Skip to main content

Advertisement

Log in

Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, there has been a rising trend in using nanoscale materials to develop nanocosmetics. Several types of nanomaterials are of supreme interest for applications in the cosmetic industry, owing to their unique structural, chemical, physical, physiochemical, and functional features, which are mostly lacking in non-nanoscale counterparts. Regardless of the materials type, shape, morphology, and composition, there are two main uses of nanomaterials in cosmeceutical products, i.e., (1) nanoconstructs as ultraviolet (UV) filters and (2) nanoconstructs as bioactive agents for topical and other cosmeceutical related products, e.g., moisturizers, hair care products, skincare, makeup, sunscreen, etc. In the former case, several types of nanoparticles, e.g., silver, gold, titanium, and zinc, have been used as UV filters or UV protectants that block or absorb UV light to protect the skin from harmful effects. In the second scenario applications, nanoliposomes are used as delivery vehicles. Thus, nanomaterials enriched nanocosmetics have been identified as potential next-generation cosmeceutical products for a blooming beauty that provides improved skin hydration, bioavailability, stability of the agent, and controlled UV occlusion. In spite of several noteworthy applications, safety considerations and regulatory aspects of nanomaterials in cosmetic products cannot be ignored, which are mostly lacking in the existing literature. Therefore, considering the above potentialities of nanomaterials and critiques, herein, we first reviewed the valuable aspects of nanoparticles and nanoliposomes as UV filters and delivery vehicles. The second half of the work focuses on the safety considerations and regulatory aspects of nanomaterials used in cosmetic formulations. Finally, the work is summed up with concluding notes and recommendations for future research that will be helpful for the material scientists to safely exploit the nanomaterials in commercial scale products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2016, Elsevier. License No. 5366000472122

Figure 3
Figure 4

Copyright 2022, Elsevier. License No. 5362050375168

Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57(5):875–910

    Article  CAS  Google Scholar 

  2. European Commission (2009) Nanomaterials, Regulation (EC) No 1223/2009. https://ec.europa.eu/growth/sectors/cosmetics/products/nanomaterials_en. Accessed 24 Nov 2021.

  3. Raj S, Jose S, Sumod U, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193

    Article  Google Scholar 

  4. Pastrana H, Avila A, Tsai CS (2018) Nanomaterials in cosmetic products: the challenges with regard to current legal frameworks and consumer exposure. NanoEthics 12(2):123–137

    Article  Google Scholar 

  5. Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D (2020) Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials 10(1):140–171

    Article  CAS  Google Scholar 

  6. Cosmetics Products Market (2019) Global industry trends, share, size, demand, growth opportunities, industry revenue, future and business analysis by forecast-2023. https://www.marketwatch.com/press-release/cosmetics-products-market-2019-global-industry-trends-share-size-demand-growth-opportunities-industry-revenue-future-and-business-analysis-by-forecast-2023-2019-07-11. Accessed 10 Dec 2021.

  7. Market Analysis Report (2020) Global nanomaterials market size report, 2020–2027. https://www.grandviewresearch.com/industry-analysis/nanotechnology-and-nanomaterials-market#:~:text=The%20global%20nanomaterials%20market%20size%20was%20estimated%20at%20USD%208.52,USD%2022.88%20billion%20by%202027. Accessed 28 Nov 2021.

  8. Fitton JH, Dell’Acqua G, Gardiner V-A, Karpiniec SS, Stringer DN, Davis E (2015) Topical benefits of two fucoidan-rich extracts from marine macroalgae. Cosmetics 2(2):66–81

    Article  CAS  Google Scholar 

  9. Fuentes-Tristan S, Parra-Saldivar R, Iqbal HM, Carrillo-Nieves D (2019) Bioinspired biomolecules: mycosporine-like amino acids and scytonemin from Lyngbya sp with UV-protection potentialities. J Photochem Photobiol B Biol 201:111684. https://doi.org/10.1016/j.jphotobiol.2019.111684

    Article  CAS  Google Scholar 

  10. Aguilar-Pérez K, Avilés-Castrillo J, Medina DI, Parra-Saldivar R, Iqbal H (2020) Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front Bioeng Biotechnol 8:579536. https://doi.org/10.3389/fbioe.2020.579536

    Article  Google Scholar 

  11. Aguilar-Pérez KM, Medina DI, Narayanan J, Parra-Saldívar R, Iqbal H (2021) Synthesis and nano-sized characterization of bioactive oregano essential oil molecule-loaded small unilamellar nanoliposomes with antifungal potentialities. Molecules 26(10):2880. https://doi.org/10.3390/molecules26102880

    Article  CAS  Google Scholar 

  12. Bhalla N, Pan Y, Yang Z, Payam AF (2020) Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19. ACS Nano 14(7):7783–7807

    Article  CAS  Google Scholar 

  13. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials in cosmetics: recent updates. Nanomaterials 10(5):979–994

    Article  CAS  Google Scholar 

  14. Ahmad U, Ahmad Z, Khan AA, Akhtar J, Singh SP, Ahmad FJ (2018) Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res 68(10):545–552

    Article  CAS  Google Scholar 

  15. Bilal M, Iqbal H (2020) New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 7(2):24. https://doi.org/10.3390/cosmetics7020024

    Article  CAS  Google Scholar 

  16. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  17. Farris PK (2013) Cosmeceuticals and cosmetic practice. Wiley, Chichester

    Book  Google Scholar 

  18. Chiari-Andréo BG, de Almeida-Cincotto MGJ, Oshiro Jr JA, Taniguchi CYY, Chiavacci LA, Isaac VLB (2019) Nanoparticles for cosmetic use and its application. Nanoparticles in pharmacotherapy. Elsevier, pp 113–146

