors of core-ring structured NiCo2O4 nanoplatelets toward heavy metal ions. Anal Chim Acta 1022:37–44

    Article  CAS  Google Scholar 

  37. Fang CM, Parker SC, de With G (2000) Atomistic simulation of the surface energy of spinel MgAl2O4. J Am Ceram Soc 83(8):2082–2084

    Article  CAS  Google Scholar 

  38. Canova FF, Foster AS, Rasmussen MK, Meinander K, Besenbacher F, Lauritsen J (2012) Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4 (100) surface. Nanotechnology 23(32):325703

    Article  Google Scholar 

  39. Co2NiO4 (mp-1096547). https://next-gen.materialsproject.org/materials/mp-1096547?formula=NiCo2O4 (accessed September 7)

  40. BLYP. https://acronyms.thefreedictionary.com/BLYP (accessed September 7)

  41. Torbjörnsson M, Ryde U (2021) Comparison of the accuracy of DFT methods for reactions with relevance to nitrogenase. Electron Struct 3(3):034005

    Article  Google Scholar 

  42. Das T, Di Liberto G, Tosoni S, Pacchioni G (2019) Band gap of 3D metal oxides and quasi-2D materials from hybrid density functional theory: are dielectric-dependent functionals superior? J Chem Theory Comput 15(11):6294–6312

    Article  CAS  Google Scholar 

  43. Mandal S, Haule K, Rabe KM, Vanderbilt D (2019) Systematic beyond-DFT study of binary transition metal oxides. npj Comput Mater 5(1):115

    Article  CAS  Google Scholar 

  44. NiCo2O4 (Co2NiO4) Crystal structure: datasheet from "PAULING FILE multinaries edition—2012. In: SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_1122836), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan

  45. CoFe2O4 (Fe2CoO4) Crystal structure: datasheet from "PAULING FILE multinaries edition—2012. In: SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_0310674), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan

  46. Yan L, Chen X (2014) Nanomaterials for drug delivery. In: Tjong S-C (ed) Nanocrystalline materials, 7th edn. Oxford, Elsevier, pp 221–268

    Chapter  Google Scholar 

  47. Yuan Y, Long D, Li Z, Zhu J (2019) Fe substitution in urchin-like NiCo2O4 for energy storage devices. RSC Adv 9(13):7210–7217

    Article  CAS  Google Scholar 

  48. Li M, Cheng JP, Wang J, Liu F, Zhang XB (2016) The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim Acta 206:108–115

    Article  CAS  Google Scholar 

  49. Chen H, Dong X, Shi J, Zhao J, Hua Z, Gao J, Ruan M, Yan D (2007) Templated synthesis of hierarchically porous manganese oxide with a crystalline nanorod framework and its high electrochemical performance. J Mater Chem 17(9):855–860

    Article  CAS  Google Scholar 

  50. Baig MM, Gul IH, Ahmad R, Baig SM, Khan MZ, Iqbal N (2021) One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. J Mater Sci 56(33):18636–18649. https://doi.org/10.1007/s10853-021-06431-x

    Article  CAS  Google Scholar 

  51. Wei X, Zhang Z, Zhang L, Xu X (2019) Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. J Mater Sci 54(3):2066–2078. https://doi.org/10.1007/s10853-018-2975-z

    Article  CAS  Google Scholar 

  52. Mohamed MJS, Shenoy S, Bhat DK (2018) Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenol. Mater Chem Phys 208:112–122

    Article  CAS  Google Scholar 

  53. Sethi M, Bhat DK (2019) Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. J Alloys Compd 781:1013–1020

    Article  CAS  Google Scholar 

  54. Zhou J, Min M, Liu Y, Tang J, Tang W (2018) Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sens Actuators B Chem 260:408–417

    Article  CAS  Google Scholar 

  55. Yan T, Li R, Li Z (2014) Nickel–cobalt layered double hydroxide ultrathin nanoflakes decorated on graphene sheets with a 3D nanonetwork structure as supercapacitive materials. Mater Res Bull 51:97–104

    Article  CAS  Google Scholar 

  56. Bartůněk V, Sedmidubský D, Huber Š, Švecová M, Ulbrich P, Jankovský O (2018) Synthesis and properties of nanosized stoichiometric cobalt ferrite spinel. Materials 11:1241

    Article  Google Scholar 

  57. Peng L, Ji X, Wan H, Ruan Y, Xu K, Chen C, Miao L, Jiang J (2015) Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367

    Article  CAS  Google Scholar 

  58. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190

    Article  CAS  Google Scholar 

  59. Wang H, Gao Q, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17):2454–2459

    CAS  Google Scholar 

  60. Yin X, Li H, Han L, Yuan R, Lu J (2020) NiCo2O4 nanosheets sheathed SiC@CNTs core-shell nanowires for high-performance flexible hybrid supercapacitors. J Colloid Interface Sci 577:481–493

