Skip to main content

Advertisement

Log in

Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Industrialization and its progress are very important for the economy and to move towards prosperity, stimulating innovation and creating jobs. Nonetheless, industrialization has negative impacts, if not done judiciously, such as pollution, increased greenhouse gas emissions, and global warming. Therefore, amenity-with-security is of fundamental significance in a new and dynamic lifestyle. A gas sensor is one of the crucial devices for monitoring and subsequently preserving the clean atmosphere among a number of other safety technologies. In-depth assessments of gas sensors and their necessity in the environment (air) pollution are provided in the current review. With a special emphasis on metal oxide semiconductor (MOS)-based gas sensors, the review includes a thorough study of gas sensors and the factors relating to sensing mechanisms. It not only describes the basic concepts and brief history of gas sensors, but also highlights the schemes responsible for improving the gas sensing properties and state-of-art literature review. These schemes include (1) surface engineering/morphological tuning and (2) bulk and surface doping. To keep scientific rigour and in-depth analyses, this review focuses on these two schemes only. In the doping area, the emphasis is given on graphene loading, decorated with nanoparticles of noble metals, spillover mechanism, and heterojunction (p–n, n–n, and p–p) formation. The conclusion summarizes the most optimized MOS gas sensors with enhanced gas sensing capabilities. The emphasis is given to formulate the article in such a way that it will be useful for the beginners who wish to explore the gas sensor research field, as well as to the established researchers to further improve the sensing capabilities of MOS gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Zheng M, Bao WANG (2009) One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property. Trans Nonferrous Met Soc China 19(2):404–409

    Article  CAS  Google Scholar 

  2. Brinzari V, Korotcenkov G, Golovanov V, Schwank J, Lantto V, Saukko S (2002) Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4· 5H2O water solution. Thin Solid Films 408(1–2):51–58

    Article  CAS  Google Scholar 

  3. Cabot A, Arbiol J, Morante JR, Weimar U, Barsan N, Göpel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens Actuators B Chem 70(1–3):87–100

    Article  CAS  Google Scholar 

  4. Mosquera A, Rodríguez-Páez JE, Varela JA, Bueno PR (2007) Synthesis of SnO2 by chemical routes and its use in varistors production. J Eur Ceram Soc 27(13–15):3893–3896

    Article  CAS  Google Scholar 

  5. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389(10082):1907–1918

    Article  Google Scholar 

  6. Inshakova E, Inshakov O (2017) World market for nanomaterials: Structure and trends. In: MATEC web of conferences. EDP Sciences, vol 129, p 02013

  7. Zhou T, Zhang T (2021) Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure–property-application relationship for gas sensors. Small Methods 5(9):2100515

    Article  CAS  Google Scholar 

  8. Gao X, Zhang T (2018) An overview: facet-dependent metal oxide semiconductor gas sensors. Sens Actuators B Chem 277:604–633

    Article  CAS  Google Scholar 

  9. Wang L, Zhang R, Zhou T, Lou Z, Deng J, Zhang T (2016) Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens Actuators B Chem 223:311–317

    Article  CAS  Google Scholar 

  10. Qin N, Xiang Q, Zhao H, Zhang J, Xu J (2014) Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties. CrystEngComm 16(30):7062–7073

    Article  CAS  Google Scholar 

  11. Luo N, Cai H, Li X, Guo M, Wang C, Wang X, Pengfei H, Zhixuan C, Xu J (2022) Non-crystal-RuO x/crystalline-ZnO composites: controllable synthesis and high-performance toxic gas sensors. J Mater Chem A 10(28):15136–15145

    Article  CAS  Google Scholar 

  12. Li Y, Luo N, Zhang W, Hu Q, Wang X, Chen Y, Cheng Z, Xu J (2020) Rational design and in situ growth of SnO2/CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties. J Mater Chem C 8(36):12418–12426

    Article  CAS  Google Scholar 

  13. Cao Y, Cheng Z, Xu J, Zhang Y, Pan Q (2009) CdSnO3 micro-cubes with porous architecture: synthesis and gas-sensing properties. CrystEngComm 11(12):2615–2617