  19. Rahimpour Y, Hamishehkar H (2012) Liposomes in cosmeceutics. Expert Opin Drug Deliv 9(4):443–455

    Article  CAS  Google Scholar 

  20. Van Tran V, Nguyen TL, Moon J-Y, Lee Y-C (2019) Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: challenges and development strategies. Chem Eng J 368:88–114

    Article  Google Scholar 

  21. Najahi-Missaoui W, Arnold RD, Cummings BS (2020) Safe nanoparticles: Are we there yet? Int J Mol Sci 22(1):385. https://doi.org/10.3390/ijms22010385

    Article  CAS  Google Scholar 

  22. Dash SR, Kundu CN (2020) Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 14(4):253–260

    Article  Google Scholar 

  23. Wang M, Li S, Chen Z et al (2021) Safety assessment of nanoparticles in food: current status and prospective. Nano Today 39:101169. https://doi.org/10.1016/j.nantod.2021.101169

    Article  CAS  Google Scholar 

  24. Yang J-LJ, Narayanamurthy R, Yager JY, Unsworth LD (2021) How does biological sex affect the physiological response to nanomaterials? Nano Today 41:101292. https://doi.org/10.1016/j.nantod.2021.101292

    Article  CAS  Google Scholar 

  25. Frigaard J, Jensen JL, Galtung HK, Hiorth M (2022) The potential of chitosan in nanomedicine: an overview of the cytotoxicity of chitosan based nanoparticles. Front Pharmacol. https://doi.org/10.3389/fphar.2022.880377

    Article  Google Scholar 

  26. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343

    Article  CAS  Google Scholar 

  27. Vardakas P, Skaperda Z, Tekos F, Trompeta A-F, Tsatsakis A, Charitidis CA, Kouretas D (2021) An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. Environ Res 197:111083. https://doi.org/10.1016/j.envres.2021.111083

    Article  CAS  Google Scholar 

  28. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605

    Article  CAS  Google Scholar 

  29. Mateos-Cárdenas A, van Pelt FN, O’Halloran J, Jansen MA (2021) Adsorption, uptake and toxicity of micro-and nanoplastics: Effects on terrestrial plants and aquatic macrophytes. Environ Pollut 284:117183. https://doi.org/10.1016/j.envpol.2021.117183

    Article  CAS  Google Scholar 

  30. Zielińska A, Carreiró F, Oliveira AM et al (2020) Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 25(16):3731. https://doi.org/10.3390/molecules25163731

    Article  CAS  Google Scholar 

  31. Hadizadeh N, Zeidi S, Khodabakhsh H, Zeidi S, Rezaei A, Liang Z, Dashtizad M, Hashemi E (2022) An overview on the reproductive toxicity of graphene derivatives: Highlighting the importance. Nanotechnol Rev 11(1):1076–1100

    Article  CAS  Google Scholar 

  32. Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L (2016) Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 13(1):1–24

    Article  Google Scholar 

  33. Brand W, van Kesteren PC, Peters RJ, Oomen AG (2021) Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure. Nanotoxicology 15(7):905–933

    CAS  Google Scholar 

  34. Sharma N, Singh S, Kanojia N, Grewal AS, Arora S (2018) Nanotechnology: a modern contraption in cosmetics and dermatology. Appl Clin Res Clin Trials Regul Affairs 5(3):147–158

    Article  CAS  Google Scholar 

  35. Kukreja S, Jeswani G, Alexander A (2021) 13 Nanocosmetics: Technological advances and ethics. Ethics in nanotechnology: emerging technologies aspects. De Gruyter, Berlin, pp 275–298

    Chapter  Google Scholar 

  36. Gupta V, Mohapatra S, Mishra H et al (2022) Nanotechnology in cosmetics and cosmeceuticals—a review of latest advancements. Gels 8(3):173. https://doi.org/10.3390/gels8030173

    Article  CAS  Google Scholar 

  37. Goyal A, Sharma A, Kaur J et al (2022) Bioactive-based cosmeceuticals: an update on emerging trends. Molecules 27(3):828. https://doi.org/10.3390/molecules27030828

    Article  CAS  Google Scholar 

  38. Srinivas K (2016) The current role of nanomaterials in cosmetics. J Chem Pharm Res 8(5):906–914

    CAS  Google Scholar 

  39. Gebashe FC, Naidoo D, Amoo SO, Masondo NA (2022) Cosmeceuticals: a newly expanding industry in South Africa. Cosmetics 9(4):77. https://doi.org/10.3390/cosmetics9040077

    Article  CAS  Google Scholar 

  40. Tangau MJ, Chong YK, Yeong KY (2022) Advances in cosmeceutical nanotechnology for hyperpigmentation treatment. J Nanopart Res 24(8):1–18

    Article  Google Scholar 

  41. Morganti P, Chen H-D, Morganti G (2020) Nanocosmetics: future perspective. In: Nanocosmetics. Elsevier, pp 455–481

  42. Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P (2022) Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B 214:112440. https://doi.org/10.1016/j.colsurfb.2022.112440

    Article  CAS  Google Scholar 

  43. Murata T, Honda T, Mostafa A, Kabashima K (2022) Stratum corneum as polymer sheet: concept and cornification processes. Trends Mol Med 28(5):350–359

    Article  CAS  Google Scholar 

  44. Santos de Almeida T, Pereira-Leite C (2022) Delivery systems based on innovative. Nanomaterials 12(8):1296. https://doi.org/10.3390/nano12081296

