Skip to main content
Log in

ZIF-8 derived Ni(OH)2 hollow nanocages for non-enzymatic glucose electrochemical sensing

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rational design of efficient electrocatalysts with favorable electronic structures and geometries can significantly influence their analytical performance for non-enzymatic glucose detection. In this work, nickel hydroxide nanocages on nickel foam (Ni(OH)2 NCs/NF) were fabricated by an ion-assisted etching method using zinc-based imidazole zeolite framework (ZIF-8) as a structural template. Due to the hollow nanocage structure of Ni(OH)2 NCs/NF, more exposed active sites and larger void space were obtained. The prepared hollow Ni(OH)2 NCs were used as a working electrode for electrochemical sensing glucose with high electro-catalysis performance under alkaline conditions. Under the optimal conditions, the Ni(OH)2 NCs/NF presents a short response time (less than 3 s) and a wide linear range from 1 μM to 3.45 mM for glucose assay. A low detection of limit (LOD) of 0.1 μM (S/N = 3) and an excellent sensitivity of 7413 μA mM−1 cm−2 were obtained by the prepared non-enzymatic electrochemical glucose sensor. In addition, the constructed Ni(OH)2 NCs exhibits good long-term stability and high selectivity for glucose detection. The practicability of the proposed sensor was verified by detecting glucose in serum samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Drissi W, Chelaghmia ML, Nacef M, Affoune AM, Satha H, Kihal R, Fisli H, Boukharouba C, Pontie M (2022) In situ growth of Ni(OH)2 nanoparticles on 316L stainless steel foam: an efficient three-dimensional non-enzymatic glucose electrochemical sensor in real human blood serum samples. Electroanalysis. https://doi.org/10.1002/elan.202100701

    Article  Google Scholar 

  2. Adarakatti PS, Udayakumar V, Almalki AS (2022) Fabrication of cerium oxide and β-Ni(OH)2 nano hexagonal architectures assembled on reduced graphene oxide for non-enzymatic electrochemical detection of glucose. Ionics 28(4):1957–1972

    Article  Google Scholar 

  3. Zhao ZT, Huang YY, Huang ZB, Mei HJ, Xie Y, Long DF, Zhu FL, Gong WP (2022) Nonenzymetic glucose sensitive device based on morchella shaped nickel-copper layered double hydroxide. Appl Surf Sci 597:153658

    Article  CAS  Google Scholar 

  4. Aygün A, Gülbağça F, Nas MS, Alma MH, Çalımlı MH, Ustaoglu B, Şen F (2020) Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: a novel approach in phytonanotechnology. J Pharmactut Biomed 179:113012

    Article  Google Scholar 

  5. Ogurtsova K, Fernandes JDR, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40e50

    Article  Google Scholar 

  6. Sun X, Lei Y (2017) Fluorescent carbon dots and their sensing applications. TrAC Trends Anal Chem 89:163–180

    Article  CAS  Google Scholar 

  7. Zhao S, Tao W, He Q, Zhao Z, Yang H (2017) Glucose solution determination based on liquid photoacoustic resonance. Appl Opt 56:193–199

    Article  CAS  Google Scholar 

  8. Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y (2017) Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11:5558–5566

    Article  CAS  Google Scholar 

  9. Ahmad R, Hahn BY (2018) Nonenzymatic flexible field-effect transistor based glucose sensor fabricated using NiO quantum dots modified ZnO nanorods. J Colloid Interface Sci 512:21–28

    Article  Google Scholar 

  10. Vilian ATE, Dinesh B, Rethinasabapathy M, Hwang SK, Jin CS, Huh YS, Han YK (2018) Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J Mater Chem A 6(29):14367–14379

    Article  CAS  Google Scholar 

  11. Sen B, Kuyuldar E, Demirkan B, Okyay TO, Şavk A, Sen F (2018) Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane. J Coid Interf Sci 526:480–486

    Article  CAS  Google Scholar 

  12. Mao WW, Cai B, Ye ZZ, Huang JY (2018) A nanostructured p-NiO/n-Bi4Ti3O12 heterojunction for Direct GOx electrochemistry and high-sensitivity glucose sensing. Sens Actuators B Chem 261:385–391

