Skip to main content

Advertisement

Log in

Facile synthesis of highly stable MOF-derived CoP-NP@C nanoarrays for asymmetric supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured transition metal phosphides (TMPs) have emerged as an attractive material in energy storage domains, owing to their high electrical conductivity and easy redox properties. However, the low actual specific capacitance and weak cycling stability hinder its further application. In this paper, the hierarchical nanosheet of CoP nanoparticles embedded in a two-dimensional carbon skeleton (Co-NP@C) with flake-like ZIF-67 as its precursor was synthesized by facile carbonization and phosphorization and employed as positive electrodes for asymmetric supercapacitors. Due to the presence of carbon skeleton and nanoparticles, a stable structure and more reaction channels for the electrochemical reactions were created, leading to a remarkable improvement of the electrical properties of Co-NP@C. The Co-NP@C electrode presents the exceptional electrochemical performance of 540 F g−1 at 1.0 A g−1. Furthermore, an asymmetric symmetric supercapacitor with Co-NP@C cathode and reduced graphene oxide (RGO) anode achieves superior cycling stability (92.4% after 10, 000 cycles at 10 A g−1) and a high energy density of 20.22 Wh kg−1 at a power density of 649.93 W kg−1. This study offers a simplified method for guiding the design of MOF-derived phosphide electrode materials and provides additional opportunities for optimizing high-efficiency supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915. https://doi.org/10.1016/j.electacta.2018.11.074

    Article  CAS  Google Scholar 

  2. Chatterjee DP, Nandi AK (2021) A review on the recent advances in hybrid supercapacitors. J Mater Chem A 9:15880–15918. https://doi.org/10.1039/d1ta02505h

    Article  CAS  Google Scholar 

  3. Guo W, Yu C, Li SF, Qiu JS (2021) Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy Environ Sci 14:576–601. https://doi.org/10.1039/d0ee02649b

    Article  Google Scholar 

  4. Yun Q, Li L, Hu Z, Lu Q, Chen B, Zhang H (2020) Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv Mater 32:1903826. https://doi.org/10.1002/adma.201903826

    Article  CAS  Google Scholar 

  5. Song ZY, Miao L, Ruhlmann L, Lv YK, Zhu DZ, Li LC, Gan LH, Liu MX (2021) Self-Assembled Carbon Superstructures Achieving Ultra-Stable and Fast Proton-Coupled Charge Storage Kinetics. Adv Mater 33:2104148. https://doi.org/10.1002/adma.202104148

    Article  CAS  Google Scholar 

  6. Zheng Y, Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121. https://doi.org/10.1016/j.cej.2017.09.155

    Article  CAS  Google Scholar 

  7. Tang Y, Liu Z, Guo W, Chen T, Qiao Y, Mu S, Zhao Y, Gao F (2016) Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim Acta 190:118–125. https://doi.org/10.1016/j.electacta.2016.01.042

    Article  CAS  Google Scholar 

  8. Xiao LD, Qi HJ, Qu KQ, Shi C, Cheng Y, Sun Z, Yuan BN, Huang ZH, Pan D, Guo ZH (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316. https://doi.org/10.1007/s42114-021-00223-2

    Article  CAS  Google Scholar 

  9. Zhang LY, Cai PF, Wei ZH, Liu T, Yu JG, Al-Ghamdi AA, Wageh S (2021) Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J Colloid Interface Sci 588:637–645. https://doi.org/10.1016/j.jcis.2020.11.056

    Article  CAS  Google Scholar 

  10. Li YX, Wang H, Shu T, Yuan JZ, Lu GG, Lin B, Gao Z, Wei FX, Ma CY, Qi JQ, Sui YW (2022) Two-dimensional hierarchical MoS2 lamella inserted in CoS2 flake as an advanced supercapacitor electrode. J Energy Storage 51:104299. https://doi.org/10.1016/j.est.2022.104299

    Article  Google Scholar 

  11. Zhang X, Su D, Wu A, Yan H, Wang X, Wang D, Wang L, Tian C, Sun L, Fu H (2019) Porous NiCoP nanowalls as promising electrode with high-area and mass capacitance for supercapacitors. Sci China Mater 62:1115–1126. https://doi.org/10.1007/s40843-019-9405-8

