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ABSTRACT

With the increasing use of CubeSats in space exploration, the demand for reli-

able high-temperature shape memory alloys (HTSMA) continues to grow. A

wide range of HTSMAs has been investigated over the past decade but finding

suitable alloys by means of trial-and-error experiments is cumbersome and

time-consuming. The present work uses a data-driven approach to identify

NiTiHf alloys suitable for actuator applications in space. Seven machine learn-

ing (ML) models were evaluated, and the best fit model was selected to identify

new alloy compositions with targeted transformation temperature (Ms), thermal

hysteresis, and work output. Of the studied models, the K-nearest neighbouring

ML model offers more reliable and accurate prediction in developing NiTiHf

alloys with balanced functional properties and aids our existing understanding

on compositional dependence of transformation temperature, thermal hysteresis

and work output. For instance, the transformation temperature of NiTiHf alloys

is more sensitive to Ni variation with increasing Hf content. A maximum Ms

reduction rate of 6.12 �C per 0.01 at.% Ni is attained at 30 at.% Hf, and with a Ni

content between 50 and 51 at.%.
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GRAPHICAL ABSTRACT

Introduction

NiTi (nitinol) is a premier shape memory alloy (SMA)

with recoverable strain up to 10%, and martensite start

temperature (Ms) below 100 �C [1, 2]. The promising

adaptive and intelligent functional properties [3] of NiTi

have opened up the window for applications in various

sectors such as medical, automobile, oil and aerospace

industries.However, the lowMshas limited applications

of NiTi alloys in high temperature environments. With

the addition of the third or even the fourth elements such

as Au, Pd, Pt, Hf and Zr, Ms of NiTi-based alloys can be

increasedwell above 100 �C[4–9]. Inpractice, SMAswith

Msabove 100 �Care classifiedashigh temperature shape

memory alloys (HTSMAs) [7] and have been extensively

exploredover thepastdecade [10–17]. Inparticular,NiTi-

based HTSMAs have drawn the attention of various

industries such as space and oil sectors [7, 18], thanks to

their elevated transformation temperatures up to

1100 �C, high strength over 2 GPa, and decent functional

properties. An exemplar is the addition of Hf which

improves the overall functionalities of NiTi-based

HTSMAs at a significantly reduced cost. Such NiTiHf

alloyssatisfy therequirements foractuatorapplications in

spacecraft as they are able to undergo repeatable thermo-

mechanical cycles with negligible deterioration in func-

tional and mechanical properties.

The maximum Ms reported in NiTiHf alloys (Hf

content between 0 and 30 at.%) reaches 525 �C with

recoverable strain exceeding 3% [19–22]. Of the

NiTiHf alloys, Ni50.3Ti29.7Hf20 is the mostly investi-

gated alloy exhibiting an austenite finish temperature

of 178 �C and work output of 16 J/cm3 [23]. Never-

theless, the actuation strain (Fig. 1b) achieved in

Ni50.3Ti29.7Hf20 remains low and needs to be

improved for compact and efficient actuation appli-

cations. To date, more than 200 studies are devoted to

the development of NiTiHf alloys [7], revealing that

their functional and mechanical performance mostly

depends on alloy composition. For instance, the

increase of Ni content from 49.8 to 51.3 at.% dra-

matically decreases the Ms temperature of the NiTiHf

alloy system from 500 to - 200 �C [9]. Pinpointing

the right alloy composition is thus desired to develop

NiTiHf alloys with balanced functional and

mechanical properties. Traditionally, alloy develop-

ment is a time-consuming process and low in accu-

racy, with 68% unsuccessful attempts in NiTiHf alloy

development [24]. Furthermore, due to the complex-

ity of phase transformations and their compositional

sensitivity, traditional alloy design has become more
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challenging. More recently, instead of finding

appropriate compositions through trial-and-error

experiments, the availability of a large amount of

published data on NiTiHf motivates a more data-

driven pathway for alloy development.

Machine learning (ML), a data-driven methodol-

ogy, can learn and accurately predict from suffi-

ciently large data [26]. The high accuracy offered by

data-driven ML has attracted more recent attention in

novel alloy development [27–33]. With the aid of ML,

Wen, et al. [32–34] developed novel Al-Co-Cr-Cu-Fe-

Ni high-entropy alloys with improved hardness. In

their work, with 155 experimental data points, eight

different ML models have been established with the

lowest reported root mean square error (RMSE) of 31

from the model of support vector regression (with

radial basis kernel function). In another study, new

titanium alloys with low Young’s moduli for

biomedical applications have been identified through

deep learning artificial neural networks (ANN) [35].