    Article  CAS  Google Scholar 

  61. Nasser R, Wang X-L, Trabelsi ABG, Alkallas FH, Elhouichet H, Song J-M (2022) Design of iron (Fe)-doped NiCo2O4@ rGO urchin-shaped microspheres with outstanding electrochemical performances for asymmetric supercapacitor. J Energy Storage 52:104619

    Article  Google Scholar 

  62. Zheng X, Han X, Zhao X, Qi J, Ma Q, Tao K, Han L (2018) Construction of Ni–Co–Mn layered double hydroxide nanoflakes assembled hollow nanocages from bimetallic imidazolate frameworks for supercapacitors. Mater Res Bull 106:243–249

    Article  CAS  Google Scholar 

  63. Fu H, Zhang A, Zong H, Jin F, Guo H, Liu J (2023) Embedding of conductive Ag nanoparticles among honeycomb-like NiMn layered double hydroxide nanosheet arrays for ultra-high performance flexible supercapacitors. J Colloid Interface Sci 629:938–949

    Article  CAS  Google Scholar 

  64. Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22(12):2632–2641

    Article  CAS  Google Scholar 

  65. Liu T, Zhou S, Yu X, Mao C, Wei Y, Yu X, Chen L, Zhao X, Tian G, Chen L (2022) Hexadecyl trimethyl ammonium bromide assisted growth of NiCo2O4@reduced graphene oxide/nickel foam nanoneedle arrays with enhanced performance for supercapacitor electrodes. RSC Adv 12(7):4029–4041

    Article  CAS  Google Scholar 

  66. Yu S, Zhang Y, Lou G, Wu Y, Zhu X, Chen H, Shen Z, Fu S, Bao B, Wu L (2018) Synthesis of NiMn-LDH nanosheet@Ni3S2 nanorod hybrid structures for supercapacitor electrode materials with ultrahigh specific capacitance. Sci Rep 8(1):5246

    Article  Google Scholar 

  67. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11):10211–10219

    Article  CAS  Google Scholar 

  68. Fu H, Zhang A, Guo H, Zong H, Jin F, Zhao K, Liu J (2022) Rose-like ZnNiCo layered double hydroxide grown on Co3O4 nanowire arrays for high energy density flexible supercapacitors. J Energy Storage 56:106056

    Article  Google Scholar 

  69. Allison A, Andreas HA (2019) Minimizing the Nyquist-plot semi-circle of pseudocapacitive manganese oxides through modification of the oxide-substrate interface resistance. J Power Sources 426:93–96

    Article  CAS  Google Scholar 

  70. Chong B, Azman NHN, Mohd Abdah MAA, Sulaiman Y (2019) Supercapacitive performance of N-doped graphene/Mn3O4/Fe3O4 as an electrode material. Appl Sci 9:1040

    Article  CAS  Google Scholar 

  71. Yu J, Yao D, Wu Z, Li G, Song J, Shen H, Yang X, Lei W, Wu F, Hao Q (2021) Construction of a high-performance three-dimensional structured NiCo2O4@PPy nanosheet array free-standing electrode for a hybrid supercapacitor. ACS Appl Energy Mater 4(4):3093–3100

    Article  CAS  Google Scholar 

  72. Yin X, Li H, Fu Y, Yuan R, Lu J (2020) Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor. Chem Eng J 392:124820

    Article  CAS  Google Scholar 

  73. Wu Z, Yang X, Gao H, Shen H, Wu H, Xia X, Wu X, Lei W, Yang J, Hao Q (2022) Controllable synthesis of ZnCo2O4@NiCo2O4 heterostructures on Ni foam for hybrid supercapacitors with superior performance. J Alloy Compd 891:162053

    Article  CAS  Google Scholar 

  74. Pappu S, Anandan S, Rao TN, Martha SK, Bulusu SV (2022) High-performance hybrid supercapacitor with electrochemically exfoliated graphene oxide incorporated NiCo2O4 in aqueous and non-aqueous electrolytes. J Energy Storage 50:104598

    Article  Google Scholar 

  75. Pan J, Li S, Li F, Yu T, Liu Y, Zhang L, Ma L, Sun M, Tian X (2021) The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf A 609:125650

    Article  CAS  Google Scholar 

  76. Xue Y, Liu X, Han L, Xie Z, Liu L, Li Y, Hua Y, Wang C, Zhao X, Liu X (2022) Fabrication of hierarchical NiCo2S4 nanotubes@NiMn-LDH nanosheets core-shell hybrid arrays on Ni foam for high-performance asymmetric supercapacitors. J Alloy Compd 900:163495