    Article  CAS  Google Scholar 

  14. Liu S, Gao S, Fei T, Zhang T (2019) Highly sensitive and selective dopamine detection utilizing nitrogen-doped mesoporous carbon prepared by a molten glucose-assisted hard-template approach. ChemPlusChem 84(7):845–852

    Article  CAS  Google Scholar 

  15. Liu S, Han T, Wang Z, Fei T, Zhang T (2019) Biomass-derived nitrogen and phosphorus co-doped hierarchical micro/mesoporous carbon materials for high-performance non-enzymatic H2O2 sensing. Electroanalysis 31(3):527–534

    CAS  Google Scholar 

  16. Cao S, Xu Y, Yu Z, Zhang P, Xu X, Sui N, Zhou T, Zhang T (2022) A dual sensing platform for human exhaled breath enabled by Fe-MIL-101-NH2 metal-organic frameworks and its derived Co/Ni/Fe trimetallic oxides. Small 18(42):2203715

    Article  CAS  Google Scholar 

  17. Hunter GW, Akbar S, Bhansali S, Daniele M, Erb PD, Johnson K, Vander Wal RL (2020) Editors’ choice—critical review—a critical review of solid state gas sensors. J Electrochem Soc 167(3):037570

    Article  CAS  Google Scholar 

  18. Walker J, Karnati P, Akbar SA, Morris PA (2021) Selectivity mechanisms in resistive-type metal oxide heterostructural gas sensors. Sens Actuators B Chem 131242

  19. Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503

    Article  CAS  Google Scholar 

  20. Taguchi N (1971) Gas detecting devices. U.S. Patent 3, 631, 436

  21. Firth JG, Jones A, Jones TA (1973) The principles of the detection of flammable atmospheres by catalytic devices. Combust Flame 20(3):303–311

    Article  CAS  Google Scholar 

  22. Jones E (1987) The pellistor catalytic gas detector. Techniques and mechanism in gas sensing, 17–31

  23. Xu L, Li T, Gao X, Wang Y (2012) A high heating efficiency two-beam microhotplate for catalytic gas sensors. In: 2012 7th IEEE international conference on nano/micro engineered and molecular systems (NEMS). IEEE, pp 65–68

  24. Xu L, Li T, Gao X, Wang Y, Zheng R, Xie L, Lee L (2010) Behaviour of a catalytic combustion methane gas sensor working on pulse mode. In: Sensors, 2010 IEEE. IEEE, pp 391–394

  25. Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B Chem 157(2):329–352

    Article  Google Scholar 

  26. Garcia-Romeo D, Fuentes H, Medrano N, Calvo B, Martinez PA, Azcona C (2012) A NDIR-based CO2 monitor system for wireless sensor networks. In 2012 IEEE 3rd Latin American symposium on circuits and systems (LASCAS). IEEE, pp 1–4

  27. Chou J (2000) Hazardous gas monitors: a practical guide to selection, operation and applications. McGraw-Hill

    Google Scholar 

  28. Yamazoe N, Miura N (1996) Prospect and problems of solid electrolyte-based oxygenic gas sensors. Solid State Ionics 86:987–993

    Article  Google Scholar 

  29. Ishihara T, Matsubara S (1998) Capacitive type gas sensors. J Electroceram 2(4):215–228

    Article  CAS  Google Scholar 

  30. King WH (1964) Piezoelectric sorption detector. Anal Chem 36(9):1735–1739

    Article  CAS  Google Scholar 

  31. Yunusa Z, Hamidon MN, Kaiser A, Awang Z (2014) Gas sensors: a review. Sens Transducers 168(4):61–75

    Google Scholar 

  32. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121(1):18–35

    Article  CAS  Google Scholar 

  33. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272

    Article  CAS  Google Scholar 

  34. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: What determines our choice? Mater Sci Eng B 139(1):1–23

    Article  CAS  Google Scholar 

  35. Walker JM, Akbar SA, Morris PA (2019) Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: a review. Sens Actuators B Chem 286:624–640

    Article  CAS  Google Scholar 

  36. Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143

    Article  CAS  Google Scholar 

  37. Göpel W (2000) From electronic to bioelectronic olfaction, or: from artificial “moses” to real noses. Sens Actuators B Chem 65(1–3):70–72