More specifically, Young’s moduli (from 164 data

points) and Ms (from 112 data points) of titanium

alloys were reliably predicted by ANN with low

RMSE of 12.7 and 33.4, respectively.

With respect to NiTi-based alloys, many research-

ers have taken advantage of ML in alloy design and

development despite the lack of ‘‘big data’’. The

recent development for the prediction of transfor-

mation temperature (TT) in Ni-Ti-Cu-Fe-Pd alloys by

Gaussian process regression (GPR) was trained and

tested by a total of 54 data points. The performance

evaluation of the model was conducted through the

mean absolute error (MAE), RMSE, and correlation

coefficient (CC), which are reported as 0.4449, 0.8081

and 0.9999, respectively [36]. In another work [12],

the process parameter optimization for additively

manufactured Ni50.4Ti29.6Hf20 by selective laser

melting (SLM) was achieved through an ANN model

with an R2 (refers to Eq. 2 in Sect. 3) of 0.9958 and a

residual sum of squares of 0.00683. Furthermore, a

recent work [33] was implemented to identify the

narrowest thermal hysteresis of NiTiCu alloy using

ANN.

For SMA alloys in actuation applications, their

functional performance is often characterised with

respect to three key materials properties, martensitic

start temperature (Ms), thermal hysteresis (TH) and

work output (WO). These properties determine the

capacity of SMA alloys having maximised energy

density (closely related to WO) for high-temperature

actuation applications. For instance, as shown in

Fig. 1a, Ms represents the start temperature of

martensitic transformation and TH is the difference

between Af and Ms in most of the studies. Work

output (WO) in Fig. 1b represents the actuation strain

or the maximum recoverable strain, which is an

indicator of energy density.

To date, a limited effort is devoted to the ML

development of NiTiHf alloys for high-temperature

actuators except a few latest studies [24, 37, 38]. This

has led to the current initiative to identify new

NiTiHf alloy compositions with balanced perfor-

mance in terms of Ms, transformation hysteresis TH

and WO. On this basis, the current study has adopted

Figure 1 Essential materials properties of shape memory alloys

for actuators. a Phase transformation temperatures and thermal

hystersis (commonly defined as the difference between Af and Ms)

shown in the typical DSC curves [25]. Ms—martensite start

temperature, Mf—martensite finish temperature, As—austenite

start temperature, Af—austenite finish temperature. b Work output

(WO) is defined in the two-way shape memory effect curve [25] as

the actuation strain or the maximum recoverable strain.
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a data-driven approach to identify novel high-tem-

perature NiTiHf SMAs for actuators. This has been

implemented by evaluating seven well-known ML

models (Table 1). As three important attributes for

the design of actuators, Ms [9], TH [33, 39] and WO

[40] are concerned in this study. After comparison of

some literatures on NiTiHf alloys, the transformation

characteristics may vary for the same alloy compo-

sition due to extreme sensitivity of the functional

properties to the alloying elements especially Ni. The

high sensitivity of the properties in relation to the

alloy composition poses difficulties in screening

reliable data for ML and has been addressed recently

in a few studies [13, 41]. In this regard, it is impera-

tive here to develop a holistic ML approach with an

acceptable accuracy and reliability to predict NiTiHf

alloys with desired properties.

Compared to the recently developed ML models

on NiTiHf alloy development [24, 37, 38], the com-

bination of all three data sets in this work further

complicates the search for the most suitable alloys. In

this work, the extracted raw data via ML is used to

provide data distribution patterns among the prop-

erties. Another advantage of the ML approach

developed here is the capability for fast automated

identification of various alloy compositions with

target properties and property customisation. Two

questions have been addressed in the present study,

including the correlation among Ms, TH and WO as

well as their compositional dependence. To achieve

this, a cascade data modelling approach [42] based on

ML is used. Thereby, easy customisation and prompt

addition of data to consider additional properties will

guide the development of ML algorithms. A hierar-

chical ML structure enables users to change/re-ar-

range the property prioritisation with minimal

impact on the prediction accuracy.

Seven ML models are used to understand the

relationship between alloy compositions and their

properties in NiTiHf HTSMAs, followed by a statis-

tical evaluation to select the best fit ML model. Sub-

sequently, each material property has an individual

dataset for training, testing, and validation. In three

different layers of the ML algorithm, a logical filter-

ing method is used to identify NiTiHf alloys with an

appropriate combination of Ms, TH and WO.

