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ABSTRACT

The influence of stress on the phase boundaries of polycrystalline lead-free

perovskite (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (x = 0.4, 0.5, and 0.6) was

characterized through the temperature- and stress-dependent small-signal

dielectric and piezoelectric response from - 150 to 200 �C under uniaxial

compressive stress up to - 75 MPa. For all three compositions, the phase

transition temperatures separating the rhombohedral, orthorhombic, tetragonal,

and cubic phases were shifted to higher temperatures with an increase in the

uniaxial mechanical loading, corresponding to a significant decrease in the

dielectric and piezoelectric responses. Additional stress-dependent relative

permittivity measurements up to - 260 MPa were conducted at four different

constant temperatures (- 10, 10, 25, and 40 �C), revealing significant increases

in the dielectric response, making these materials interesting for tunable

dielectric applications. Furthermore, the stress-induced shift in phase transition

temperatures was confirmed by in situ combined temperature- and stress-de-

pendent Raman spectroscopy measurements under different constant uniaxial

loads within the temperature range from 30 to 130 �C.
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GRAPHICAL ABSTRACT

Introduction

Ferroelectrics continue to be an increasingly impor-

tant material class for several technological sectors, as

they are widely used in different electromechanical

transducer applications, such as actuators, sensors,

generators, and accelerometers [1–4]. Of all the lead-

free ferroelectric materials [5–8] that have been

developed to potentially replace lead zirconate tita-

nate (Pb(Zr,Ti)O3) (PZT) [5], Ba(Zr0.2Ti0.8)O3–(Ba0.7-
Ca0.3)TiO3 (BCZT) has gained significant attention

because of an exceptionally large piezoelectric coef-

ficient d33 & 620 pC/N [13]. The origin of such high

piezoelectricity is suggested to be related to the

existence of a phase boundary that separates the

rhombohedral R3m and tetragonal P4mm phases, as

reported by Liu and Ren [9] as well as Haugen et al.

[10]. In addition, the phase diagram also indicates a

tricritical point of a paraelectric cubic phase (C,

Pm3m), ferroelectric rhombohedral (R, R3m), and

ferroelectric tetragonal (T, P4mm) phases. Keeble

et al.[11] and Damjanovic et al. [12] discussed the

coexistence of the intermediate orthorhombic phase

(O) with Amm2 space group, where they showed the

presence of three phase transitions, i.e., R-O, O-T, and

T-C, in the vicinity of room temperature. It is sug-

gested that the polymorphism can enable a large

piezoelectric response through the polarization rota-

tion and extension mechanisms originating from a

flattening of the energy landscape [9, 13]. The major

limitations of the BCZT system, however, are the

relatively low Curie temperature TC within a range of

* 70–120 �C depending on the Ca/Zr ratio [14] and

the low mechanical stability, shown through a rela-

tively low coercive stress of approximately - 5 MPa

to - 20 MPa [15].

Understanding the influence of external mechani-

cal and thermal fields on the functional properties of

ferroelectrics is critical, as many applications expose

the electroceramic component to large electrical,

mechanical, and thermal fields during operation [5]

that can change the observed electromechanical

behavior [15], induce changes in the crystal structure

or state [16–18], as well as lead to crack growth and

potentially failure [19]. The influence of stress on the

large- and small-signal electromechanical properties

of normal ferroelectrics, such as PZT, Pb(Mg1/3Nb2/

3)O3–PbTiO3, and (Pb1-xLax)(Zr1-yTiy)O3, has been

investigated by several researchers, where the pri-

mary mechanism responsible for the observed

macroscopic response is due to domain wall nucle-

ation and growth [20–24]. Despite this, applied

external electrical and mechanical fields have also

been observed to induce structural phase transitions

in polycrystalline perovskite ferroelectrics, such as

PZT, PLZT, KNN, and BaTiO3 [17, 25–29]. In partic-

ular, mechanical fields can significantly affect the

stable phase in ferroelectric films, resulting in room

temperature ferroelectricity in SrTiO3 [30] and

inducing a morphotropic phase boundary in BiFeO3

[31]. In addition, lead-free relaxor ferroelectrics have

revealed the stress-induced formation of long-range

ferroelectric order [16, 32] related to the coalescence
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of polar nano-regions into a periodic domain struc-

ture [33, 34].

The piezoelectric and dielectric responses observed

in ferroelectric perovskites are comprised of both

intrinsic and extrinsic contributions [35]. The intrinsic

contribution originates from the electromechanical

response of the crystal lattice and the extrinsic con-

tribution due to other phenomena, such as the motion

of domain walls and phase boundaries [36]. Both

contributions can be influenced by external electrical,

mechanical, and thermal fields [15, 37–39]. Here,

simultaneously applied fields can either work with

one another cooperatively or antagonistically,

depending on the relative loading direction. Previous

studies have investigated the effect of uniaxial com-

pressive stress on the small-signal piezoelectric and

dielectric response of BaTiO3-based ceramics [40–42],

which showed shifting in the Curie point to higher

temperatures under uniaxial load. Furthermore, the

change in the small-signal piezoelectric response of

PZT under uniaxial stress was demonstrated [43–45].