    Article  Google Scholar 

  38. Moseley PT, Tofield BC (eds) (1987) Solid-state gas sensors. Hilger, Bristol, pp 12–31

    Google Scholar 

  39. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5(5):1335–1348

    CAS  Google Scholar 

  40. Schierbaum KD (1995) Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends. Sens Actuators B Chem 24(1–3):239–247

    Article  CAS  Google Scholar 

  41. Sahm T, Gurlo A, Barsan N, Weimar U, Mädler L (2005) Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 490(1):43–47

    Article  CAS  Google Scholar 

  42. Hahn SH, Barsan N, Weimar U, Ejakov SG, Visser JH, Soltis RE (2003) CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films 436(1):17–24

    Article  CAS  Google Scholar 

  43. Rothschild A, Edelman F, Komem Y, Cosandey F (2000) Sensing behavior of TiO2 thin films exposed to air at low temperatures. Sens Actuators B Chem 67(3):282–289

    Article  CAS  Google Scholar 

  44. Kohl D (1989) Surface processes in the detection of reducing gases with SnO2-based devices. Sens Actuators 18(1):71–113

    Article  CAS  Google Scholar 

  45. Jha SK, Hayashi K (2014) A novel odor filtering and sensing system combined with regression analysis for chemical vapor quantification. Sens Actuators B Chem 200:269–287

    Article  CAS  Google Scholar 

  46. Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7:63–75

    Article  CAS  Google Scholar 

  47. Ma J, Zhang J, Wang S, Wang T, Lian J, Duan X, Zheng W (2011) Topochemical preparation of WO3 nanoplates through precursor H2WO4 and their gas-sensing performances. J Phys Chem C 115(37):18157–18163

    Article  CAS  Google Scholar 

  48. Belmonte JC, Manzano J, Arbiol J, Cirera A, Puigcorbe J, Vila A, Morante JR (2006) Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sens Actuators B Chem 114(2):881–892

    Article  CAS  Google Scholar 

  49. D’Amico A, Di Natale C (2001) A contribution on some basic definitions of sensors properties. IEEE Sens J 1(3):183–190

    Article  Google Scholar 

  50. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6):7207–7258

    Article  CAS  Google Scholar 

  51. Yuan Z, Li R, Meng F, Zhang J, Zuo K, Han E (2019) Approaches to enhancing gas sensing properties: a review. Sensors 19(7):1495

    Article  CAS  Google Scholar 

  52. Meng D, Liu D, Wang G, Shen Y, San X, Li M, Meng F (2018) Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens Actuators B Chem 273:418–428

    Article  CAS  Google Scholar 

  53. Myadam NL, Nadargi DY, Nadargi JD, Kudkyal VR, Shaikh FI, Mulla IS, Chaskar MG (2021) Ni/SnO2 xerogels via epoxide chemistry: Potential candidate for H2S gas sensing application. J Porous Mater 28(1):239–248

    Article  CAS  Google Scholar 

  54. Geng X, Li S, Mawella-Vithanage L, Ma T, Kilani M, Wang B et al (2021) Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat Commun 12(1):1–11

    Article  Google Scholar 

  55. Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuators B Chem 138(1):168–173

    Article  CAS  Google Scholar 

  56. Ab Kadir R, Li Z, Sadek AZ, Abdul Rani R, Zoolfakar AS, Field MR et al (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118(6):3129–3139

    Article  CAS  Google Scholar 

  57. Nadargi DY, Tamboli MS, Patil SS, Mulla IS, Suryavanshi SS (2019) Development of Ag/ZnO nanorods and nanoplates at low hydrothermal temperature and time for acetone sensing application: an insight into spillover mechanism. SN Appl Sci 1(12):1–10

    Article  Google Scholar 

  58. Li R, Jiang K, Chen S, Lou Z, Huang T, Chen D, Shen G (2017) SnO2/SnS2 nanotubes for flexible room-temperature NH 3 gas sensors. RSC Adv 7(83):52503–52509

    Article  CAS  Google Scholar 

  59. Cao F, Li C, Li M, Li H, Huang X, Yang B (2018) Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Appl Surf Sci 447:173–181

    Article  CAS  Google Scholar 

  60. Peng S, Wu G, Song W, Wang Q (2013) Application of flower-like ZnO nanorods gas sensor detecting decomposition products. J Nanomater 2013