Methodology

Data collection

Data have been collected for the NixTiyHfz system

from published experimental data

[5, 8, 9, 20, 25, 39, 40, 43–60], with alloy compositions

as input and Ms, TH and WO as output variables in

the ML models. Only the thermal and functional

properties of the NiTiHf alloys were considered and

no other properties were taken into account.

It should be mentioned that data for Ms, TH, and

WO for the alloy system was collected individually

and only alloys undergoing similar post-processing

conditions with homogenisation at 1050 �C/3 h and

without any further ageing treatment were consid-

ered to minimise the influence of the processing

method. Arc melted and vacuum induction melted

Table 1 Adopted machine learning models [28, 29, 34]

ML model Abbreviation Pros Cons

Linear regression model Lnr_r Simple but efficient model Linearity assumption and outlier effect

Polynomial regression model Ply_r Less impact from the size of the data

base

Polynomial degree optimisation

Support vector regression with

linear kernel

SVR_lnr Efficient in high dimensional spaces,

Memory efficiency

High impact of noisy data not suitable for

large data base

Support vector regression with

polynomial kernel

SVR_ply

Support vector regression with rbf

kernel

SVR_rbf

K-nearest neighbouring KNN No assumptions and simple model K value optimisation cannot deal with

missing values

Artificial neural network ANN Ability to work with incomplete data Need higher processing capacity,

complex behaviour
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alloys were selected to minimise the impact of alloy

manufacturing methods from different literature

sources. The property difference of the alloys manu-

factured by these two methods is minimal [13, 61].

Data post processing was carefully performed by

removing inconsistent data from the ML data sheet to

improve the consistency.

The collected data have been visualised in Fig. 2

showing 3D plots (a, b, and c), density contour plots

(d, e, and f), and statistical summary of the selected

data (g, h, and i). These plots present the distribution

of data used in the ML model implementation and

also reveal the most accurate region of the ML model.

According to the density contour plots shown in

Fig. 2, some composition regions of alloys have more

data than others. The highly dense composition

regions have higher accuracy than other regions. For

instance, many alloys have Ni content between 50

and 51 at.%. Beyond this Ni range, very limited data

are available in the literature.

Machine learning techniques

Seven well-known supervised ML models (Table 1)

were employed to enable the learning. The selected

ML models are commonly used in a number of recent

Figure 2 A snapshot of data used in ML modelling; a, d, g Data

for Ms [8, 9, 20, 25, 40, 43–57]; b, e, h Data for TH

[5, 8, 9, 25, 39, 40, 43, 45, 46, 48–54, 58, 59]; c, f, i Data for

WO [5, 8, 40, 51–53, 60]. 3D graphs, a, b, c is the data

distribution of the properties against the Ni and Hf percentage.

Density contours d, e, f present the densified data points for the

composition of the NiTiHf alloys. Yellow and orange contours

have larger number of data points. g, h, i provides basic statistical

information for each data set.
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alloy development studies [12, 24, 34, 37, 38]. Their

adopted ML models have the capacity to reveal var-

ious possible input–output relationships including

linear, nonlinear, polynomial, and nonparametric,

which cover simple to complex relationships. Each

dataset was used for training, testing, and validation

of the selected ML models. Prior to training and

testing, Python’s GridSearchCV was used to optimise

the hyperparameters of each ML model and an

optimised K-value was identified separately for the

KNN model. The attributes of the ANN model have

been optimised by changing the number of layers

and the weights. Statistical analysis was conducted to

find the best fit model.

Each data set for Ms, TH, and WO was assigned

the best performing ML model after critical evalua-

tion of the statistical measurements. These ML

models have been denoted as MLMS, MLTH, and

MLWO. As illustrated in Fig. 3, the present ML algo-

rithm has multiple steps as described below.

• MLMS is given the priority to identify X number of

alloy compositions with Ms between 200 and

400 �C.
• Among the alloy compositions selected through

MLMS, MLTH is performed to identify Y number of

alloy compositions with minimum or maximum

TH.

• With MLWO, Z number of alloy compositions

offering maximum WO has been filtered from

those developed through MLTH.