    Article  CAS  Google Scholar 

  45. Singh A (2021) Carbon nanofiber in cosmetics. In: Carbon nanofibers: fundamentals and applications. Wiley, pp 341–363

  46. Virmani R, Pathak K (2022) Consumer nanoproducts for cosmetics. In: Handbook of consumer nanoproducts. Springer, pp 931–961

  47. Kumar J, Jaswal S (2021) Role of nanotechnology in the world of cosmetology: a review. Mater Today Proc 45:3302–3306

    Article  Google Scholar 

  48. Simonnet J-T, Sonneville O, Legret S (2001) Nanoemulsion based on phosphoric acid fatty acid esters and its uses in the cosmetics, dermatological, pharmaceutical, and/or ophthalmological fields. Google Patents

  49. Ali A, Ansari VA, Ahmad U, Akhtar J, Jahan A (2017) Nanoemulsion: an advanced vehicle for efficient drug delivery. Drug Res 67(11):617–631

    Article  CAS  Google Scholar 

  50. Sharma S, Sarangdevot K (2012) Nanoemulsions for cosmetics. Int J Adv Res Pharmaceut Bio-Sci 1(4):408–416

    Google Scholar 

  51. Guglielmini G (2008) Nanostructured novel carrier for topical application. Clin Dermatol 26(4):341–346

    Article  Google Scholar 

  52. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 18(41):R635. https://doi.org/10.1088/0953-8984/18/41/R01

    Article  CAS  Google Scholar 

  53. Simonnet J-T, Sonneville O, Legret S (2002) Nanoemulsion based on ethylene oxide and propylene oxide block copolymers and its uses in the cosmetics, dermatological and/or ophthalmological fields. Google Patents

  54. Sonneville-Aubrun O, Simonnet J-T, L’alloret F (2004) Nanoemulsions: a new vehicle for skincare products. Adv Coll Interface Sci 108:145–149

    Article  Google Scholar 

  55. Souto EB, Cano A, Martins-Gomes C, Coutinho TE, Zielińska A, Silva AM (2022) Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 9(4):158. https://doi.org/10.3390/bioengineering9040158

    Article  CAS  Google Scholar 

  56. Chuo SC, Setapar SHM (2022) Application of nanoemulsion in cosmetics. In: Nanotechnology for the preparation of cosmetics using plant-based extracts. Elsevier, pp 355–371

  57. Reddy RD, Kumari CTL, Sowjanya GN, Sindhuri S, Bandhavi P (2011) Nanoemulsions an emerging trend a review. Int J Pharmaceut Res Dev 4(6):137–152

    Google Scholar 

  58. Ananthapadmanabhan K, Moore DJ, Subramanyan K, Misra M, Meyer F (2004) Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther 17:16–25

    Article  Google Scholar 

  59. Dingler A, Gohla S (2002) Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J Microencapsul 19(1):11–16

    Article  CAS  Google Scholar 

  60. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Coll Interface Sci 108:303–318

    Article  Google Scholar 

  61. Che Marzuki NH, Wahab RA, Abdul Hamid M (2019) An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 33(1):779–797

    Article  Google Scholar 

  62. Meyer J, Scheuermann R, Wenk H (2008) Combining convenience and sustainability: simple processing of PEG-free nanoemulsions and classical emulsions. SÖFW-J 134(6):58–65

    CAS  Google Scholar 

  63. Ajazzuddin M, Jeswani G, Kumar Jha A (2015) Nanocosmetics: Past, present and future trends. Recent Patents Nanomed 5(1):3–11

    Article  CAS  Google Scholar 

  64. Ozogul Y, Karsli GT, Durmuş M, Yazgan H, Oztop HM, McClements DJ, Ozogul F (2022) Recent developments in industrial applications of nanoemulsions. Adv Coll Interface Sci 304:102685. https://doi.org/10.1016/j.cis.2022.102685

    Article  CAS  Google Scholar 

  65. Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, Rocha-Filho PA (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9(1):1–9

    Article  Google Scholar 

  66. Atrux-Tallau N, Lasselin J, Han S-H, Delmas T, Bibette J (2014) Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids Surf B 122:390–395

    Article  CAS  Google Scholar 

  67. Gesztesi J-L, Santos LM, Hennies PDT, Macian KA (2015) Oil-in-water nanoemulsion, a cosmetic composition and a cosmetic product comprising it, a process for preparing said nanoemulsion. Google Patents

  68. Nohynek GJ, Lademann J, Ribaud C, Roberts MS (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37(3):251–277

    Article  CAS  Google Scholar 

  69. Puglia C, Damiani E, Offerta A et al (2014) Evaluation of nanostructured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: characterization, in vitro penetration and photostability studies. Eur J Pharm Sci 51:211–217

    Article  CAS  Google Scholar 

  70. Arianto A, Cindy C (2019) Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Open Access Maced J Med Sci 7(22):3757–3761

    Article  Google Scholar 

  71. Arianto A, Cella G, Bangun H (2019) Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on spf by combination of soybean oil, avobenzone, and octyl methoxycinnamate. Open Access Maced J Med Sci 7(17):2751–2756

    Article  Google Scholar 

  72. Barriga HM, Holme MN, Stevens MM (2019) Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed 58(10):2958–2978

    Article  CAS  Google Scholar 

  73. Karami Z, Hamidi M (2016) Cubosomes: remarkable drug delivery potential. Drug Discov Today 21(5):789–801

    Article  CAS  Google Scholar 

  74. Bhosale RR, Osmani RA, Harkare BR, Ghodake PP (2013) Cubosomes: the inimitable nanoparticulate drug carriers. Sch Acad J Pharm 2(6):481–486