  61. Mehta SS, Nadargi DY, Tamboli MS, Chaudhary LS, Patil PS, Mulla IS, Suryavanshi SS (2018) Ru-loaded mesoporous WO3 microflowers for dual applications: enhanced H2S sensing and sunlight-driven photocatalysis. Dalton Trans 47(47):16840–16845

    Article  CAS  Google Scholar 

  62. Jin WX, Ma SY, Tie ZZ, Wei JJ, Luo J, Jiang XH, Wang TT, Li WQ, Cheng L, Mao YZ (2015) One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers. Sens Actuators B Chem 213:171–180

    Article  CAS  Google Scholar 

  63. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2019) Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: a review. J Energy Chem 30:132–144

    Article  Google Scholar 

  64. Pumera M (2013) Electrochemistry of graphene, graphene oxide and other graphenoids. Electrochem Commun 36:14–18

    Article  CAS  Google Scholar 

  65. Ren S, Rong P, Yu Q (2018) Preparations, properties and applications of graphene in functional devices: a concise review. Ceram Int 44(11):11940–11955

    Article  CAS  Google Scholar 

  66. Al Hassan MR, Sen A, Zaman T, Mostari MS (2019) Emergence of graphene as a promising anode material for rechargeable batteries: a review. Mater Today Chem 11:225–243

    Article  CAS  Google Scholar 

  67. Meng F, Zheng H, Sun Y, Li M, Liu J (2017) Trimethylamine sensors based on Au-modified hierarchical porous single-crystalline ZnO nanosheets. Sensors 17(7):1478

    Article  Google Scholar 

  68. Yuan Z, Zhang J, Meng F, Li Y, Li R, Chang Y, Zhao J, Han E, Wang S (2018) Highly sensitive ammonia sensors based on Ag-decorated WO3 nanorods. IEEE Trans Nanotechnol 17(6):1252–1258

    Article  CAS  Google Scholar 

  69. Lin HM, Hsu CM, Yang HY, Lee PY, Yang CC (1994) Nanocrystalline WO3-based H2S sensors. Sens Actuators B Chem 22(1):63–68

    Article  CAS  Google Scholar 

  70. Tao WH, Tsai CH (2002) H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sens Actuators B Chem 81(2–3):237–247

    Article  CAS  Google Scholar 

  71. Dandeneau CS, Jeon YH, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517(15):4448–4454

    Article  CAS  Google Scholar 

  72. Zeng W, Liu T, Wang Z (2010) Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E 43(2):633–638

    Article  CAS  Google Scholar 

  73. Sharma A, Tomar M, Gupta V (2012) Low temperature operating SnO2 thin film sensor loaded with WO3 micro-discs with enhanced response for NO2 gas. Sens Actuators B Chem 161(1):1114–1118

    Article  CAS  Google Scholar 

  74. Alali KT, Lu Z, Zhang H, Liu J, Liu Q, Li R, Wang J (2017) P–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front 4(7):1219–1230

    Article  CAS  Google Scholar 

  75. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106

    Article  CAS  Google Scholar 

  76. Atkinson J, Cranny A, de Cloke CS (1998) A low-cost oxygen sensor fabricated as a screen-printed semiconductor device suitable for unheated operation at ambient temperatures. Sens Actuators B Chem 47(1–3):171–180

    Article  CAS  Google Scholar 

  77. Dos Santos O, Weiller ML, Junior DQ, Medina AN (2001) CO gas-sensing characteristics of SnO2 ceramics obtained by chemical precipitation and freeze-drying. Sens Actuators B Chem 75(1–2):83–87

    Article  CAS  Google Scholar 

  78. Chatterjee AP, Mitra P, Mukhopadhyay AK (1999) Chemically deposited zinc oxide thin film gas sensor. J Mater Sci 34(17):4225–4231. https://doi.org/10.1023/A:1004694501646

    Article  CAS  Google Scholar 

  79. Romanovskaya V, Ivanovskaya M, Bogdanov P (1999) A study of sensing properties of Pt-and Au-loaded In2O3 ceramics. Sens Actuators B Chem 56(1–2):31–36