Complex correlation exists between alloy compo-

sition and attainable properties of the NiTiHf alloys,

making manual selection very challenging. For

instance, multiple NiTiHf alloy compositions could

provide similar Ms, but their TH and WO might be

significantly different. Another advantage of this

Figure 3 ML algorithm. The algorithm starts with data collection

and pre-processing. MLMS was trained, tested, and validated as the

first step of the ML training process, identifying new NiTiHf alloy

compositions at compositional resolution of 0.25 at.%. The

number of compositions depends on the user’s requirement and

their customizability. Then, MLTH was trained, tested, and

validated. The composition identified from the MLMS was used

to predict the TH for the compositions. The compositions with

larger TH were brought forward. trained, tested, and validated

through MLWO to find the WO for the compositions filtered from

MLTH. The compositions with larger WO were taken forward as

final composition/s. (Note: X C Y C Z).
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proposed ML algorithm is its ability in customisation

with minimal effort. For instance, it has the flexibility

to alter the priority of properties according to users’

application requirements.

Testing of the results

Testing of the ML model is important to evaluate the

accuracy of the predictions. The best method is to use

the experimental data that has not been employed in

the learning/training cycle. In this study, a set of data

(70%) was used for the learning/training cycle, while

the remaining data points (30%) were adopted for

testing and validation.

Machine learning models

As the initial step, the data for the ML training, and

testing process has been collected and pre-processed.

The collected individual data sets, as illustrated in

Fig. 2, for each property Ms (data points-1423), TH

(data points-467), and WO (data points-176) are

illustrated in Fig. 2a-c. The compositional range of

NiTiHf in each dataset is illustrated in Fig. 2d-f, and

the statistical data summary is presented in Fig. 2g-i,

respectively.

The ML model was evaluated in terms of several

typical parameters. The RMSE is calculated using

Eq. 1 [34] for each ML model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

yi � ŷi
� �2

s

ð1Þ

where yi is the true value, byi is the predicted value,

and n is the sample size. To minimise the error of

prediction, it is desirable to achieve low RMSE val-

ues. The R2 value [12] quantifies how the model is

fitted to the given data, and can be calculated by

R2 ¼ 1� RSS

TSS
ð2Þ

where RSS is the sum of the square of residuals and

TSS is the total sum of squares. The RSS and TSS can

be defined as follows in Eqs. 3 and 4.

RSS ¼
X

n

i¼1

yi � yregression
� �2 ð3Þ

TSS ¼
X

n

i¼1

yi � y0ð Þ2 ð4Þ

where yi, y
0
, and yregression are individual data point,

mean value, and linear regression predicted value,

respectively. When more than one variable is

Figure 4 Train/validation loss for ANN models. a, b, and

c represent Ms, TH, and WO ANN models, respectively. During

the training process, a min–max scaler has been used to minimise

the error due to a large data range. As an effect of the min–max

scaler, the RMSE shown in Y-axis is lower than the real RMSE

displayed in the graph.
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presented, the Adj_R2 value in Eq. 5 [12] provides a

better comparison for the reliability of the model.

Adj R2 ¼
1� R2
� �

N � 1ð Þ
N � p� 1

ð5Þ

where N and p represent the total sample size and

number of independent variables, respectively. The

PCC value presented in Eq. 6 [36] quantifies the

strength and direction of the relationship between

variables and is expressed as

PCC ¼
P

xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

xi � xð Þ2
P

yi � yð Þ2
q ð6Þ

where xi and yi are variable samples; x and y are

mean values of variables. The aforementioned score

techniques are used in the ML model selection pro-

cess to identify the best model for each dataset.

ML models

The ML models outlined in Sect. 2.3 were trained and

tested individually using the collected data. Initially,

the datasets were split into two for training and

testing purposes using the train-test split function in

Python [34]. The train-test split ratios were main-

tained at 70 to 30%. The split data were then used in

the ML models for training and testing and statistical

information was collected for further evaluation.

ANN model

The ANN model is an innerconnected network of

computational units known as artificial neurons.

Neural network systems are constructed to under-

stand the correlation among the data [62]. Even

though the ANN model has been used in both

supervised and unsupervised ML modelling, this

work focuses on supervised modelling (regression).

Figure 4 shows the trend of data training for each

ANN model used with three individual property

data.

Regression models

ML models were trained and tested with parallel to

ANN model. Figs. S1, S2 and S3 illustrate the trend of

training samples. For instance, the network diagrams

in Fig. 5a-c provide details on the trend of training

data of the KNN model for MLMS, MLTH, and MLWO,

Figure 5 ML model (regression model) assessment. a (Ms),

b (TH), and c (WO) illustrate the trend of the training data vs

experimental data of the KNN model in which the red colour line

(testing data) laid on the blue colour line (training data) has higher

accuracy. Lesser deviation of the line indicates lower RMSE.

d (Ms), e (TH), and f (WO) are the scatter plots which represent

the experimental data and predict data (based on the ML) for each

composition. Scatters closer to the diagonal indicate higher

accuracy.
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respectively. These network diagrams show how

closely the experimental data fit the prediction based

on the ML models.