    Google Scholar 

  75. Zakaria F, Ashari SE, Azmi IDM, Rahman MBA (2022) Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J Drug Deliv Sci Technol 68:103097. https://doi.org/10.1016/j.jddst.2022.103097

    Article  CAS  Google Scholar 

  76. Efrat R, Aserin A, Danino D, Wachtel EJ, Garti N (2005) Novel discrete micellar cubic phase from a mixture of GMO/ethanol/water. Aust J Chem 58(11):762–766

    Article  CAS  Google Scholar 

  77. Prashar D, Sharma D (2011) Cubosomes: a sustained drug delivery carrier. Asian J Res Pharmaceut Sci 1(3):59–62

    Google Scholar 

  78. Kwon TK, Kim JC (2010) In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl β-cyclodextrin/minoxidil complex. Int J Pharm 392(1–2):268–273

    Article  CAS  Google Scholar 

  79. Seo SR, Kang G, Ha JW, Kim J-C (2013) In vivo hair growth-promoting efficacies of herbal extracts and their cubosomal suspensions. J Ind Eng Chem 19(4):1331–1339

    Article  CAS  Google Scholar 

  80. Morsi NM, Abdelbary GA, Ahmed MA (2014) Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm 86(2):178–189

    Article  CAS  Google Scholar 

  81. Khan S, Jain P, Jain S, Jain R, Bhargava S, Jain A (2018) Topical delivery of erythromycin through cubosomes for acne. Pharmaceut Nanotechnol 6(1):38–47

    Article  CAS  Google Scholar 

  82. Abourehab MA, Ansari MJ, Singh A et al (2022) Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 10(15):2781–2819

    Article  CAS  Google Scholar 

  83. Lakshmi NM, Yalavarthi P, Vadlamudi H, Thanniru J, Yaga G (2014) Cubosomes as targeted drug delivery systems-a biopharmaceutical approach. Curr Drug Discov Technol 11(3):181–188

    Article  CAS  Google Scholar 

  84. Sharma P, Dhawan S, Nanda S (2020) Cubosome: a potential liquid crystalline carrier system. Curr Pharm Des 26(27):3300–3316

    Article  CAS  Google Scholar 

  85. Santos A, Marto J, Chá-Chá R, Martins A, Pereira-Silva M, Ribeiro H, Veiga F (2022) Nanotechnology-based sunscreens—a review. Mater Today Chem 23:100709. https://doi.org/10.1016/j.mtchem.2021.100709

    Article  CAS  Google Scholar 

  86. Abolfazl A, Rogaie R-S, Soodabeh D et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):1–9

    Google Scholar 

  87. Mezei M, Gulasekharam V (1980) Liposomes-a selective drug delivery system for the topical route of administration. Lotion dosage form. life sci 26(18):1473–1477

    Article  CAS  Google Scholar 

  88. Liu P, Chen G, Zhang J (2022) A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27(4):1372. https://doi.org/10.3390/molecules27041372

    Article  CAS  Google Scholar 

  89. Sala M, Diab R, Elaissari A, Fessi H (2018) Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm 535(1–2):1–17

    Article  CAS  Google Scholar 

  90. Patel HM, Moghimi M (2017) Liposomes and the skin permeability barrier. In: Liposomes in drug delivery. Routledge, pp 137–148

  91. Kaur IP, Agrawal R (2007) Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 1(2):171–182

    Article  CAS  Google Scholar 

  92. Golmohammadzadeh S, Jaafarixx M, Khalili N (2008) Evaluation of liposomal and conventional formulations of octyl methoxycinnamate on human percutaneous absorption using the stripping method. J Cosmet Sci 59(5):385–398

    CAS  Google Scholar 

  93. Madrid JFP, Cabrera CG (2011) Encapsulation of a sunscreen (avobenzone) in liposomes. Rev Cuba Farm 45(3):331–340

    Google Scholar 

  94. de Bustamante MSdS, Monteiro RAO, Vergnanini AL, de Brito-Gitirana L, Volpato NM, de Freitas ZMF, Ricci-Júnior E, dos Santos EP (2012) Evaluation of octyl p-methoxycinnamate included in liposomes and cyclodextrins in anti-solar preparations: preparations, characterizations and in vitro penetration studies. Int J Nanomed 7:3045–3058

    Google Scholar 

  95. Mota AdCV, de Freitas ZMF, Júnior ER et al (2013) In vivo and in vitro evaluation of octyl methoxycinnamate liposomes. Int J Nanomed 8:4689–4701

    Google Scholar 

  96. Kim J-E, Oh G-H, Jang G-H, Kim Y-M, Park Y-J (2019) Transformer-ethosomes with palmitoyl pentapeptide for improved transdermal delivery. J Drug Deliv Sci Technol 52:460–467

    Article  CAS  Google Scholar 

  97. Abd El-Alim SH, Kassem AA, Basha M, Salama A (2019) Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: in vitro and in vivo evaluation. Int J Pharm 563:293–303

    Article  CAS  Google Scholar 

  98. Reva T, Vaseem A, Satyaprakash S (2015) Liposomes: the novel approach in cosmaceuticals. World J Pharm Pharmaceut Sci 4(6):1616–1640

    Google Scholar 

  99. Pal TK, Mondal O (2014) Prospect of nanotechnology in cosmetics: Benefit and risk assess-ment. World J Pharmaceut Res 3(2):1909–1919