For example, an initial increase in electromechanical

coupling was reported in PZT, followed by a subse-

quent decrease with increasing stress due to an

internal bias electric field induced by oriented defect

dipoles working against an externally applied stress

[37]. The Rayleigh coefficient a was demonstrated as

a measure of domain wall motion irreversibility

through stress-dependent Rayleigh measurements of

numerous ferroelectrics, such as PZT and BT that

displayed an increase in the piezoelectric coefficient

with increasing dynamic stress [46]. In addition, an

improvement in the direct piezoelectric response of

PZT-Nb was observed with increasing dynamic

stress up to 7 MPa under low static stress [47].

Despite the importance stress plays in ferro-

electrics, the influence on lead-free ferroelectrics

remains poorly understood. In particular, few studies

have been presented on the mechanical properties of

BCZT, although it shows excellent potential as a lead-

free alternative and excellent electromechanical

properties [42, 48]. The few available studies reveal a

relatively low coercive stress in the range of - 5 MPa

to - 20 MPa and a correspondingly low remanent

strain, depending on composition [42, 49], suggesting

enhanced mechanical depolarization in applications

with a preload. In addition, uniaxial stress was found

to significantly increase the large-signal electrome-

chanical d�33 of BCZT [42, 49], analogous to

observations in other ferroelectric material systems

[50, 51]. Although the origins of the mechanical

response remain unclear, previous studies by Ehmke

et al. indicated that domain wall motion near the

polymorphic phase boundary is primarily responsi-

ble for the hysteretic response [49, 52]. This is sup-

ported by in situ electric field-dependent X-ray

diffraction data that demonstrates ferroelectric

domain wall motion during application of an electric

field [53]. Despite this, in situ transmission electron

microscopy studies have shown an interesting single

domain state during electrical loading [54], which

suggests a transformation from a multiphase state to

a purely orthorhombic phase. Similarly, in situ tem-

perature-dependent PFM and Raman spectroscopy

revealed the existence of a complex orthorhombic/

rhombohedral nano-domains in a tetragonal matrix

at room temperature [55]. Although the mechanism

responsible for this mechanical behavior has not been

directly observed through, e.g., in situ stress-depen-

dent X-ray diffraction, the hysteretic mechanical

response is understood to be primarily due to fer-

roelastic domain wall nucleation and growth as well

as the influence of the multiphase state at room

temperature in the vicinity of the polymorphic phase

boundary [49, 52]. However, stress-modulated

structural phase transitions have been observed in

other BaTiO3-based materials [56, 57], and it is not

clear if such transitions influence the observed elec-

tromechanical response of BCZT.

Previous studies on BT, for example, focused

exclusively on dielectric properties and the shifting of

phase boundaries. This work presents the tempera-

ture-dependent piezoelectric coefficient across the

three phase boundaries as a function of composition.

Furthermore, the influence of applied stress on both

the macroscopic small-signal electromechanical and

dielectric response as well as the crystal structure of

BCZT is presented as a function of temperature,

demonstrating the role of external uniaxial com-

pressive stress on the structural interferroelectric and

ferroelectric-paraelectric phase boundaries. In addi-

tion, in situ Raman spectroscopy measurements were

conducted as a function of temperature under uni-

axial load. These data are used to develop a stress-

temperature-composition phase diagram for BCZT as

well as provide information on the reduction in

extrinsic contributions to the electromechanical

properties during mechanical loading. The experi-

mental results are compared to previous studies on
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BaTiO3 to illustrate the effect of Ca and Zr substitu-

tion in the system. These data are crucial to devel-

oping and implementing the new lead-free

electroceramics applications.

Experimental

Polycrystalline (1� x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)-

TiO3 (x = 40, 50, and 60 mol%, denoted as BCZT40,

BCZT50, and BCZT60, respectively) samples were

synthesized with a solid-state reaction method using

analytical grade starting powders BaZrO3 (99.5%,

Sigma-Aldrich), CaCO3 (99.0%, Sigma-Aldrich),

BaCO3 (99.8%, Alfa Aesar), and TiO2 (99.8%, Sigma-

Aldrich). The starting powders were ball-milled for

24 h in ethanol, dried in the air, and calcined for 2 h

at 1350 �C. Sintering was carried out for 5 h in the air

at 1450 �C. Additional details of the ceramic pro-

cessing can be found elsewhere [58]. Sintered

ceramics were ground into cylinders with a height of

6.00 ± 0.02 mm and a diameter of 5.80 ± 0.02 mm on

a surface grinder, followed by an annealing step at

400 �C to depolarize the samples and remove any

domains that may have been reoriented during

sample preparation. All samples were sputtered with

platinum electrodes on both circular faces with a

thickness of approximately 70 nm. The samples were

then poled in silicone oil for 30 min at room tem-

perature with an electric field of 3 kV/mm [59];

measurements were performed at least 24 h after

electrical poling.