    Article  CAS  Google Scholar 

  80. Belysheva TV, Bogovtseva LP, Kazachkov EA, Serebryakova NV (2003) Gas-sensing properties of doped In2O3 films as sensors for NO2 in air. J Anal Chem 58(6):583–587

    Article  CAS  Google Scholar 

  81. Suchea M, Katsarakis N, Christoulakis S, Nikolopoulou S, Kiriakidis G (2006) Low temperature indium oxide gas sensors. Sens Actuators B Chem 118(1–2):135–141

    Article  CAS  Google Scholar 

  82. Kapse VD, Ghosh SA, Chaudhari GN, Raghuwanshi FC (2008) Nanocrystalline In2O3-based H2S sensors operable at low temperatures. Talanta 76(3):610–616

    Article  CAS  Google Scholar 

  83. Jin CJ, Yamazaki T, Shirai Y, Yoshizawa T, Kikuta T, Nakatani N, Takeda H (2005) Dependence of NO2 gas sensitivity of WO3 sputtered films on film density. Thin Solid Films 474(1–2):255–260

    Article  CAS  Google Scholar 

  84. Labidi A, Gillet E, Delamare R, Maaref M, Aguir K (2006) Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens Actuators B Chem 120(1):338–345

    Article  CAS  Google Scholar 

  85. Khadayate RS, Sali JV, Patil PP (2007) Acetone vapor sensing properties of screen printed WO3 thick films. Talanta 72(3):1077–1081

    Article  CAS  Google Scholar 

  86. Savage N, Chwieroth B, Ginwalla A, Patton BR, Akbar SA, Dutta PK (2001) Composite n–p semiconducting titanium oxides as gas sensors. Sens Actuators B Chem 79(1):17–27

    Article  CAS  Google Scholar 

  87. Sadek AZ, Partridge JG, McCulloch DG, Li YX, Yu XF, Wlodarski W, Kalantar-Zadeh K (2009) Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid Films 518(4):1294–1298

    Article  CAS  Google Scholar 

  88. Sberveglieri G, Faglia G, Groppelli S, Nelli P (1992) Methods for the preparation of NO, NO2 and H2 sensors based on tin oxide thin films, grown by means of the RF magnetron sputtering technique. Sens Actuators B Chem 8(1):79–88

    Article  CAS  Google Scholar 

  89. Chatterjee M, Siladitya B, Ganguli D (1995) Chromia microspheres by the sol-gel technique. Mater Lett 25(5–6):261–263

    Article  CAS  Google Scholar 

  90. Chabanis G, Parkin IP, Williams DE (2001) Microspheres of the gas sensor material Cr2− xTixO3 prepared by the sol–emulsion–gel route. J Mater Chem 11(6):1651–1655

    Article  CAS  Google Scholar 

  91. Kumar MK, Rao MR, Ramaprabhu S (2006) Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J Phys D Appl Phys 39(13):2791–2795

    Article  CAS  Google Scholar 

  92. Jantson T, Avarmaa T, Mändar H, Uustare T, Jaaniso R (2005) Nanocrystalline Cr2O3–TiO2 thin films by pulsed laser deposition. Sens Actuators B Chem 109(1):24–31

    Article  CAS  Google Scholar 

  93. Stamataki M, Fasaki I, Tsonos G, Tsamakis D, Kompitsas M (2009) Annealing effects on the structural, electrical and H2 sensing properties of transparent ZnO thin films, grown by pulsed laser deposition. Thin Solid Films 518(4):1326–1331

    Article  CAS  Google Scholar 

  94. Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N, Yamazoe N (2001) Metal oxide semiconductor N2O sensor for medical use. Sens Actuators B Chem 77(1–2):72–77

    Article  CAS  Google Scholar 

  95. Maiti UN, Nandy S, Karan S, Mallik B, Chattopadhyay KK (2008) Enhanced optical and field emission properties of CTAB-assisted hydrothermal grown ZnO nanorods. Appl Surf Sci 254(22):7266–7271

    Article  CAS  Google Scholar 

  96. Pei Z, Xu H, Zhang Y (2009) Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. J Alloys Compd 468(1–2):L5–L8

    Article  CAS  Google Scholar 

  97. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24

    Article  Google Scholar 

  98. Comini E, Faglia G, Ferroni M, Sberveglieri G (2007) Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation. Appl Phys A 88(1):45–48