    Article  CAS  Google Scholar 

  12. Liu YJ, Zhang X, Matras-Postolek K, Yang P (2021) Ni2P nanosheets modified N-doped hollow carbon spheres towards enhanced supercapacitor performance. J Alloys Compd 854:157111. https://doi.org/10.1016/j.jallcom.2020.157111

    Article  CAS  Google Scholar 

  13. Shi JH, Qiu F, Yuan WB, Guo MM, Lu ZH (2021) Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem Eng J 403:126312. https://doi.org/10.1016/j.cej.2020.126312

    Article  CAS  Google Scholar 

  14. Theerthagiri J, Murthy AP, Lee SJ, Karuppasamy K, Arumugam SR, Yu Y, Hanafiah MM, Kim HS, Mittal V, Choi MY (2021) Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.10.098

    Article  Google Scholar 

  15. Li X, Elshahawy AM, Guan C, Wang J (2017) Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13:1701530. https://doi.org/10.1002/smll.201701530

    Article  CAS  Google Scholar 

  16. Sun M, Liu HJ, Qu JH, Li JH (2016) Earth-rich transition metal phosphide for energy conversion and storage. Adv Energy Mater 6:1600087. https://doi.org/10.1002/aenm.201600087

    Article  CAS  Google Scholar 

  17. Oyama ST, Gott T, Zhao HY, Lee YK (2009) Transition metal phosphide hydroprocessing catalysts: A review. Catal Today 143:94–107. https://doi.org/10.1016/j.cattod.2008.09.019

    Article  CAS  Google Scholar 

  18. Zhang GQ, Li B, Liu MC, Yuan SK, Niu LY (2017) Liquid phase synthesis of cop nanoparticles with high electrical conductivity for advanced energy storage. J Nanomater 2017:9728591. https://doi.org/10.1155/2017/9728591

    Article  CAS  Google Scholar 

  19. Han RX, Guan LX, Zhang S, Lin YF, Tao JG (2021) Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization. Electrochimica Acta 368:137690. https://doi.org/10.1016/j.electacta.2020.137690

    Article  CAS  Google Scholar 

  20. Zhang XJ, Hou SJ, Ding ZB, Zhu G, Tang HR, Hou YC, Lu T, Pan LK (2020) Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor. J Alloys Compd 822:153578. https://doi.org/10.1016/j.jallcom.2019.153578

    Article  CAS  Google Scholar 

  21. Yang M, Jiang YM, Qu MJ, Qin YC, Wang Y, Shen W, He RX, Su W, Li M (2020) Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Appl Catal B-Environ 269:118803. https://doi.org/10.1016/j.apcatb.2020.118803

    Article  CAS  Google Scholar 

  22. Hu W, Chen L, Wu X, Du M, Song Y, Wu Z, Zheng Q (2021) Slight zinc doping by an ultrafast electrodeposition process boosts the cycling performance of layered double hydroxides for ultralong-life-span supercapacitors. ACS Appl Mater Interfaces 13:38346–38357. https://doi.org/10.1021/acsami.1c10386

    Article  CAS  Google Scholar 

  23. Liu CL, Bai Y, Wang J, Qiu ZM, Pang H (2021) Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. J Mater Chem A 9:11201–11209. https://doi.org/10.1039/d1ta02065j

    Article  CAS  Google Scholar 

  24. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352. https://doi.org/10.1016/j.cej.2020.126352

    Article  CAS  Google Scholar 

  25. Sun L, Xie ZB, Wu AP, Tian CG, Wang DX, Gu Y, Gao YC, Fu HG (2021) Hollow CoP spheres assembled from porous nanosheets as high-rate and ultra-stable electrodes for advanced supercapacitors. Journal of Materials Chemistry A 9:26226–26235. https://doi.org/10.1039/d1ta07566g

    Article  CAS  Google Scholar 

  26. Jia H, Li Q, Li C, Song Y, Zheng H, Zhao J, Zhang W, Liu X, Liu Z, Liu Y (2018) A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor. Chem Eng J 354:254–260. https://doi.org/10.1016/j.cej.2018.08.008

    Article  CAS  Google Scholar 

  27. Yang Z, Cheng QH, Li WW, Li YJ, Yang C, Tao K, Han L (2021) Construction of 2D ZIF-derived hierarchical and hollow NiCo-LDH “nanosheet-on-nanosheet” arrays on reduced graphene oxide/Ni foam for boosted electrochemical energy storage. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.156864