A screw-type load frame (Instron 5967, Instron

GmbH) with an integrated thermal chamber (TK

26.600.LN2, Fresenberger GmbH) was used for the

stress-dependent electromechanical and dielectric

characterization as a function of temperature. Addi-

tional information on the experimental arrangement

can be found in previous works [37]. Two tungsten

carbide loading dies were attached to the samples for

uniaxial stress, which also acted as the electrical

contacts. During measurement, a constant bias com-

pressive stress between - 5 and - 75 MPa was

maintained during heating from - 150 to 200 �C at a

rate of 2 K/min; liquid nitrogen was used to cool the

samples down to - 150 �C. The piezoelectric testing

equipment is based on an integrated piezoelectric

actuator that partially unloaded the sample using a

sinusoidal waveform with an amplitude of ± 0.5

MPa at various frequencies between 0.5 and 140 Hz,

where a Sawyer–Tower circuit was used to determine

the resulting change in polarization. Dielectric mea-

surements were performed simultaneously with an

attached LCR Meter (E4980AL, Keysight Technolo-

gies). A custom program was used to control, record,

and analyze the obtained small-signal piezoelectric

and dielectric data during heating [37]. Similarly,

stress-dependent relative permittivity at 1 kHz was

measured during compressive uniaxial stress loading

within the range from - 1 to - 260 MPa with a

loading/unloading rate of 0.25 MPa/s at selected

constant temperatures, i.e., - 10, 10, 25, and 40 �C.
Raman spectra were acquired in the 38–1500 cm-1

frequency range using a coherent Sapphire SF single-

frequency 488 nm laser (optical power 100 mW) as

the excitation source, an iHR 320 Horiba monochro-

mator coupled with a Sincerity UV–VIS CCD camera,

and a custom-built optical microscope [60]. The 1800

lines/mm holographic grating and a 50 9 micro-

scope objective (OptoSigma PAL-50-L, NA 0.42)

provided a spatial and frequency resolution of * 1

lm and 2 cm-1, respectively. A uniaxial load cell

with a piezoelectric actuator equipped with ceramic

resistive heaters was used for in situ stress- and

temperature-dependent Raman spectroscopy mea-

surements. Details of the setup can be found in our

previous work [18]. A cuboid sample of BCZT60 with

3 mm 9 2 mm 9 2 mm dimensions was prepared

from the cylinder sample with a diamond wire saw

(WireTech GmbH & Co. KG) and a surface grinder.

The BCZT sample was placed between two cuboid-

shaped (2 mm 9 2 mm 9 2 mm) spacers made of

ZrO2 to minimize the thermal gradients upon heat-

ing. Conical loading pieces of tungsten carbide were

used between the sample and the uniaxial load cell to

ensure the uniformity of the applied stress and

account for any minor misalignments. A K-type

thermocouple was used to record the sample surface

temperature during the measurements. In order to

estimate the stress-dependent variation in Curie

temperature from the Raman spectra collected at high

temperatures, the data were reduced using the Bose–

Einstein distribution. This procedure allows reducing

the contributions from thermally populated excited

vibrational states. Nevertheless, as a result, all tem-

perature corrected (T-corrected) spectra show a sup-

pression of the vibrations at low frequencies (see

Figure S1, supplementary information). Therefore,

temperature uncorrected signals are presented here.

Raman signals were background-subtracted with a
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linear function and normalized to the total area in the

40–1100 cm-1 frequency range.

Results and discussion

Temperature-dependent dielectric
and piezoelectric behavior

The small-signal frequency-dependent relative per-

mittivity er and direct piezoelectric coefficient d33 of

all three BCZT compositions were characterized

from - 150 to 200 �C, allowing for the observation of

the entire phase transition region separating the

rhombohedral, orthorhombic, tetragonal, and cubic

phases (Fig. 1). Although all compositions show three

distinct phase transitions, it is important to note that

the phase transition temperatures in BCZT40 are

relatively close to each other compared to BCZT50

and BCZT60, indicating an enhanced phase coexis-

tence in this composition. These results are consistent

with previous reports [14, 61–63]. In order to main-

tain electrical and mechanical contact of the sample

during testing, a constant uniaxial bias stress of - 5

MPa was applied during the experiment. The direct

piezoelectric sufficient for all compositions was also

determined at room temperature with a loading fre-

quency of 110 Hz using a Berlincourt meter (Piezo-

Meter, Piezotest Ltd) showing values of 258 ± 4 pC/

N, 410 ± 2 pC/N, and 308 ± 5 pC/N for BCZT40,

BCZT50, and BCZT60, respectively, which is good

agreement with the measured value under uniaxial

stress of - 5 MPa. This indicates that the applied bias

stress of - 5 MPa did not significantly influence the

electromechanical response of BCZT compositions, a

result that is consistent with previous reports [37, 40].

As such, - 5 MPa was considered equivalent to the

stress-free state during this investigation.

During heating, all compositions show piezoelec-

tric and dielectric anomalies in the vicinities of the

known structural phase transition temperatures, i.e.,

R-O, O-T, and T-C, at TRO, TOT, and TC, respectively.

In addition, the temperature difference between

phase boundaries DT increased with Ca/Zr ratio,

indicating an increasing thermal stability of the O

and T phases. For example, the temperature range of

the orthorhombic phase increased from approxi-

mately 15 �C in BCZT40 to 29 �C and 37 �C in

BCZT50 and BCZT60, respectively. Similarly, the

tetragonal phase stability increases from 17 to 50 �C

and 100 �C for BCZT40, 50, and 60, respectively. This

is understood to be due to the polymorphic nature of

the bridging phase boundary between the rhombo-

hedral BaZr0.2Ti0.8O3 and the tetragonal Ba0.7Ca0.3-
TiO3 end members [10] as well as the increasing

Curie temperature with enhanced tetragonality [11].