    Article  CAS  Google Scholar 

  99. Van Hieu N, Loan LTN, Khoang ND, Minh NT, Viet DT, Minh DC, Trung T, Chien ND (2010) A facile thermal evaporation route for large-area synthesis of tin oxide nanowires: characterizations and their use for liquid petroleum gas sensor. Curr Appl Phys 10:636–641

    Article  Google Scholar 

  100. Boulmani R, Bendahan M, Lambert-Mauriat C, Gillet M, Aguir K (2007) Correlation between RF-sputtering parameters and WO3 sensor response towards ozone. Sens Actuators B Chem 125(2):622–627

    Article  CAS  Google Scholar 

  101. Song P, Wang Q, Yang Z (2009) CO-sensing characteristics of La0.8Pb0.2Fe0.8Co0.2O3 perovskite films prepared by RF magnetron sputtering. Phys E Low-Dimens Syst Nanostruct 41(8):1479–1483

    Article  CAS  Google Scholar 

  102. Misho RH, Murad WA, Fattahallah GH (1989) Preparation and optical properties of thin films of CrO3 and Cr2O3 prepared by the method of chemical spray pyrolysis. Thin Solid Films 169(2):235–239

    Article  CAS  Google Scholar 

  103. Mohammad MT, Hashim AA, Al-Maamory MH (2006) Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique. Mater Chem Phys 99(2–3):382–387

    Article  CAS  Google Scholar 

  104. Chikhale LP, Patil JY, Rajgure AV, Pawar RC, Mulla IS, Suryavanshi SS (2014) Synthesis, characterization and LPG response of Pd loaded Fe doped tin oxide thick films. J Alloys Compd 608:133–140

    Article  CAS  Google Scholar 

  105. Shaikh FI, Chikhale LP, Mulla IS, Suryavanshi SS (2017) Synthesis and enhanced ethanol sensing performance of nanostructured Sr doped SnO2 thick film sensor. J Mater Sci: Mater Electron 28(4):3128–3139

    CAS  Google Scholar 

  106. Shaikh FI, Chikhale LP, Patil JY, Mulla IS, Suryavanshi SS (2017) Enhanced acetone sensing performance of nanostructured Sm2O3 doped SnO2 thick films. J Rare Earths 35(8):813–823

    Article  CAS  Google Scholar 

  107. Bagal LK, Patil JY, Vaishampayan MV, Mulla IS, Suryavanshi SS (2015) Effect of Pd and Ce on the enhancement of ethanol vapor response of SnO2 thick films. Sens Actuators B Chem 207:383–390

    Article  CAS  Google Scholar 

  108. Myadam NL, Nadargi DY, Nadargi JDG, Shaikh FI, Suryavanshi SS, Chaskar MG (2020) A facile approach of developing Al/SnO2 xerogels via epoxide assisted gelation: a highly versatile route for formaldehyde gas sensors. Inorg Chem Commun 116:107901

    Article  CAS  Google Scholar 

  109. Jin WX, Ma SY, Tie ZZ, Wei JJ, Luo J, Jiang XH, Mao YZ (2015) One-step synthesis and highly gas-sensing properties of hierarchical Cu-doped SnO2 nanoflowers. Sens Actuators B Chem 213:171–180

    Article  CAS  Google Scholar 

  110. Kaur J, Roy SC, Bhatnagar MC (2007) Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature. Sens Actuators B Chem 123(2):1090–1095

    Article  CAS  Google Scholar 

  111. Sinha SK (2018) Low temperature detection of ammonia vapor based on Al-doped SnO2 nanowires prepared by thermal evaporation technique. J Asian Ceram Soc 6(3):232–239

    Article  Google Scholar 

  112. Beniwal A, Srivastava V (2019) Sol-gel assisted nano-structured SnO2 sensor for low concentration ammonia detection at room temperature. Mater Res Express 6(4):046421

    Article  Google Scholar 

  113. Tyagi P, Sharma A, Tomar M, Gupta V (2017) SnO2 thin film sensor having NiO catalyst for detection of SO2 gas with improved response characteristics. Sens Actuators B Chem 248:998–1005