    Article  CAS  Google Scholar 

  13. Hwang DW, Lee S, Seo M, Chung TD (2018) Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal Chim Acta 1033:1–34

    Article  CAS  Google Scholar 

  14. Manjushree SG, Adarakatti PS, Udayakumar V, Almalki ASA (2022) Fabrication of cerium oxide and beta-Ni(OH)2 nano hexagonal architectures assembled on reduced graphene oxide for non-enzymatic electrochemical detection of glucose. Ionics 28:1957–1972

    Article  Google Scholar 

  15. Li L, Li Y, Qin W, Qian Y (2020) Potentiometric detection of glucose based on oligomerization with a diboronic acid using polycation as an indicator. Anal Methods 12:4422–4428

    Article  CAS  Google Scholar 

  16. Sivakumar M, Madhu R, Chen SM, Veeramani V, Manikandan A, Hung WH, Miyamoto N, Chueh YL (2016) Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J Phys Chem C 120:17024–17028

    Article  CAS  Google Scholar 

  17. Wang L, Yu H, Zhang Q, Li Y, Jia W, Hou C, Wang H (2021) NiCo–NiCoO2/carbon hollow nanocages for non-enzyme glucose detection. Electrochim Acta 381:138259

    Article  CAS  Google Scholar 

  18. Rahman MM, Alam M, Asiri AM (2018) Selective hydrazine sensor fabrication with facile low-dimensional Fe2O3/CeO2 nanocubes. New J Chem 42:10263–10270

    Article  CAS  Google Scholar 

  19. Zhou X, Nie H, Yao Z, Dong Y, Yang Z, Huang S (2012) Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sensor Actuat B-Chem 168:1–7

    Article  CAS  Google Scholar 

  20. Huang Z, Liu J, Xiao Z, Fu H, Fan W, Xu B, Dong B, Liu D, Dai F, Sun D (2018) A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale 10:22758–22765

    Article  CAS  Google Scholar 

  21. Liu DC, Cao LM, Luo ZM, Zhong DC, Tan JB, Lu TB (2018) An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J Mater Chem A 6:24920–24927

    Article  CAS  Google Scholar 

  22. Kang KN, Kim SI, Yoon JC, Kim J, Cahoon C, Jang JH (2022) Bi-functional 3D-NiCu-Double Hydroxide@Partially Etched 3D-NiCu catalysts for non-enzymatic glucose detection and the hydrogen evolution reaction. ACS Appl Mater Inter 14:33013–33023

    Article  Google Scholar 

  23. Almutairi EM, Ghanem MA, Al-Warthan A, Shaik MR, Adil SF, Almutairi AM (2022) Chemical deposition and exfoliation from liquid crystal template: Nickel/nickel (II) hydroxide nanoflakes electrocatalyst for a non-enzymatic glucose oxidation reaction. Arab J Chem 15:103467

    Article  CAS  Google Scholar 

  24. Zhu Y, Zhang X, Sun J, Li M, Lin Y, Kang K, Meng Y, Feng Z, Wang J (2019) A non-enzymatic amperometric glucose sensor based on the use of graphene frameworks-promoted ultrafine platinum nanoparticles. Microchim Acta 186:1–10

    Article  Google Scholar 

  25. Venkadesh A, Radhakrishnan S, Mathiyarasu J (2017) Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochim Acta 246:544–552

    Article  CAS  Google Scholar 

  26. Wei X, Wu T, Yuan Y, Ma X, Li J (2017) Highly sensitive analysis of organometallic compounds based on molecularly imprinted electrochemical sensors. Anal Methods 9:1771–1778

    Article  CAS  Google Scholar 

  27. Xu S, Liu R, Shi X, Ma Y, Hong M, Chen X, Wang T, Li F, Hu N, Yang Z (2020) A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochim Acta 342:136–124

    Article  Google Scholar 

  28. Mao B, Guo D, Qin J, Meng T, Wang X, Cao M (2018) Solubility-parameter-guided solvent selection to initiate ostwald ripening for interior space-tunable structures with architecture-dependent electrochemical performance. Angew Chem Int Edit 57:446–450