The predicted values as a function of the experi-

mental values of the KNN model for MLMS, MLTH,

and MLWO are presented in Fig. 5d-f, respectively.

The scatters close to the diagonal lines have smaller

RMSE than those away from the line. For compar-

ison, more network diagrams and prediction versus

experimental diagrams for the other five regression

models are given in Figs. S2, S3 and S4.

K-nearest neighbouring method

During the model selection procedure, the K-value

optimisation of the KNN model is presented in

Fig. S4. The K-values from 1 to 50 was evaluated

against the RMSE. The behaviour of the K-value vs.

RMSE of Ms and TH was the generic K-value curve in

similar situations while the RMSE for WO has not

shown a significant change after reaching the lowest.

However, the data received from graphs were ade-

quate to select the K-values that provide the lowest

RMSE.

Furthermore, the analysis of KNN graphs (KNN

clusters, Fig. 6) is helpful for the interpretation of the

data. The multiple similar colour clusters in each

graph indicate that multiple compositions of NiTiHf

alloys provide similar material properties. Especially,

in Fig. 6a, upon closer inspection, several branches

lead to a central point. Those multiple possible

combinations of the alloy composition illustrate the

difficulty of selecting a single composition through

traditional means of alloy development.

bFigure 6 KNN network graph. KNN graphs a, b, and c represent

the Ms, TH, and WO, respectively. The K values selected in each

case are based on the optimised K values. a When observed

closely, several clusters appear and different clusters have similar

colour, which means that different compositions could provide

similar Ms; b Multiple blue and purple clusters can be observed

with a single yellow cluster. According to that, for a higher TH

value, there is only one strategy to reach higher TH; c Cluster

transition is smooth from low WO to high WO, but it seems that

WO diminishes after reaching peak the WO values. More KNN

graphs are shown in Fig. S5.
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Model selection and validation

The ML models were evaluated to identify the most

suitable method (refer to supplementary Figs. S1, S2

and S3). Using the capability of the GridSearchCV

library in Python, the optimised hyperparameters

were identified for each model to improve the accu-

racy and to enable a fair comparison. In each ML

model, using the Train-Test split method, the total

dataset was divided for training and testing

purposes. 70% of data have been used in training and

the remaining 30% are used for testing. As illustrated

in Figs. S1, S2 and S3, the testing data are plotted

against the training data to identify any overfitting of

the ML models. Furthermore, the K values of the

KNN models are plotted against the RMSE in Fig. S4

which can be used to identify the most suit-

able K values. The performance evaluation starts once

a high confidence is reached upon optimum fitting of

the ML models. The performance measurements are

Figure 7 Statistical analysis and comparison. a, b, and c compare

RMSE values of Ms, TH, and WO, respectively. RMSE was the

main parameter on consideration for selections of ML model. d,

e and f are R-Squared, Adj-Squared, and PCC of Ms, TH, and

WO, respectively.
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illustrated in Fig. 7. Figure 7a-c provide the details on

the RMSE error of each ML model for Ms, TH, and

WO, respectively.

RMSE in Eq. 1 provides better understanding

about the standard deviation of the predictions. The

MLMS models with Lnr_r, Ply_r, SVR_rbf, SVR_lnr,

and SVR_ply, and ANN have RMSE errors greater

than 22.32, except KNN with the lowest RMSE of

5.11. Similarly, the RMSEs of Lnr_r, Ply_r, SVR_rbf,

SVR_lnr, and SVR_ply, and ANN with TH data were

higher than 11.79, whereas the KNN model resulted

in 1.17. RMSEs of data for WO with Lnr_r, and

SVR_rbf were greater than 4.58, in contrast to Ply_r,

and KNN with low RMSEs of 1.20. Furthermore,

other statistical parameters, R2, Adj_R2, and PCC are

shown in Fig. 7d-f where a value close to 100% means

high accuracy of the ML model. According to RMSE,

R2, Adj_R2, and PCC, it can be concluded that the

KNN model yields the lowest RMSE for all three

property datasets.

The RMSE values of the KNN models for MLMS,

MLTH and MLWO were 5.11, 1.17, and 1.21, respec-

tively. R2 and Adj_R2 of KNN models were 99% for

MLMS and MLTH and 98% for MLWO, proving the

reliability of the KNN model. The three datasets are

positively correlated with a PCC of 99% for the KNN

model. The highest RMSE (131.0) and lowest R2

(44%), Adj_R2 (43%), and PCC (44%) for MLMS were

reported with the SVR_lnr model. SVR_ply showed

the least accuracy with highest RMSE (29.0) and

lowest R2 (17%), Adj_R2 (15%), and.