The piezoelectric coefficient displayed a sharp

increase at all phase boundaries due to the well-

known electrical and mechanical softening effects

that occur during structural phase transitions, which

corresponded well with the known dielectric

response [11] (Fig. 1). It is important to note that

despite the structural phase transformations at the R-

O and O-T phase boundaries, the investigated BCZT

compositions did not display a significant decrease in

piezoelectric response through a loss in the poled

domain structure. Interestingly, the maximum

piezoelectric coefficient was found in all composi-

tions at the interferroelectric phase transition tem-

perature TOT, where BCZT50 displayed the highest

maximum d33 of 545 pC/N at 32 �C and BCZT40 and

60 had a maximum d33 of 515 pC/N at 54 �C and 385

pC/N at - 5 �C, respectively, whereas, in contrast,

the maximum relative permittivity was observed in

all compositions at the Curie point. Although the

origins of this observation are unclear, it is likely due

to the multiphase nature in this temperature region

and the corresponding enhanced domain and phase

wall mobility. Close to the phase boundary, the

domain wall motion is thermally enhanced and that

can result in lowering of the threshold stress required

for switching, and an increase in the unit cell volume

at higher temperature, consequently enhancing the

extrinsic and intrinsic contributions [37, 64] to the

macroscopic piezoelectric coefficient. The role of the

bridging orthorhombic phase and the resulting O-T

phase boundary was reported to enhance the elastic

response and piezoelectric coupling of BCZT through

an easing of the change of polarization direction [65].

Previous investigations have observed similar

increases in the piezoelectric properties [5, 32],

although the influence of interferroelectric phase

transitions on the small-signal electromechanical

properties, particularly in relation to the stability of

the electrically induced domain state, is not well-

understood.

The d33 values are expected to increase close to the

phase boundaries as the d33 is coupled with the

temperature dependence of relative permittivity e
0
33
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and macroscopic polarization P3 [66], as shown in

Eq. 1:

d33 ¼ 2Q11P3e
0

33e0 ð1Þ

where Q11 is the electrostrictive coefficient and e0 is

the permittivity of vacuum. Assuming Q11 is inde-

pendent of temperature [67, 68], a peak in the

piezoelectric coefficient results from the significant

increase in e
0
33 and corresponding decrease in the

macroscopic polarization at the ferroelectric-para-

electric phase boundary. The d33 peak, however, is

limited at the Curie point due to the thermally

induced loss of macroscopic polarization that causes

a sharp decrease in electromechanical coupling.

Interestingly, however, a sharp increase in the rela-

tive permittivity is not observed at the O-T phase

boundary, despite the d33 peak, indicating that other

extrinsic contributions, such as stress-induced phase

transitions, can be playing an important role.

Importantly, the polarization is not lost at interfer-

roelectric phase boundaries, rather the thermally

induced change in crystal symmetry alters the crys-

tallographic direction and magnitude of the sponta-

neous polarization, influencing the local domain

structure through changes in the domain wall type

and density. In addition, as shown in Fig. 1, the

depolarization temperature Td can be represented by

the inflection point in the sharp drop in d33 [37]. This

temperature corresponds well with the observed

Curie point, which can be found as a peak in relative

permittivity, indicating that TC and Td are the same

temperature for the BCZT compositions investigated

here. This observation is different than other studies,

such as co-doped PZT and NBT, as the Td was

observed at lower temperatures than TC [37, 69].

Stress- and temperature-dependent
dielectric and piezoelectric behavior

The temperature-dependent d33 and er were mea-

sured as a function of applied uniaxial compressive

stress within the range from - 5 to - 75 MPa. As

shown in Fig. 2, both the piezoelectric and the

dielectric values decrease with increasing compres-

sive stress, which is due to the reduction in domain

wall density and mechanical depolarization of the

sample as well as the increased clamping of domain

wall motion with increasing applied uniaxial stress

parallel to the poling direction [49]. Interestingly,

however, the dielectric response was found to

increase in all compositions in the rhombohedral

phase in the vicinity of the R-O phase transition

temperature. Although the origin of the behavior

remains unclear, it is suggested to be due to the

apparent dielectric peak broadening found at the

dielectric anomalies at interferroelectric phase tran-

sitions as well as the maximum er peaks at the Curie
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point with increasing compressive stress. A similar

stress-dependent increase in the piezoelectric

response was not observed, which would be expected

in the case of a field-induced phase transition. This

dielectric broadening is understood to be due to the

random orientation of the grains and domains that

display variations in the stress-dependent shift in the

phase transition temperature [36, 40, 47]. At lower

temperatures ranging from - 150 to - 125 �C, per-
mittivity does not exhibit any significant variation

with increasing applied stress for all compositions,

indicating that the extrinsic contributions, such as

domain wall motion, are significantly reduced at low

temperature, resulting in a reduction in the both the

macroscopic dielectric and piezoelectric properties as

well as the stress sensitivity [70].

The interferroelectric and ferroelectric-paraelectric

phase transition temperatures are found to shift with

stress for all three compositions, corresponding well

to previous observations in single crystal and poly-

crystalline BaTiO3 [40, 41, 71–73]. Among the three

investigated compositions, BCZT40 was found to be

the most stress-sensitive, displaying a decrease in the

maximum relative permittivity from - 5 to - 75

MPa of approximately 61%, in comparison with

BCZT50 and 60 that showing decreases of 52% and

56%, respectively. This can be partially related to the

effect of Zr content on the structure and the associ-

ated variation in ionic radius between Zr4? and Ti4?,

where Zr4? (0.72 Å) is larger than Ti4? (0.605 Å) [74].