    Article  CAS  Google Scholar 

  114. Tyagi P, Sharma A, Tomar M, Gupta V (2014) Effect of MgO and V2O5 catalyst on the sensing behaviour of tin oxide thin film for SO2 gas. In: Conference papers in science. Hindawi, vol 2014

  115. Das S, Chakraborty S, Parkash O, Kumar D, Bandyopadhyay S, Samudrala SK, Maiti HS (2008) Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta 75(2):385–389

    Article  CAS  Google Scholar 

  116. Zhou Q, Chen W, Xu L, Kumar R, Gui Y, Zhao Z, Zhu S (2018) Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Ceram Int 44(4):4392–4399

    Article  CAS  Google Scholar 

  117. Kim MY, Choi YN, Bae JM, Oh TS (2012) Carbon dioxide sensitivity of La-doped thick film tin oxide gas sensor. Ceram Int 38:S657–S660

    Article  CAS  Google Scholar 

  118. Resne AL, Tariq Z (2019) The effect of Al doping on the sensitivity of SnO2 films prepared by chemical spray pyrolysis. In: IOP conference series: materials science and engineering. IOP Publishing, vol 571, no 1, p 012105

  119. Zhang Z, Yin C, Yang L, Jiang J, Guo Y (2019) Optimizing the gas sensing characteristics of Co-doped SnO2 thin film based hydrogen sensor. J Alloys Compd 785:819–825

    Article  CAS  Google Scholar 

  120. Wang P, Hui J, Yuan T, Chen P, Su Y, Liang W, Hu S (2019) Ultrafine nanoparticles of W-doped SnO2 for durable H2S sensors with fast response and recovery. RSC Adv 9(20):11046–11053

    Article  CAS  Google Scholar 

  121. Park KR, Cho HB, Lee J, Song Y, Kim WB, Choa YH (2020) Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens Actuators B Chem 302:127179

    Article  CAS  Google Scholar 

  122. Bunpang K, Wisitsoraat A, Tuantranont A, Singkammo S, Phanichphant S, Liewhiran C (2019) Highly selective and sensitive CH4 gas sensors based on flame-spray-made Cr-doped SnO2 particulate films. Sens Actuators B Chem 291:177–191

    Article  CAS  Google Scholar 

  123. Krishnakumar T, Jayaprakash R, Pinna N, Donato A, Donato N, Micali G, Neri G (2009) Sb-SnO2-nanosized-based resistive sensors for NO2 detection. J Sens

  124. Kaur J, Kumar R, Bhatnagar MC (2007) Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties. Sens Actuators B Chem 126(2):478–484

    Article  CAS  Google Scholar 

  125. Yin XT, Tao L (2017) Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J Alloys Compd 727:254–259

    Article  CAS  Google Scholar 

  126. Chen Y, Qin H, Hu J (2018) CO sensing properties and mechanism of Pd doped SnO2 thick-films. Appl Surf Sci 428:207–217

    Article  CAS  Google Scholar 

  127. Karthik TVK, Martinez L, Agarwal V (2018) Porous silicon ZnO/SnO2 structures for CO2 detection. J Alloys Compd 731:853–863

    Article  CAS  Google Scholar 

  128. Zhou Q, Wen JZ, Zhao P, Anderson WA (2017) Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials 7(1):9

    Article  Google Scholar 

  129. Lu W, Ding D, Xue Q, Du Y, Xiong Y, Zhang J, Xing W (2018) Great enhancement of CH4 sensitivity of SnO2 based nanofibers by heterogeneous sensitization and catalytic effect. Sens Actuators B Chem 254:393–401

    Article  CAS  Google Scholar 

  130. Chen W, Zhou Q, Gao T, Su X, Wan F (2013) Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil. J Nanomater 2013

  131. Zhang Y, Kolmakov A, Lilach Y, Moskovits M (2005) Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. J Phys Chem B 109(5):1923–1929

    Article  CAS  Google Scholar 

  132. Tonezzer M, Hieu NV (2012) Size-dependent response of single-nanowire gas sensors. Sens Actuators B Chem 163(1):146–152

    Article  CAS  Google Scholar 

  133. Hernandez-Ramirez F, Tarancón A, Casals O, Arbiol J, Romano-Rodriguez A, Morante JR (2007) High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens Actuators B Chem 121(1):3–17