PCC (57%). Furthermore, due to the high testing

RMSE on TH dataset (the higher test loss than

training loss indiates the ANN model has overfitted

the training data), the ANN ML model is disqualified

from further consideration in this work. Therefore,

KNN was selected as the best performing model for

further development of the identification of the new

alloy compositions.

ML model validation

To prove the model accuracy, it is important to test

the selected ML models with data that has not been

used previously in training and testing. The valida-

tion process after testing completes the selection

process to identify an ML model that can suggest

suitable NiTiHf alloy compositions based on the

given properties. The scatter plots in Fig. 8 show the

validation.

results of the ML models. Grey colour scatter rep-

resents the training data used previously throughout

the ML model development process. Other data

Figure 8 KNN model testing. A set of data has been used to

validate the ML model after training and testing. The data used in

the validation process has not been employed either in the training

or the testing process. a, b, and c graphs represent Ms

[8, 11, 63–65], TH [11, 39, 46, 63, 64], WO [8, 23, 66],

respectively. The grey colour scatters represent the training data

and coloured scatters represent the validation data. The scatters

close to the diagonal axis prove the accuracy of the ML models.
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points (coloured) serve as validation data that has not

been used in the training and testing process.

The composition of each testing data was used to

predict the respective property through the KNN

model. The majority of the validation data is located

close to the diagonal line in all three ML models.

Some deviation identified in the testing process

(testing data away from the diagonal line) is assumed

to be due to.

• A slight change in the processing condition of

experimental work,

• Impact of the temperature profile of furnaces

(testing data are from different research groups,

and furnaces used in the casting and homogeni-

sation process might have various temperature

profiles), and

• Purity of the elements used in casting.

Results and discussion

ML model performance

Results in the previous section show that the accu-

racy of ML models can differ even with the same data

set. Each ML model has its unique structure with

Figure 9 Customised alloys. Three different property sequences

have been compared in (a-c, properties) and (d-e, composition).

200 (X) compositions with highest values of the first property in

each property sequence were first selected. Then, the number of

compositions has been reduced to 100 (Y) by selecting the highest

values for the second property in the sequence. Finally, 10

(Z) compositions with the highest value for the third property have

been selected and presented as the final compositions.
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underlying mathematical concepts and related

libraries. Therefore, it is important to identify the best

fit model through critical analysis of performance

parameters before the application to real-world sce-

narios. Such an ML approach is a promising

methodology with minimal effort to discover novel

alloy compositions compared to conventional alloy

development procedures.

The selected ML KNN model has provided lower

RMSE with low computational cost (completed

within a minute). However, the ANN model pre-

sented here requires a higher computational cost

which took more than 180 min to run the whole

process with the same processing capacity.

Among similar work reported in the literature, ML

has been employed to improve hardness [34] of high

entropy alloys, Young’s modulus prediction of beta-

Ti alloys [35] and TT prediction of NiTi-based alloys

[36]. Those studies focused on one material property

and reported comparably low accuracy with respect

to the present work which has considered multiple

properties with improved accuracy.

Properties prioritisation and customisability

Many ML-assisted alloy developments

[24, 30–32, 34–36] applied equal weights for each

property in their developments. The speciality of the

present work is property prioritisation according to

specific applications. In this work, as per the interest

on actuator applications in space, the priority is given

to Ms, followed by TH, and lastly WO. The algorithm

developed has the.

potential to consider any sequence of Ms, TH, and

WO with minimal effort. Furthermore, the addition

of new properties at any stage is also possible in the

developed algorithm. Therefore, the cascade model

has multiple advantages over other similar work

reported in the literature.

Figure 9 illustrates the effect of property prioriti-

sation on the final suggested alloy compositions.

Depending on the property priority, Fig. 9a-c show

Ms, TH, and WO of 10 alloys identified with three

different property sequences, respectively. For

instance, the first sequence presented in Fig. 9a

begins with Ms followed by TH and WO. The other

two sequences start with TH or WO. The corre-

sponding alloy compositions are illustrated via tern-

ary phase diagrams in Fig. 9d-e.