    Article  CAS  Google Scholar 

  29. Dou H, Xu M, Wang B, Zhang Z, Wen G, Zheng Y, Luo D, Zhao L, Yu A, Zhang L (2021) Microporous framework membranes for precise molecule/ion separations. Chem Soc Rev 50:986–1029

    Article  CAS  Google Scholar 

  30. Ahn SH, Yu X, Manthiram A (2017) “Wiring” Fe-Nx-Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Adv Mater 29:1606534

    Article  Google Scholar 

  31. Small LJ, Henkelis SE, Rademacher DX, Schindelholz ME, Krumhansl L, Vogel DJ, Nenoff TM (2020) Near-zero power MOF-based sensors for NO2 detection. Adv Funct Mater 30:2006598

    Article  CAS  Google Scholar 

  32. Xing XS, Fu ZH, Zhang NN, Yu XQ, Wang M, Guo GC (2019) High proton conduction in an excellent water-stable gadolinium metal–organic framework. Chem Commun 55:1241–1244

    Article  CAS  Google Scholar 

  33. Şen B, Aygün A, Şavk A, Akocak S, Şen F (2018) Bimetallic palladium–iridium alloy nanoparticles as highly efficient and stable catalyst for the hydrogen evolution reaction. Int J hydrogen energ 43(44):20183–20191

    Article  Google Scholar 

  34. Sun T, Xu L, Wang D, Li Y (2019) Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res 12:2067–2080

    Article  CAS  Google Scholar 

  35. Wang X, Yin H, Sheng G, Wang W, Zhang X, Lai Z (2018) Fabrication of self-entangled 3D carbon nanotube networks from metal-organic frameworks for Li-Ion batteries. ACS Appl Nano Mater 1:7075–7082

    Article  CAS  Google Scholar 

  36. Goksu H, Sert H, Kilbas B, Sen F (2017) Recent advances in the reduction of nitro compounds by heterogenous catalysts. Curr Org Chem 21(9):794–820

    Article  CAS  Google Scholar 

  37. Qiu B, Cai L, Wang Y, Lin Z, Zuo Y, Wang M, Chai Y (2018) Fabrication of nickel-cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv Funct Mater 28:1706008

    Article  Google Scholar 

  38. Göksu H, Çelik B, Yıldız Y, Şen F, Kılbaş B (2016) Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect 1(10):2366–2372

    Article  Google Scholar 

  39. Meng X, Xiao X, Pang H (2020) Ultrathin Ni-MOF nanobelts-derived composite for high sensitive detection of nitrite. Front Chem 8:330

    Article  CAS  Google Scholar 

  40. Kong X, Xia B, Xiao Y, Chen H, Li H, Chen W, Wu P, Shen Y, Wu J, Li S, Huo F, Zhang W, Zheng B (2019) Regulation of Cobalt-Nickel LDHs’ structure and components for optimizing the performance of an electrochemical sensor. ACS Appl Nano Mater 2:6387–6396

    Article  CAS  Google Scholar 

  41. Kim SE, Muthurasu A (2020) Metal-organic framework–assisted bimetallic Ni@Cu microsphere for enzyme-free electrochemical sensing of glucose. J Electroanal Chem 873:114356

    Article  CAS  Google Scholar 

  42. Su Y, Song Z, Zhu W, Mu Q, Yuan X, Lian Y, Cheng H, Deng Z, Chen M, Yin W (2020) Visible-light photocatalytic CO2 reduction using metal-organic framework derived Ni(OH)2 nanocages: a synergy from multiple light reflection, static charge transfer, and oxygen vacancies. ACS Catal 11:345–354

    Article  Google Scholar 

  43. Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D (2013) LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5:11770–11775

    Article  CAS  Google Scholar 

  44. Li X, Ding R, Shi W, Xu Q, Ying D, Huang Y, Liu E (2018) Hierarchical porous Co(OH)F/Ni(OH)2: a new hybrid for supercapacitors. Electrochim Acta 265:455–473

    Article  CAS  Google Scholar 

  45. Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660

    Article  CAS  Google Scholar 

  46. Kiani M, Tehrani MA, Sayahi H (2014) Reusable and robust high sensitive non-enzymatic glucose sensor b`ased on Ni(OH)2 nanoparticles. Anal Chim Acta 839:26–33