    Google Scholar 

  100. Ahmadi Ashtiani HR, Bishe P, Lashgari N-A, Nilforoushzadeh MA, Zare S (2016) Liposomes in cosmetics. J Skin Stem Cell 3(3):e65815. https://doi.org/10.5812/jssc.65815

    Article  Google Scholar 

  101. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharmaceut Technol Res 1(4):374–380

    Article  Google Scholar 

  102. Nasir A, Harikumar S, Amanpreet K (2012) Niosomes: an excellent tool for drug delivery. Int J Res Pharm Chem 2(2):479–487

    Google Scholar 

  103. Gandhi A, Sen SO, Paul A (2012) Current trends in niosome as vesicular drug delivery system. Asian J Pharm Life Sci 2(2):339–353

    Google Scholar 

  104. Biswal S, Murthy P, Sahu J, Sahoo P, Amir F (2008) Vesicles of non-ionic surfactants (niosomes) and drug delivery potential. Int J Pharmaceut Sci Nanotechnol 1(1):1–8

    CAS  Google Scholar 

  105. Sundari PT, Anushree H (2017) Novel delivery systems: current trend in cosmetic industry. Eur J Pharmaceut Med Res 4(8):617–627

    Google Scholar 

  106. Arunachalam A, Jeganath S, Yamini K, Tharangini K (2012) Niosomes: a novel drug delivery system. Int J Novel Trends Pharmaceut Sci 2(1):25–31

    Google Scholar 

  107. Kumar GP, Rajeshwarrao P (2011) Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharmaceut Sinica B 1(4):208–219

    Article  Google Scholar 

  108. Muzzalupo R, Tavano L (2015) Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transd Drug Deliv 4:23–33

    CAS  Google Scholar 

  109. Tripathi P, Choudary S, Srivastva A, Singh D, Chandra V (2012) Niosomes: an study on Noval drug delivery system: a review. Int J Pharmaceut Res Dev 3:100–106

    Google Scholar 

  110. Purohit SJ, Tharmavaram M, Rawtani D, Prajapati P, Pandya H, Dey A (2022) Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules. J Drug Deliv Sci Technol 73:103438. https://doi.org/10.1016/j.jddst.2022.103438

    Article  CAS  Google Scholar 

  111. Handjani RM, Ribier A, Vanlerberghe G, Zabotto A, Griat J (1989) Cosmetic and pharmaceutical compositions containing niosomes and a water-soluble polyamide, and a process for preparing these compositions. Google Patents

  112. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43

    Article  CAS  Google Scholar 

  113. Stiriba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41(8):1329–1334

    Article  CAS  Google Scholar 

  114. Abbasi E, Aval SF, Akbarzadeh A et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9(1):1–10

    Article  CAS  Google Scholar 

  115. Malik A, Sk C, Garg G, Tomar A (2012) Dendrimers: a tool for drug delivery. Adv Biol Res 6(4):165–169

    CAS  Google Scholar 

  116. Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48(1):199–208

    Article  CAS  Google Scholar 

  117. Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018:19. https://doi.org/10.1155/2018/3420204

    Article  CAS  Google Scholar 

  118. Chauhan A, Patil C, Jain P, Kulhari H (2020) Dendrimer-based marketed formulations and miscellaneous applications in cosmetics, veterinary, and agriculture. In: Pharmaceutical applications of dendrimers. Elsevier, pp 325–334

  119. Yapar EA, İnal Ö (2012) Nanomaterials and cosmetics. J Fac Pharm Istanbul Univ 1(42):43–70

    Google Scholar 

  120. Ammala A (2013) Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci 35(2):113–124

    Article  CAS  Google Scholar 

  121. Chauhan AS, Sridevi S, Chalasani KB, Jain AK, Jain SK, Jain N, Diwan PV (2003) Dendrimer-mediated transdermal delivery: enhanced bioavailability of indomethacin. J Control Release 90(3):335–343

    Article  CAS  Google Scholar 

  122. Filipowicz A, Wołowiec S (2012) Bioconjugates of PAMAM dendrimers with trans-retinal, pyridoxal, and pyridoxal phosphate. Int J Nanomed 7:4819–4828

    CAS  Google Scholar 

  123. Filipowicz A, Wołowiec S (2011) Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int J Pharm 408(1–2):152–156

    Article  CAS  Google Scholar 

  124. Maignan J, Genard S (2002) Use of hyperbranched polymers and dendrimers comprising a particular group as film-forming agent, film-forming compositions comprising same and use particularly in cosmetics and pharmaceutics. Google Patents

  125. Allard D, Forestier S (2002) Self-tanning cosmetic compositions. Google Patents

  126. Kumar ASP, Latha S, Selvamani P (2015) Dendrimers: multifunctional drug delivery carriers. Int J Technol Res Eng 2(8):1569–1575

    Google Scholar 

  127. Puri D, Bhandari A, Sharma P, Choudhary D (2010) Lipid nanoparticles (SLN, NLC): a novel approach for cosmetic and dermal pharmaceutical. J Glob Pharma Technol 2(9):1–15

    CAS  Google Scholar 

  128. Bangale M, Mitkare S, Gattani S, Sakarkar D (2012) Recent nanotechnological aspects in cosmetics and dermatological applications. Int J Pharm Pharm Sci 4(2):88–97

    CAS  Google Scholar 

  129. zur Mühlen A, Schwarz C, Mehnert W (1998) Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 45(2):149–155