As revealed in Fig. 9a-c, for a given property

sequence WO is much less sensitive to alloy compo-

sition and only varies marginally (DWO\1J=cm3)

compared to Ms and TH which changes in the range

of 348.3–421.1 �C and 60–90 �C, respectively, e.g. for
the Ms-TH-WO sequence. In each step of the prop-

erty sequence, the highest values of all three prop-

erties are considered. As a result, all final alloy

compositions are Ni-rich consisting of 50.3 at.% Ni

and Hf higher than 20 at.%, which offers compara-

tively higher thermal and functional properties [9].

Correlation among properties

This study addresses the identification of new NiTiHf

alloy compositions based on Ms, TH, and WO for

actuators used in space by considering three ML

models, MLMS, MLTH, and MLWO that have been

sequentially developed, trained, tested, and vali-

dated. The contour plot in Fig. 10 was constructed

from 1391 new alloy compositions identified through

the proposed ML models. The alloy compositions in

Fig. 10 have been developed in a Ni range between 49

and 51.75 at.%. This contour plot illustrates the

intercorrelation among Ms, TH, and WO of NiTiHf

alloys with targeted properties. NiTiHf alloys with

higher Ms (300 �C–600 �C) have a wide attainable TH

window from 10 �C to 150 �C and moderate WO in

an estimated range of 18–26 J/cm3. When Ms

decreases, the TH window narrows down. For

instance, the achievable range of TH for alloys with

Figure 10 Correlation among Ms, TH, and WO. A contour plot

was developed, based on the ML model, to understand the

correlation among the properties. Contours are complex and

irregular with multiple similar colour contours. Multiple similar

colour contours reveal the complexity of the alloy compositions.

Data points for validation: point A (Ms,; TH,; WO,) [66], point B

(Ms,; TH,; WO,) [8, 49], point C (Ms,; TH,; WO,) [53], point D

(Ms,; TH,; WO,) [8, 24].

J Mater Sci (2022) 57:19447–19465 19459



Ms below 100 �C is reduced to 10–100 �C while their

WO is either below 20 J/cm3 or above 24 J/cm3.

Compared to the relationship between TH and Ms,

the variation of WO with Ms is more complex and

less distinct. As illustrated in Fig. 10, lower Ms cor-

responds to either lower WO or higher WO. Such

variation is associated with the functional properties

(e.g. recoverable strain) of the NiTiHf alloy system.

NiTiHf alloys tend to have a low Ms under two dif-

ferent compositional ranges: Ni-rich alloys with

Ni[ 51 at.% [9] and those with Hf below 12 at.% [8].

The former group of Ni-rich NiTiHf alloys has higher

recoverable strain than the latter group. However,

alloys with Ms above 300 �C give rise to WO between

18 and 24 J/cm3. When considering all three attri-

butes (Ms, TH, WO), the search for alloys with

desired properties is often not straightforward. For

instance, alloys with Ms above 500 �C have the

smallest range for both TH (35–60 �C) and WO

(20–22 J/cm3) while alloys with Ms below 500 �C
have a higher range of TH but limited WO. Therefore,

Figure 11 Property sensitivity to alloy composition. a-c contour

plots illustrate the relationship between Ni and Hf at.% with Ms,

TH, and WO, respectively. d-f contour plots provide information

on Ni at.% and Ti at.% with Ms, TH, and WO, respectively. Ms of

the NiTiHf alloy system is more sensitive to Ni content than Hf

and Ti. Both Ms and TH vary significantly between 50 and 51

at.%Ni. The WO is more sensitive to the Ti and Hf content than the

Ni content.
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the selection of the right alloy composition is critical

and needs more attention.

Composition sensitivity

As mentioned earlier, the functional properties of

NiTiHf alloys are highly sensitive to the alloy com-

position. The contour plots in Fig. 11 provide more

information on compositional sensitivity. For NiTiHf

alloys with a low Hf content (5 at.%), with increasing

Ni content from 50 to 51 at.% Ms reduces at a rate of

2.59 �C per 0.01 at.%Ni. When the Hf content

increases to 20 at.%, the reduction rate of Ms

increases to 3.18 �C per 0.01 at.%Ni (between 50 and

51 at.% of Ni). A maximum Ms reduction rate of

6.12 �C per 0.01 at.%Ni (between 50 and 51 at.% of

Ni) is attained in an alloy with a higher Hf value of 30

at.%. This implies that the transformation tempera-

ture of NiTiHf alloys is more sensitive to Ni variation

with increasing Hf content. However, outside the

range of 50–51 at.%Ni, these properties vary to a

lesser extent with respect to Ni. For a given Ni con-

tent, the properties of the alloys change linearly with

Hf or Ti content. The variation of TH and WO with

Ni is relatively lower than that with Hf. Although TH

and WO are also sensitive to the Hf content, they are

not as critical as Ms on the Ni content (Fig. 10, points

B & C). Therefore, when designing an alloy with a Ni

content between 50 and 51 at.%, more attention is

required for the variation of Ms.