    Article  Google Scholar 

  28. Shu T, Wang H, Li Q, Feng ZP, Wei FX, Yao KX, Sun Z, Qi JQ, Sui YW (2021) Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacitor. Chem Eng J 419:129631. https://doi.org/10.1016/j.cej.2021.129631

    Article  CAS  Google Scholar 

  29. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q (2020) MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev 49:1414–1448. https://doi.org/10.1039/c9cs00906j

    Article  CAS  Google Scholar 

  30. Guo TT, Chen LY, Li YW, Shen K (2022) Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-Derived Co-NC microarrays for efficient overall water splitting. Small 18:2107739. https://doi.org/10.1002/smll.202107739

    Article  CAS  Google Scholar 

  31. Xu L, Xi Y, Li W, Hua Z, Peng J, Hu J, Zhou J-J, Zhang P, Wang J, Wang W, Ding H, Wang W, Ji W, Yang Y, Xu X, Chen L, Li X (2022) 3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors. Nano Energy 91:106630. https://doi.org/10.1016/j.nanoen.2021.106630

    Article  CAS  Google Scholar 

  32. Zhang X, Zhang L, Xu G, Zhao A, Zhang S, Zhao T (2020) Template synthesis of structure-controlled 3D hollow nickel-cobalt phosphides microcubes for high-performance supercapacitors. J Colloid Interface Sci 561:23–31. https://doi.org/10.1016/j.jcis.2019.11.112

    Article  CAS  Google Scholar 

  33. Zardkhoshoui AM, Ameri B, Davarani SSH (2021) alpha-MnS@Co3S4 hollow nanospheres assembled from nanosheets for hybrid supercapacitors. Chem Eng J 422:129953. https://doi.org/10.1016/j.cej.2021.129953

    Article  CAS  Google Scholar 

  34. He YY, Wang L, Dong CF, Li CC, Ding XY, Qian YT, Xu LQ (2019) In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater 23:35–45. https://doi.org/10.1016/j.ensm.2019.05.039

    Article  Google Scholar 

  35. Zhang MT, Ci SQ, Li H, Cai PW, Xu HM, Wen ZH (2017) Highly defective porous CoP nanowire as electrocatalyst for full water splitting. Int J Hydrogen Energy 42:29080–29090. https://doi.org/10.1016/j.ijhydene.2017.09.171

    Article  CAS  Google Scholar 

  36. Liao HB, Sun YM, Dai CC, Du YH, Xi SB, Liu F, Yu LH, Yang ZY, Hou YL, Fisher AC, Li SZ, Xu ZCJ (2018) An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. Nano Energy 50:273–280. https://doi.org/10.1016/j.nanoen.2018.05.060

    Article  CAS  Google Scholar 

  37. Liu WF, Gao HX, Zhang Z, Zheng YF, Wu YH, Fu XT, Su J, Gao YH (2022) CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes. Chem Eng J. https://doi.org/10.1016/j.cej.2022.135352

    Article  Google Scholar 

  38. Manikandan R, Justin Raj C, Nagaraju G, Velayutham R, Moulton SE, Puigdollers J, Chul Kim B (2021) Selenium enriched hybrid metal chalcogenides with enhanced redox kinetics for high-energy density supercapacitors. Chem Eng J 414:128924. https://doi.org/10.1016/j.cej.2021.128924

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Fundamental Research Funds for the Central Universities” (2019XKQYMS92).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. helped in investigation, writing—original draft preparation. J.Y. contributed to investigation, data curation. H.W. conceptualized the study. T.S. performed methodology. Z.G. and J.Q. visualized the study. G.L. curated the data. F.W. helped in supervision, writing—review & editing. C.M. was involved in project administration, resources. Y.S. administrated the project.

Corresponding authors

Correspondence to Fuxiang Wei or Caoyuan Ma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 491 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yuan, J., Wang, H. et al. Facile synthesis of highly stable MOF-derived CoP-NP@C nanoarrays for asymmetric supercapacitors. J Mater Sci 58, 3723–3734 (2023). https://doi.org/10.1007/s10853-023-08271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08271-3

Navigation