The higher Zr content in the system, i.e., BCZT40,

causes less phase stability due to internal chemical

pressure in the unit cell, and therefore phase

boundaries are more sensitive to the applied stress

[38, 75–81]. Thus, the change in the small-signal

response under stress for the different BCZT com-

positions, i.e., 40, 50, and 60, shows a good correlation

with the reported Young’s moduli for these compo-

sitions [49]. By comparison, BCZT60 reported the

highest elastic modulus and coercive stress compared

to BCZT40 and 50.

Similarly to the relative permittivity, all composi-

tions display a significant decrease in the tempera-

ture-dependent piezoelectric response with

increasing uniaxial compressive stress, consistent

with previous investigations on PZT and NBT-BT

[32, 37]. At - 5 MPa, an anomaly in the piezoelectric

coefficient can be seen at phase transitions, corre-

sponding to those found in the dielectric behavior.

With increasing stress, however, these anomalies are

reduced in intensity, where at above approxi-

mately - 30 MPa they can no longer be observed for

any composition despite their continued appearance

in the temperature-dependent dielectric
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measurements. In contrast to the observed dielectric

behavior, an increase in d33 in the vicinity of the R-O

phase transition was not observed. It is interesting to

note that even at the highest applied stress, there

remains a piezoelectric response, meaning that the

macroscopic polarization is retained up to - 75 MPa.

In BCZT40 case, the decrease in the maximum d33
from - 5 to - 75 MPa was approximately 92%,

whereas, in BCZT50 and BCZT60, the decreases were

91% and 94%, respectively. Such a decrease in the d33
values under stress make the material inadequate for

high load applications. In addition, these data also

show a clear temperature dependence in the stress

sensitivity of the piezoelectric behavior. At tempera-

tures above approximately - 50 �C, there is a sig-

nificant decrease in d33 with increasing stress,

whereas at - 150 �C, all materials display a piezo-

electric response nearly independent of the applied

stress. In analogy with the dielectric properties, this is

also due to the reduced extrinsic contributions to the

electromechanical properties at lower temperatures

from decreased thermal energy.

In order to investigate the observed stress-depen-

dent increase in the relative permittivity (Fig. 2),

stress-dependent relative permittivity (1 kHz) was

measured up to - 260 MPa at four constant temper-

atures (- 10, 10, 25, and 50 �C) from the unpoled

state, as shown in Fig. 3. The temperatures were

selected to represent different phase regions of each

composition. Importantly, for all compositions and

temperatures, the relative permittivity values initially

increased before decreasing with increasing stress.

Subsequently, during unloading, the remanent rela-

tive permittivity was found to increase above the

original unloaded value for all materials and tem-

peratures. It is well-known that the dielectric prop-

erties of ferroelectric materials are not isotropic,

clearly shown in the classic investigation by Merz,

where he found a significantly larger dielectric

response of a-axis oriented BaTiO3 domains com-

pared to c-axis oriented domains [82]. In the present
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study, mechanical loading can lead to an increase in

the number of a-axis oriented domains parallel to the

axis of applied uniaxial stress. At lower stress levels,

where mechanical domain clamping remains limited,

this reorientation can increase the apparent relative

permittivity by breaking the initial isotropic sym-

metry of the polycrystalline materials. However, the

subsequent decrease with increasing stress is due to a

stress-induced decrease in the extrinsic contributions

to the dielectric response, e.g., domain wall clamping.

A similar effect has been observed in PZT [37], BT

[40], and BCZT [5].

At - 10 �C, BCZT40 and 50 both display a broader

stress-dependent relative permittivity, which is due

to the low extrinsic contribution on the domains

switching at lower temperatures; both of these com-

positions are in the rhombohedral phase at this

temperature, where a reduced stress sensitivity was

observed (Fig. 2). With increasing temperature into

the orthorhombic and tetragonal phases, however,

sharper dielectric peaks are observed with increasing

stress, followed by a subsequent decrease. This is

consistent with an increase due to enhance a-axis

orientation of domains parallel to the applied stress

direction. Despite this, however, stress-induced

structural phase transitions are also possible and

have been observed in other perovskite ferroelectrics

[56, 57, 83]. For example, a change in the slope of the

stress-dependent permittivity is observed at approx-

imately - 6 MPa in BCZT50 during mechanical

loading at 40 �C, which can potentially be related to

an O-T phase transition [5] or due to the field-in-

duced single domain state [54, 84, 85]. Here, addi-

tional in situ structural investigations, such as stress-

dependent synchrotron X-ray diffraction or trans-

mission electron microscopy, are required to deter-

mine the mechanism responsible and the stress effect

on the polymorphic phase boundaries and domain

switching.

Temperature-stress phase diagram

As shown in Fig. 2, uniaxial compressive stress

results in a significant change in the relative permit-

tivity, marked by a shift in the dielectric anomalies at

the three structural phase boundaries present, i.e., the

dielectric anomalies around the phase transition

temperatures are broadened and shifted to higher

temperatures. In order to quantify this stress-depen-

dent shift, the phase transition temperatures were

extracted from the derivative of the permittivity data

as a function of temperature (Fig. 4), allowing for the

construction of a temperature-stress phase diagram.