  130. Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366(1–2):170–184

    Article  CAS  Google Scholar 

  131. Wissing SA, Müller RH (2003) The influence of solid lipid nanoparticles on skin hydration and viscoelasticity–in vivo study. Eur J Pharm Biopharm 56(1):67–72

    Article  CAS  Google Scholar 

  132. Abbasi BH, Fazal H, Ahmad N, Ali M, Giglioli-Guivarch N, Hano C (2020) Nanomaterials for cosmeceuticals: nanomaterials-induced advancement in cosmetics, challenges, and opportunities. In: Nanocosmetics. Elsevier, pp 79–108

  133. Wissing S, Müller R (2001) Solid lipid nanoparticles (SLN)–a novel carrier for UV blockers. Pharmazie 56(10):783–786

    CAS  Google Scholar 

  134. Song C, Liu S (2005) A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int J Biol Macromol 36(1–2):116–119

    Article  CAS  Google Scholar 

  135. Patidar A, Thakur DS, Kumar P, Verma J (2010) A review on novel lipid based nanocarriers. Int J Pharm Pharm Sci 2(4):30–35

    CAS  Google Scholar 

  136. Muller R, Radtke M, Wissing S (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(1):S131-155

    Article  CAS  Google Scholar 

  137. Hassan Hany M, El Gazayerly O (2011) Rice bran solid lipid nanoparticles: preparation and characterization. Int J Drug Dev Res 1(2):6–9

    Google Scholar 

  138. López-García R, Ganem-Rondero A (2015) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): occlusive effect and penetration enhancement ability. J Cosmet Dermatol Sci Appl 5(02):62–72

    Google Scholar 

  139. Souto E, Müller R (2008) Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®). Int J Cosmet Sci 30(3):157–165

    Article  CAS  Google Scholar 

  140. Patel DK, Tripathy S, Nair SK, Kesharwani R (2013) Nanostructured lipid carrier (Nlc) a modern approach for topical delivery: a review. World J Pharm Pharmaceut Sci 2:921–938

    CAS  Google Scholar 

  141. Saupe A, Wissing SA, Lenk A, Schmidt C, Müller RH (2005) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)–structural investigations on two different carrier systems. Bio-Med Mater Eng 15(5):393–402

    CAS  Google Scholar 

  142. Müller R, Petersen R, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59(6):522–530

    Article  Google Scholar 

  143. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharmaceut Bull 5(3):305–313

    Article  CAS  Google Scholar 

  144. Chutoprapat R, Kopongpanich P, Chan LW (2022) A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: topical delivery of phytochemicals for the treatment of acne vulgaris. Molecules 27(11):3460. https://doi.org/10.3390/molecules27113460

    Article  CAS  Google Scholar 

  145. Köpke D, Pyo SM (2020) Symurban nanocrystals for advanced anti-pollution skincare. Cosmetics 7(1):17. https://doi.org/10.3390/cosmetics7010017

    Article  CAS  Google Scholar 

  146. Petersen R (2015) Nanocrystals for use in topical cosmetic formulations and method of production thereof. Google Patents

  147. Bansal S, Bansal M, Kumria R (2012) Nanocrystals: current strategies and trends. Int J Res Pharmaceut Biomed Sci 3(1):406–419

    Google Scholar 

  148. Shegokar R (2016) What nanocrystals can offer to cosmetic and dermal formulations. In: Nanobiomaterials in galenic formulations and cosmetics. Elsevier, pp 69–91

  149. Ghosh I, Michniak-Kohn B (2013) Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin—a case study. AAPS PharmSciTech 14(3):1108–1117

    Article  CAS  Google Scholar 

  150. Vidlářová L, Romero GB, Hanuš J, Štěpánek F, Müller RH (2016) Nanocrystals for dermal penetration enhancement–effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm 104:216–225

    Article  Google Scholar 

  151. Kobierski S, Ofori-Kwakye K, Müller R, Keck C (2009) Resveratrol nanosuspensions for dermal application–production, characterization, and physical stability. Die Pharmazie-Int J Pharmaceut Sci 64(11):741–747

    CAS  Google Scholar 

  152. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH (2011) Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm 420(1):141–146

    Article  CAS  Google Scholar 

  153. Shegokar R, Mitri K (2012) Carotenoid lutein: a promising candidate for pharmaceutical and nutraceutical applications. J Diet Suppl 9(3):183–210

    Article  CAS  Google Scholar 

  154. Pyo SM, Meinke M, Keck CM, Müller RH (2016) Rutin—increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics 3(1):9. https://doi.org/10.3390/cosmetics3010009

    Article  CAS  Google Scholar 

  155. Al Shaal L, Shegokar R, Müller RH (2011) Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 420(1):133–140

    Article  CAS  Google Scholar 

  156. Poletto FS, Beck RC, Guterres SS, Pohlmann AR (2011) Polymeric nanocapsules: concepts and applications. In: Nanocosmetics and nanomedicines. Springer, pp 49–68

  157. Fontana M, Coradini K, Guterres S, Pohlmann A, Beck R (2009) Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: influence of the nanostructured system. J Biomed Nanotechnol 5(3):254–263

    Article  CAS  Google Scholar 

  158. Khoee S, Yaghoobian M (2009) An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem 44(6):2392–2399

    Article  CAS  Google Scholar 

  159. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Article  CAS  Google Scholar 

  160. Singh TG, Sharma N (2016) Nanobiomaterials in cosmetics: current status and future prospects. In: Nanobiomaterials in galenic formulations and cosmetics. Elsevier, pp 149–174.