    Article  CAS  Google Scholar 

  77. Zhang G, Yang J, Xuan H, Yang J, Liang X, Li Y, Han P (2022) Design and construction of hierarchical Ni3S2 @V-doped NiMn-LDH heterostructure on rGO/Ni foam as an advanced electrode for battery-supercapacitor hybrid devices. J Alloy Compd 896:163125

    Article  CAS  Google Scholar 

  78. Cheng Y, Wang X, Zhang D, Qiao X, Zhao H, Chang L, Yu Z, Xia Y, Fan J, Huang C, Yang S (2022) High-capacity binderless supercapacitor electrode obtained from sulfidation large interlayer spacing of NiMn-LDH. Electrochim Acta 429:141039

    Article  CAS  Google Scholar 

  79. Liu M, Wang L, Yu X, Zhang H, Zhang H, Li S, Huang F (2022) Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors. Energy 238:121767

    Article  CAS  Google Scholar 

  80. Km DK, Hong JG, Kweon J, Saeed G, Kim KH, Lee D, Chang Kang M (2022) Spinel NiCo2O4 nanowires synthesized on Ni foam as innovative binder-free supercapacitor electrodes. Mater Chem Phys 291:126718

    Article  CAS  Google Scholar 

  81. Xu X, Yang L, Zheng W, Zhang H, Wu F, Tian Z, Zhang P, Sun Z (2022) MXenes with applications in supercapacitors and secondary batteries: a comprehensive review. Mater Rep Energy 2(1):100080

    Google Scholar 

  82. Xi-juan L, Guo L, Qing-feng W, Xu-kun W, Xin-yi S, Xin-ge W, Zi-ye F, Er-qing X, Zhen-xing Z (2022) High-performance micro Zn battteries based on NiCo-LDH@ITO NWs/carbon cloth composite. New Carbon Mater 37(5):1

    Google Scholar 

  83. Wu Y-F, Hsiao Y-C, Liao C-H, Hsu C-S, Yougbaré S, Lin L-Y (2022) Novel design of Sulfur-doped nickel cobalt layered double hydroxide and polypyrrole nanotube composites from zeolitic imidazolate framework-67 as efficient active material of battery supercapacitor hybrids. J Colloid Interface Sci 628:540–552

    Article  CAS  Google Scholar 

  84. Liu Z, Qiu Y, Zhang A, Yang W, Barrow CJ, Razal JM, Liu J (2021) In situ embedding of cobalt sulfide quantum dots among transition metal layered double hydroxides for high performance all-solid-state asymmetric supercapacitors. J Mater Chem A 9(39):22573–22584

    Article  CAS  Google Scholar 

  85. Pappu S, Muduli S, Katchala N, Tata NR, Bulusu SV, Martha SK (2022) Easy and scalable synthesis of NiMnCo-oxalate electrode material for supercapacitors from spent Li-ion batteries: power source for electrochromic devices. Energy Fuels 36(21):13398–13407

    Article  CAS  Google Scholar 

  86. Papadas IT, Ioakeimidis A, Armatas GS, Choulis SA (2018) Low-temperature combustion synthesis of a spinel NiCo2O4 hole transport layer for perovskite photovoltaics. Adv Sci 5(5):1701029

    Article  Google Scholar 

  87. Shi X, Bernasek SL, Selloni A (2016) Formation, electronic structure, and defects of Ni substituted spinel cobalt oxide: a DFT + U study. J Phys Chem C 120(27):14892–14898

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Zainab Sajid from Lahore Grammar School, Lahore, for designing and conceptualizing the schematic diagrams for the paper. The authors would also like to thank Faraan Fareed from the School of Interdisciplinary Sciences and Engineering (SINES), NUST Islamabad, for helping in the conceptual understanding of geometry optimizations during computational simulations.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to methodology, experimental and computational investigation, data curation, formal analysis, and writing—original draft, review, and editing. MMB contributed to conceptualization, formal analysis, writing, review, and editing. JT contributed to methodology, experimental investigation, and data curation. FA contributed to methodology and experimental investigation. IHG contributed to conceptualization, project administration, supervision for experimental section, and review. UH contributed to computational analysis, review, and editing.

Corresponding author

Correspondence to Iftikhar Hussain Gul.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4661 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, A., Tariq, J., Ahmad, F. et al. Nanostructured Fe-substituted NiCo2O4@NiMnCo-LDH ternary composite as an electrode material for high-performance supercapacitors. J Mater Sci 58, 4882–4900 (2023). https://doi.org/10.1007/s10853-023-08336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08336-3

Navigation