Such a phase diagram provides important informa-

tion in evaluating the stability region of functional

properties under combined stress and thermal field.

Under - 5 MPa uniaxial stress, all compositions

show three peaks representing the different transi-

tions, i.e., R-O, O-T, and T-C, at approximately 40 �C,
45 �C, and 71 �C for BCZT40; 5 �C, 34 �C, and 86 �C
for BCZT50; and - 36 �C, 0 �C, and 100 �C for

BCZT60, respectively, corresponding well to previ-

ous studies [12, 14, 62, 63]. However, with increasing

compressive stress, all peaks display broadening, a

significant decrease in the maximum permittivity
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value, and a shift to higher temperatures, where the

magnitude of the change is related to the exact phase

transition boundary and the applied stress. For

example, BCZT60 displays three clear peaks at the

respective phase transitions for all investigated

compressive stress values. In contrast, the R-O phase

transition in both BCZT50 and BCZT40 is no longer

visible within the resolution of these measurements

after - 40 MPa and - 30 MPa, respectively, which

could be related to reported higher coercive stress of

the tetragonal phase compared to the other phases

[49].

The temperature-stress phase diagram of BCZT40,

BCZT50, and BCZT60 as a function of constant uni-

axial compressive stress in the range of - 5 MPa

to - 75 MPa are presented in Fig. 5. The observed

variation in transition temperature for each compo-

sition for the pre-stress condition corresponds well

with previously reported phase diagrams [12, 14].

Importantly, the R-O, O-T, and T-C phase transition

temperatures were found to increase in all composi-

tions approximately linearly with increasing stress.

For BCZT40, 50, and 60, the R-O phase boundaries

displayed the most significant composition-depen-

dent change in the linear slope, with values of 0.34,

0.23, and 0.13 K/MPa, respectively. The O-T phase

boundaries were found to have linear slope values of

0.14, 0.10, and 0.16 K/MPa, respectively, and the

stress-dependent Curie point revealed linear change

of 0.16, 0.15, and 0.09 K/MPa, respectively. Both the

O-T and T-C phase boundaries change rates are

approximately constant within the resolution of the

measurements. In comparison, the change in Curie

point under uniaxial compressive stress was reported

for polycrystalline and single crystal BT of

0.02–0.05 K/MPa and 0.19 K/MPa, respectively [40].

The relatively higher values of polycrystalline BCZT

compared to polycrystalline BT can be related to the

substitution in the A and B sites with different size

cations, i.e., Ca and Zr [86, 87]. The composition-de-

pendent variations in slopes indicate the different

degrees of mechanical phase stability under com-

pressive stress and are possibly related to the changes

in unit cell volume, which is due to the change in the

Zr to Ca content. Therefore, the slope values increase

with increasing Zr content on the B-site, as the larger

size of Zr ions leads to more internal pressure in the

unit cell and reduced phase stability [14, 79, 80].

Furthermore, introducing smaller Ca cations in the

A-site is found to significantly decrease the extent of

the stress-induced Curie temperature shift. A similar

effect was reported for Li doped KNN under com-

pressive stress, where the increase in smaller Li

cations on the A-site leads to a reduction in the stress-

induced T-C phase transition from 0.119 to 0.092 K/

MPa for LKNN0 and LKNN2, respectively [88].

As shown in Figs. 2 and 4, after - 30 MPa and -

40 MPa in BCZT40 and 50, respectively, the deter-

mination of the onset point of the R-O phase transi-

tion was indistinguishable as the peaks broadened

and flattened with stress. A similar effect has been

observed for R-O phase transition with stress in

BaTiO3 [57]. In addition, the slope of the R-O phase

boundary in BCZT40 and 50 shows a significantly

higher linear slope, indicating that with further
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increasing stress, the R-O phase boundary intersects

the O-T phase boundary, effectively eliminating the

O-phase and resulting in a new R-T phase boundary.

Assuming a continuing linear change with stress,

BCZT40 and BCZT50 would show an intersection

and subsequent elimination of the O-phase at - 81

MPa and - 238 MPa, respectively. Analogously,

there has been considerable research into the forma-

tion of an R-T phase boundary in lead-free ferro-

electric, such as (K,Na)NbO3-based compositions,

through the chemical substitution to eliminate the

O-phase [89, 90]. These works have revealed an

enhancement in the electromechanical properties as

well as improved temperature stability. These data

suggest that stress tuning might have similar effects

due to the relative mechanical stability of different

phase boundaries [17, 88]. Comparable changes in the

phase boundaries for BaTiO3 have been reported

under pressure by Hayward and Salje [91], which has

shown a possible R–C phase transition for BaTiO3

beyond a critical point at 6.5 GPa. Additional struc-

tural studies, such as in situ stress-dependent XRD

and TEM, would be required to illustrate the phase

transitions under load.