  161. Külkamp IC, Paese K, Guterres SS, Pohlmann AR (2009) Stabilization of lipoic acid by encapsulation in polymeric nanocapsules designed for cutaneous administration. Quim Nova 32(8):2078–2084

    Article  Google Scholar 

  162. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Article  Google Scholar 

  163. Moraes CM, de Matos AP, de Paula E, Rosa AH, Fraceto LF (2009) Benzocaine loaded biodegradable poly-(d, l-lactide-co-glycolide) nanocapsules: factorial design and characterization. Mater Sci Eng B 165(3):243–246

    Article  CAS  Google Scholar 

  164. Vettor M, Bourgeois S, Fessi H, Pelletier J, Perugini P, Pavanetto F, Bolzinger M (2010) Skin absorption studies of octyl-methoxycinnamate loaded poly (D, L-lactide) nanoparticles: estimation of the UV filter distribution and release behaviour in skin layers. J Microencapsul 27(3):253–262

    Article  CAS  Google Scholar 

  165. Hwang S, Kim J-C (2008) In vivo hair growth promotion effects of cosmetic preparations containing hinokitiol-loaded poly (ε-caprolacton) nanocapsules. J Microencapsul 25(5):351–356

    Article  CAS  Google Scholar 

  166. Clemmensen A, Thormann J, Andersen KE (2007) Allergic contact dermatitis from retinyl palmitate in polycaprolactone. Contact Dermat 56(5):288–288

    Article  Google Scholar 

  167. Ourique A, Pohlmann A, Guterres S, Beck R (2008) Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm 352(1–2):1–4

    Article  CAS  Google Scholar 

  168. Marcato P, Caverzan J, Rossi-Bergmann B et al (2011) Nanostructured polymer and lipid carriers for sunscreen. Biological effects and skin permeation. J Nanosci Nanotechnol 11(3):1880–1886

    Article  CAS  Google Scholar 

  169. Külkamp IC, Rabelo BD, Berlitz SJ, Isoppo M, Bianchin MD, Schaffazick SR, Pohlmann AR, Guterres SS (2011) Nanoencapsulation improves the in vitro antioxidant activity of lipoic acid. J Biomed Nanotechnol 7(4):598–607

    Article  Google Scholar 

  170. Barbosa TC, Nascimento LÉD, Bani C et al (2019) Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly (ε-caprolactone) nanocapsules. Toxics 7(4):51. https://doi.org/10.3390/toxics7040051

    Article  CAS  Google Scholar 

  171. Zhou Y, Qian Y, Wang J, Qiu X, Zeng H (2020) Bioinspired lignin-polydopamine nanocapsules with strong bioadhesion for long-acting and high-performance natural sunscreens. Biomacromol 21(8):3231–3241

    Article  CAS  Google Scholar 

  172. An Q, Ni X, Liu D, Zhang Y, Cao Y (2021) Preparation and evaluation of polymer-encapsulated UV filter nanocapsules with miniemulsion polymerization. J Dispers Sci Technol 42(11):1593–1600

    Article  CAS  Google Scholar 

  173. Zhou H, Luo D, Chen D, Tan X, Bai X, Liu Z, Yang X, Liu W (2021) Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications. Clin Cosmet Invest Dermatol 14:867–887

    Article  CAS  Google Scholar 

  174. Hosseinkhani B, Callewaert C, Vanbeveren N, Boon N (2015) Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnol 32(1):40–46

    Article  CAS  Google Scholar 

  175. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  176. Hsiao PF, Tsai H-C, Peng S et al (2019) Transdermal delivery of poly (ethylene glycol)-co-oleylamine modified gold nanoparticles: Effect of size and shape. Mater Chem Phys 224:22–28

    Article  CAS  Google Scholar 

  177. Nafisi S, Schäfer-Korting M, Maibach HI (2015) Perspectives on percutaneous penetration: Silica nanoparticles. Nanotoxicology 9(5):643–657

    Article  CAS  Google Scholar 

  178. Barel AO, Paye M, Maibach HI (2014) Handbook of cosmetic science and technology. CRC Press, New York

    Book  Google Scholar 

  179. Shaath NA (2005) Sunscreens regulations and commercial development, 3rd edn. CRC Press, New York

    Book  Google Scholar 

  180. Smijs TG, Pavel S (2011) Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl 4:95–112

    Article  CAS  Google Scholar 

  181. Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. J Am Acad Dermatol 61(4):685–692

    Article  CAS  Google Scholar 

  182. Tyner K, Wokovich A, Godar D, Doub W, Sadrieh N (2011) The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmet Sci 33(3):234–244

    Article  CAS  Google Scholar 

  183. Herrling T, Seifert M, Jung K (2013) Cerium dioxide: future UV-filter in sunscreen. SOFW J 139(5):10–14

    CAS  Google Scholar 

  184. Miri A, Akbarpour Birjandi S, Sarani M (2020) Survey of cytotoxic and UV protection effects of biosynthesized cerium oxide nanoparticles. J Biochem Mol Toxicol 34(6):e22475. https://doi.org/10.1002/jbt.22475

    Article  CAS  Google Scholar 

  185. de Sá RG, Arantes TM, de Macedo EF et al (2021) Photoprotective activity of zirconia nanoparticles. Colloids Surf B 202:111636. https://doi.org/10.1016/j.colsurfb.2021.111636

    Article  CAS  Google Scholar 

  186. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312

    Article  CAS  Google Scholar 

  187. L'Oreal (2020) Inside our products the ingredients. https://inside-our-products.loreal.com/ingredients. Accessed 12 Dec 2021