    Article  CAS  Google Scholar 

  47. Jiang Y, Yu S, Li J, Jia L, Wang C (2013) Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane. Carbon 63:367–375

    Article  CAS  Google Scholar 

  48. Kannan P, Maiyalagan T, Marsili E, Ghosh S, Niedziolka-Jönsson J, Jönsson-Niedziolka M (2016) Hierarchical 3-dimensional nickel–iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. Nanoscale 8:843–855

    Article  CAS  Google Scholar 

  49. Sithini TN, Thiyagasundaram T, Zen JM (2022) A nickel hydroxide platform prepared on a hydroxyl-enriched screen-printed carbon electrode for oxidative electrocatalysis. Anal Methods 14:228–232

    Article  Google Scholar 

  50. Li SJ, Guo W, Yuan BQ, Zhang DJ, Feng ZQ, Du JM (2017) Assembly of ultrathin NiOOH nanosheets on electrochemically pretreated glassy carbon electrode for electrocatalytic oxidation of glucose and methanol. Sensor Actuat B-Chem 240:398–407

    Article  CAS  Google Scholar 

  51. Li Y, Xie M, Zhang X, Liu Q, Lin D, Xu C, Xie F, Sun X (2019) Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sensor Actuat B-Chem 278:126–132

    Article  CAS  Google Scholar 

  52. You C, Dai R, Cao X, Ji Y, Qu F, Liu Z, Du G, Asiri AM, Xiong X, Sun X (2017) Fe2Ni2N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing. Nanotechnol 28:365503

    Article  Google Scholar 

  53. Ma M, Zhu W, Zhao D, Ma Y, Hu N, Suo Y, Wang J (2019) Surface engineering of nickel selenide nanosheets array on nickel foam: an integrated anode for glucose sensing. Sensor Actuat B-Chem 278:110–116

    Article  CAS  Google Scholar 

  54. Iwu KO, Lombardo A, Sanz R, Scirè S, Mirabella S (2016) Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sensor Actuat B-Chem 224:764–771

    Article  CAS  Google Scholar 

  55. Wang Q, Wang Z, Dong Q, Yu R, Zhu H, Zou Z, Yu H, Huang K, Jiang X, Xiong X (2020) NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchem J 158:105184

    Article  CAS  Google Scholar 

  56. Raza MH, Movlaee K, Wu Y, El-Refaei SM, Karg M, Leonardi SG, Neri G, Pinna N (2019) Tuning the NiO thin film morphology on carbon nanotubes by atomic layer deposition for enzyme-free glucose sensing. ChemElectroChem 6:383–392

    Article  CAS  Google Scholar 

  57. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569

    Article  CAS  Google Scholar 

  58. Soomro RA, Ibupoto ZH, Abro MI, Willander M (2015) Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sensor Actuat B-Chem 209:966–974

    Article  CAS  Google Scholar 

  59. Li SJ, Xia N, Lv XL, Zhao MM, Yuan BQ, Pang H (2014) A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sensor Actuat B-Chem 190:809–817

    Article  CAS  Google Scholar 

  60. Zhang Y, Zheng D, Liu S, Qin S, Sun X, Wang Z, Qin C, Li Y, Zhou J (2021) Flexible porous Ni(OH)2 nanopetals sandwiches for wearable non-enzyme glucose sensors. Appl Surf Sci 552:149529

    Article  CAS  Google Scholar 

  61. Rocha RG, Cardoso RM, Zambiazi PJ, Castro SV, Ferraz TV, Aparecido GdO, Bonacin JA, Munoz RA, Richter EM (2020) Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Anal Chim Acta 1132:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21605108, and 81603291) and Sichuan Science and Technology Program (2022NSFSC1339). We acknowledge Qiuyue Yu and Haiyan Yang for their technical assistance in this work

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Yuan or Ke Huang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 846 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Hu, K., Wang, S. et al. ZIF-8 derived Ni(OH)2 hollow nanocages for non-enzymatic glucose electrochemical sensing. J Mater Sci 57, 18589–18600 (2022). https://doi.org/10.1007/s10853-022-07771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07771-y

Navigation