Stress- and temperature-dependent Raman
spectroscopy

To investigate the variation in the local structure

under combined stress and temperature loading,

in situ stress- and temperature-dependent Raman

spectroscopy was performed with a custom-built

sample stage [18]. Despite being a surface-sensitive

technique, Raman spectroscopy provides critical

information on the local structural changes in

functional ceramics [92, 93]. As such, the room tem-

perature local structure of all three compositions

were investigated to gain insight on the influence of

varying Ca/Ba and Zr/Ti contents. Figure 6 shows

the room temperature Raman spectra of the three

samples. There are several relatively broad vibrations

representing stretching of the\Ti–O[ bond in TiO6-

octahedra as well as bending modes of the Ti–O–Ti

bonds and vibrations of the A-site cations against the

TiO6-octahedra at low frequencies (\ 100 cm-1, m3),
in agreement with previous assignments of the first-

order Raman bands in perovskite-type structures

[94–96].

The main vibrations observed in Fig. 6 are trans-

verse (TO) and longitudinal (LO) modes at * 150,

193, 253, 293, 470, 522, 720, and 800 cm-1 associated

with E(TO1), A1(TO1), A1(TO2), B1/E(TO2), A1(TO3),

E(TO) ? A(LO), A1(LO2)/E(LO), and A1g modes,

respectively, according to previous reports [97, 98].

Depending on the perovskite structure, there are

characteristic bands previously used as fingerprints,

such as the A1(TO1,2) vibrational modes in the fre-

quency range * 190–250 cm-1 that should indicate

the stabilization of the rhombohedral phase in per-

ovskites [99, 100]. In contrast, the presence of a rela-

tively sharper mode at * 293 cm-1 and a shoulder

contribution at * 470 cm-1 ((E(TO) ? A(LO)) have

been associated with tetragonal and orthorhombic

phases, respectively [101]. The disappearance of the

B1 mode at * 293 cm-1 and the suppression of the

band at * 720 cm-1 are usually associated with the

transition from ferroelectric to paraelectric [101–103].

The observed variations in the band shapes, posi-

tions, and relative intensities of the Raman modes at

room temperature (Fig. 6) are directly related to
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varying degree of Ca and Zr contents in the samples

and in turn, with the different phases, in agreement

with previous reports [104].

Due to the limitation of the experimental arrange-

ment, in situ stress and temperature-dependent

Raman spectroscopy measurements are limited to

between room temperature and 400 �C [18]. As

BCZT40 and BCZT50 both show multiple phase

transitions above room temperature within proximity

of each other (Fig. 1), separating the stress-dependent

effects of these phase boundaries with the experi-

mental arrangement used here is challenging. As

such, we focus on the BCZT60 composition to show

the influence of stress on the local structure, as it

presents a single-phase transition (T-C) above room

temperature. The variations in temperature-depen-

dent Raman spectra under different uniaxial stress

of - 5 MPa, - 40 MPa, and - 75 MPa in BCZT60

are shown in Fig. 7. The evolution of the Raman

spectra with increasing temperature shows a contin-

uous decrease in the intensities of the main peaks and

a general broadening of all modes. Furthermore, by

increasing the temperature, the A1(TO2) band

at * 200 cm-1 linearly shifts toward lower frequen-

cies (see Fig. S1, S2, and S3). At high temperatures

([ 110 �C), it is clear that the Raman spectra show

only two main broad vibrations centered at

*228 cm-1 and *520 cm-1, typical features of the

paraelectric cubic phase [55, 79, 105].

Upon increasing the stress, the bands at lower

frequencies (\ 360 cm-1) do not change their position

significantly, and all seem unaffected by the applied

uniaxial compressive stress, except the A1(TO1-2)

modes. On the contrary, the bands at higher fre-

quencies ([ 400 cm-1) show clear changes with

increasing stress. Specifically, the strong contribution

of A1(TO3) at * 520 cm-1 and the shoulder

E(TO) ? A(LO) at 468 cm-1 display significant vari-

ation for the maximum applied stress of - 75 MPa,

however only for temperatures lower than 100 �C,
after which the A1(TO3) vibrations are identical,

suggesting, at first glance, the stabilization of a sim-

ilar\Ti–O[ bonding environment. However, at

100 �C, the A(LO)/E(LO) mode (720 cm-1) still

exhibits variation depending on the stress. These

observations highlight that different applied stresses

influence the\Ti–O[ bonding environment in TiO6

octahedra differently.

Previous works have used several different meth-

ods for analyzing temperature-dependent Raman

spectroscopy data to estimate the phase transition

temperatures [79, 106, 107]. For example, the E(TO2)

mode (at * 150 cm-1 at RT) frequency shifts can be

related to O-T and T-C phase transitions, according to

various studies [79, 106, 107]. In BaTiO3, it was

observed that the bands at * 305 and * 715 cm-1

are strongly suppressed above the Curie temperature

[108]. Another method to extract structural informa-

tion from the Raman signals involves the deconvo-

lution of the bands. This procedure should allow

following the variations of the band relative intensi-

ties, width, and frequency positions, e.g., with change
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in temperature [55]. However, the overlap of a large

number of broad bands associated with the per-

ovskite vibrations requires many assumptions on

bandwidth and intensity/frequency variations,

especially when changing temperature and phase.