    Article  CAS  Google Scholar 

  134. Schipani F, Miller DR, Ponce MA, Aldao CM, Akbar SA, Morris PA (2016) Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: a review. Rev Adv Sci Eng 5(1):86–105

    Article  Google Scholar 

  135. Hernandez-Ramirez F, Prades JD, Jimenez-Diaz R, Fischer T, Romano-Rodriguez A, Mathur S, Morante JR (2009) On the role of individual metal oxide nanowires in the scaling down of chemical sensors. Phys Chem Chem Phys 11(33):7105–7110

    Article  CAS  Google Scholar 

  136. Schipani F, Miller DR, Ponce MA, Aldao CM, Akbar SA, Morris PA, Xu JC (2017) Conduction mechanisms in SnO2 single-nanowire gas sensors: an impedance spectroscopy study. Sens Actuators B Chem 241:99–108

    Article  CAS  Google Scholar 

  137. Rumyantseva M, Kovalenko V, Gaskov A, Makshina E, Yuschenko V, Ivanova I, Comini E (2006) Nanocomposites SnO2/Fe2O3: sensor and catalytic properties. Sens Actuators B Chem 118(1–2):208–214

    Article  CAS  Google Scholar 

  138. Das P, Mondal B, Mukherjee K (2017) Simultaneous adsorption–desorption processes in the conductance transient of anatase titania for sensing ethanol: a distinctive feature with kinetic perception. J Phys Chem C 121(2):1146–1152

    Article  CAS  Google Scholar 

  139. Brillson LJ (2012) Applications of depth-resolved cathodoluminescence spectroscopy. J Phys D Appl Phys 45(18):183001

    Article  Google Scholar 

  140. Miller DR, Williams RE, Akbar SA, Morris PA, McComb DW (2017) STEM-Cathodoluminescence of SnO2 nanowires and powders. Sens Actuators B Chem 240:193–203

    Article  CAS  Google Scholar 

  141. Miller DR, Williams RE, Akbar SA, Morris PA, McComb DW (2017) Measuring optical properties of individual SnO2 nanowires via valence electron energy-loss spectroscopy. J Mater Res 32(13):2479–2486

    Article  CAS  Google Scholar 

  142. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12(9):798–801

    Article  CAS  Google Scholar 

  143. Hussain M, Ibupoto ZH, Abbassi MA, Khan A, Pozina G, Nur O, Willander M (2014) Synthesis of CuO/ZnO composite nanostructures, their optical characterization and valence band offset determination by X-ray photoelectron spectroscopy. J Nanoelectron Optoelectron 9(3):348–356

    Article  CAS  Google Scholar 

  144. Kar A, Stroscio MA, Dutta M, Kumari J, Meyyappan M (2009) Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires. Appl Phys Lett 94(10):101905

    Article  Google Scholar 

  145. Al-Hashem M, Akbar S, Morris P (2019) Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens Actuators B Chem 301:126845

    Article  CAS  Google Scholar 

  146. Yaqoob U, Younis MI (2021) Chemical gas sensors: recent developments, challenges, and the potential of machine learning—a review. Sensors 21(8):2877

    Article  CAS  Google Scholar 

  147. Walker J, Karnati P, Miller DR, Al-Hashem M, Akbar SA, Morris PA (2020) A new open-access online database for resistive-type gas sensor properties and performance. Sens Actuators B Chem 321:128591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Digambar Nadargi acknowledges UGC, Dr. D. S. Kothari Postdoctoral Fellowship Scheme, India, for awarding PostDoctoral Fellowship (No. F.42/2006(BSR)/PH/19-20/0013). Ahmad Umar would like to acknowledge Najran University, Saudi Arabia and The Ohio State University, USA for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Digambar Y. Nadargi, Ahmad Umar, Nagesh L. Bhandari or Manohar G. Chaskar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadargi, D.Y., Umar, A., Nadargi, J.D. et al. Gas sensors and factors influencing sensing mechanism with a special focus on MOS sensors. J Mater Sci 58, 559–582 (2023). https://doi.org/10.1007/s10853-022-08072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08072-0

Navigation