Proposed alloy compositions for actuators
in space

The scatter plot in Fig. 12 was developed following

the logical flow illustrated in Fig. 3. The A, B, and C

scatters in the graph represent different stages of the

selection procedure mentioned in the methodology.

The C scatters are the possible new alloy composi-

tions that could be used in the actuator application in

space where the environment temperature can read-

ily exceed at least 100 �C. The selected compositions

here fulfil three key requirements for high-tempera-

ture aerospace actuators: Ms (200–400 �C), the largest

TH among the compositions filtered through MLTH,

and the largest WO of the compositions filtered from

MLWO. This customizable ML model is able to

Figure 12 Selection of composition based on the ML models.

The scatter plot on the background of the contour plot was

developed to represent the algorithm of the ML model. Scatters A,

B, and C (A ? B ? C = 592 scatters) have a Ms between 200

and 400 �C; B and C (B ? C = 296 scatters) have Ms between

200 and 400 �C and the highest 50% of the TH from 592 scatters;

C (73 scatters) has Ms between 200 and 400 �C, the highest 50%
of the TH from 592 scatters, and the highest 25% of the WO from

296 scatters. The area representing scatters C is the most

suitable composition for actuator applications in space.

Table 2 Ms & TH prioritised NiTiHf composition. Selected final composition for further experimental evaluation. The listed compositions

(1–5) and (6–10) have been proposed for actuator applications with larger TH and smaller TH, respectively

Scenarios Predicted alloys Ni (at.%) Ti (at.%) Hf (at.%) Ms (�C) TH (�C) WO (J/cm3)

Maximising TH 1 50.50 27.50 22.00 241.4 32.8 24.7

2 50.50 27.25 22.25 248.8 39.4 24.4

3 50.50 27.00 22.50 251.4 43.9 24.2

4 50.50 26.75 22.75 261.2 46.0 24.0

5 50.50 26.50 23.00 283.1 40.8 23.8

Minimising TH 6 50.50 30.00 19.5 139.3 11.6 25.1

7 50.50 30.25 19.25 153.1 13.3 24.5

8 50.50 30.50 19.00 149.4 13.5 23.9

9 50.50 30.75 18.75 167.6 14.1 23.3

10 50.25 30.75 19.00 226.9 15.5 23.4
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prioritise specific properties and the number of fil-

tering options.

Table 2 lists alloy compositions suggested by ML

when large and small TH are concerned during ML,

respectively. The alloy compositions in Table 2, rows

1–5, offer Ms over 200 �C, large TH and high WO,

which is superior to many existing NiTiHf alloys. In

comparison, alloy compositions illustrated in Table 2,

rows 6–10 have smaller TH with relatively lower Ms

and equivalent WO. A larger TH in actuator appli-

cation offers better controllability while a smaller TH

enables rapid actuation response [62]. The require-

ment of TH is thus dependent on the application and

the actuator mechanism. The experimental validation

of the ML models and the suggested alloys in Table 2

will be performed via comprehensive microstructural

and functional characterisations in our future work.

Conclusion

As promising high-temperature shape memory

materials, NiTiHf alloys demonstrate superior func-

tional properties such as high transformation tem-

perature, large recoverable strain and work output.

Nevertheless, these properties are very sensitive to

their chemical composition, which complicates the

optimisation of alloys by means of the trial-and-error

experiments. The machine learning approach

becomes a promising tool to facilitate this alloy

optimisation process in this study. Major findings

include:

• Seven machine learning models have been inves-

tigated based on the properties of NiTiHf alloys to

identify new alloy compositions with superior

properties for space applications. The K-nearest

neighbouring regression model was found to be

accurate in calculating the properties of interest

with low root mean square errors such as marten-

sic start temperature (RMSE, 5.11), thermal hys-

teresis (RMSE, 1.17) and work output (RMSE,

1.21).

• Martensitic start temperature and thermal hys-

teresis of the NiTiHf alloys are more sensitive to

Ni content, while work output is more sensitive to

the Ti and Hf contents.

• From 1391 alloy compositions, 73 NiTiHf alloys

with high transformation temperature, appropri-

ate thermal hysteresis and large work output were

filtered through the machine learning algorithm

as potential candidates for actuator applications in

space.
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