Therefore, the deconvolution of the whole Raman

signal is considered unreliable. Furthermore, dielec-

tric measurements show that the interferroelectric

phase transitions, i.e., R-T and O-T, were less sensi-

tive to the applied stress and not readily distin-

guishable (see Sect. 3.2.). As a result, the Raman data

analysis methods previously carried out do not pro-

vide a fixed model to define such diffuse ferroelectric

phase transitions. Nevertheless, the transition from

the ferroelectric to the paraelectric phase is highly

sensitive to stress and could be determined from

stress- and temperature-dependent Raman spectro-

scopic data. For instance, in Fig. 7, it is evident that

the change of the intensity of the A1(LO2)/E(LO)

mode (* 720 cm-1) follows the increase in temper-

ature and could be used to detect the shifts in Curie

temperature [101–103]. As such, by tracking the rel-

ative intensity variations occurring in the high-fre-

quency bands (650–900 cm-1) with temperature

under different constant applied stresses, it might be

possible to highlight the stress-induced variation in

tetragonal to cubic phase transition temperature.

A continuous variation of most of the bands was

observed upon temperature and stress increase,

particularly a steady intensity decrease in the modes

at 150 and 293 cm-1, making them not particularly

efficient to identify the T-C transition (Fig. S2). On the

contrary, the change in relative peak intensities of the

high-frequency bands (650–900 cm-1) can be con-

sidered as an indication of a stress-induced change in

phase stability. We considered different approaches,

and the best approach was the deconvolution of the

background-subtracted modes in the high-frequency

region. In this approach, the different contributions

(mathematical functions) have been identified by

using the second derivative of the spectra, and three

Gaussian functions are needed (Fig. S3). The

barycenter of the whole high-frequency region has

been determined by taking into account the fre-

quency position of each Gaussian function (G, cm-1)

and its integrated area (A), according to Eq. 2:

Barycenter cm�1
� �

¼
P

Gn � Anð Þ
Atot

ð2Þ

More straightforward results are provided by the

evolution of the barycenter, which is reported in

Fig. 8 as a function of temperature for constant

applied stress of - 5 MPa, - 40 MPa, and - 75

MPa. The barycenter trends show similar, but not

identical behavior, with a sudden increase of the

frequency position occurring for temperatures higher

than 80 �C. Upon heating under - 5 MPa stress, the

barycenter shows a steady change up to 80 �C, fol-
lowed by a relatively steep increase up to 100 �C and

an apparent saturation plateau. Similarly, for

increasing applied stresses, a minor continuous

change of the barycenter is observed by increasing

the temperature up to 80 �C. However, for higher

temperatures, changes in the slope are visible. The

Curie temperatures determined using the tempera-

ture-dependent dielectric behavior match well with

the changes observed in the barycenter. Therefore,

there is a good agreement between Raman and the

macroscopic stress-dependent dielectric properties

(Fig. 5).

Different applied stresses cause a different

response in the Raman vibrations (see also Fig. S2

and S3). The sudden damping of the mode

at * 720 cm-1 at approximately 80 �C has been

previously assigned to the transition to the cubic

phase [109]. However, at the same time, in the Raman
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spectra, there are vibrational bands considered a

signature of the tetragonal phase, e.g., the shoulder

E(TO) ? A(LO) at 468 cm-1 and the B1 mode

at * 290 cm-1. In particular, the latter vibration

suggests asymmetry within the TiO6-octahedra,

indicating a tetragonal structure [110]. Therefore, the

coexistence of tetragonal and cubic phases is sug-

gested for all applied stresses, starting from * 80 �C.
Consequently, the first significant slope-change in the

barycenter should be related to the presence of a

polymorphic phase boundary, in agreement with

previous studies [49, 52] and the macroscopic mea-

surements. Based on these observations, the different

trends of the barycenter are proposed to represent

three different phase regions, namely tetragonal

(plateau below 80 �C), tetragonal ? cubic (T C 80 �
C), and cubic phases (T C 100 or 105 �C, depending
on the stress). As a result, the phase boundaries

identified from the macroscopic dielectric measure-

ments are consistent with the main variations

observed by in situ Raman spectroscopy. In particu-

lar, the barycenter evolution for low and high applied

stresses suggests that there is small positive increase

in the TC by increasing stress and, therefore, the

phase boundary in polycrystalline BCZT is shifted by

applying compressive stress, a result consistent with

previous reports [40, 57].

Conclusions

In summary, the effect of uniaxial compressive stress

on the relative permittivity and piezoelectric coeffi-

cient of (1 - x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3

(x = 0.4, 0.5, and 0.6) was characterized from -

150 �C to 200 �C with constant stress steps from -

5 MPa to - 75 MPa. The increasing compressive

stress was found to suppress both the relative per-

mittivity and piezoelectric coefficient due to domain

wall clamping and corresponding decreasing extrin-

sic contributions. In contrast, permittivity data

showed a significant shift of the phase transition

temperatures with increasing stress and a broadening

of the permittivity-temperature peaks around phase

boundaries as a result of phase stability changes. At

low temperature, the extrinsic contribution due to

mechanical loading is insignificant, resulting in an

approximately stress-invariant dielectric and piezo-

electric response. Stress-dependent Raman spec-

troscopy data collected as a function of temperature

confirm the shift in Curie temperature under uniaxial

load in BCZT60, corresponding well to the stress-

dependent dielectric behavior. This work provides

important information on the stability of dielectric

and piezoelectric properties of BCZT-based compo-

sitions under combined compressive stress and tem-

perature field.
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