  188. Mavandadnejad F, Rafii F, Faghfuri E, Mokhtari-Nori N, Rezaie S, Shahverdi AR (2019) Antifungal activity of selenium nanoparticles and selenium disulfide against two malassezia species. Am Res J Dermatol 1(1):22–28

    Google Scholar 

  189. Rigano L, Lionetti N (2016) Nanobiomaterials in galenic formulations and cosmetics. In: Nanobiomaterials in galenic formulations and cosmetics. Elsevier, pp 121–148

  190. Vickery SA, Kolas R, Dicko F (2015) Eye cosmetics. In: Cosmetic dermatology: products and procedures. Wiley, pp 199–206

  191. Sahu D, Kannan G, Vijayaraghavan R (2014) Carbon black particle exhibits size dependent toxicity in human monocytes. Int J Inflamm 2014:10. https://doi.org/10.1155/2014/827019

    Article  CAS  Google Scholar 

  192. Lens M (2009) Use of fullerenes in cosmetics. Recent Pat Biotechnol 3(2):118–123

    Article  CAS  Google Scholar 

  193. Ema M, Matsuda A, Kobayashi N, Naya M, Nakanishi J (2013) Dermal and ocular irritation and skin sensitization studies of fullerene C60 nanoparticles. Cutan Ocul Toxicol 32(2):128–134

    Article  CAS  Google Scholar 

  194. Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother 59(7):351–358

    Article  CAS  Google Scholar 

  195. Ito S, Itoga K, Yamato M, Akamatsu H, Okano T (2010) The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 267(1–3):27–38

    Article  CAS  Google Scholar 

  196. Inui S, Aoshima H, Nishiyama A, Itami S (2011) Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomed Nanotechnol Biol Med 7(2):238–241

    Article  CAS  Google Scholar 

  197. Tiwari S, Talreja S (2020) A concept of nanotechnology in cosmetics: a complete overview. Adalya J 9(11):14–23

    Google Scholar 

  198. Chauhan A, Chauhan C (2021) Emerging trends of nanotechnology in beauty solutions: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.04.378

    Article  Google Scholar 

  199. Borase H, Patil C, Salunkhe R, Suryawanshi R, Salunke B, Patil S (2014) Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. Int J Cosmet Sci 36(6):571–578

    Article  CAS  Google Scholar 

  200. Villalobos-Hernandez J, Müller-Goymann C (2006) Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int J Pharm 322(1–2):161–170

    Article  CAS  Google Scholar 

  201. Gubitosa J, Rizzi V, Lopedota A et al (2018) One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum juice: a novel antioxidant agent for future dermatological and cosmetic applications. J Colloid Interface Sci 521:50–61

    Article  CAS  Google Scholar 

  202. Haddada MB, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J, Morel A-L (2020) Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf B 189:110855. https://doi.org/10.1016/j.colsurfb.2020.110855

    Article  CAS  Google Scholar 

  203. Rizzi V, Gubitosa J, Fini P, Nuzzo S, Agostiano A, Cosma P (2021) Snail slime-based gold nanoparticles: an interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. J Photochem Photobiol B 224:112309. https://doi.org/10.1016/j.jphotobiol.2021.112309

    Article  CAS  Google Scholar 

  204. Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6(1):48–53

    CAS  Google Scholar 

  205. Wong K (2012) Silver nanoparticles in medicine: is the panacea here. Nanomed Nanotechnol Biol Med 8(6):935–940

    Google Scholar 

  206. Firdhouse MJ, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015:18. https://doi.org/10.1155/2015/829526

    Article  CAS  Google Scholar 

  207. Khan S, Saleh TA, Wahab A et al (2018) Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int J Nanomed 13:733–762

    Article  CAS  Google Scholar 

  208. Pulit-Prociak J, Chwastowski J, Siudek M, Banach M (2018) Incorporation of metallic nanoparticles into cosmetic preparations and assessment of their physicochemical and utility properties. J Surfact Deterg 21(4):575–591

    Article  CAS  Google Scholar 

  209. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. Int Schol Res Not 2014:14. https://doi.org/10.1155/2014/843687

    Article  CAS  Google Scholar 

  210. Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574

    Article  CAS  Google Scholar 

  211. Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N (2014) Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against T richophyton rubrum. J Appl Microbiol 117(6):1601–1613

    Article  CAS  Google Scholar 

  212. Ho Y-Y, Sun D-S, Chang H-H (2020) Silver nanoparticles protect skin from ultraviolet B-induced damage in mice. Int J Mol Sci 21(19):7082. https://doi.org/10.3390/ijms21197082

    Article  CAS  Google Scholar 

  213. Zhu M-T, Feng W-Y, Wang Y, Wang B, Wang M, Ouyang H, Zhao Y-L, Chai Z-F (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351

    Article  CAS  Google Scholar 

  214. Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-w, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89(1):42–50

    Article  CAS  Google Scholar 

  215. Shakweh M, Besnard M, Nicolas V, Fattal E (2005) Poly (lactide-co-glycolide) particles of different physicochemical properties and their uptake by Peyer’s patches in mice. Eur J Pharm Biopharm 61(1–2):1–13

    Article  CAS  Google Scholar 

  216. Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J Nanobiotechnol 2(1):1–15

    Article  Google Scholar 

  217. Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Article  CAS  Google Scholar 

  218. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7(1):1–17

    Article  Google Scholar 

  219. Schulte PA, Guerin RJ, Cunningham TR, Hodson L, Murashov V, Rabin BA (2022) Applying translational science approaches to protect workers exposed to nanomaterials. Front Public Health. https://doi.org/10.3389/fpubh.2022.816578

    Article  Google Scholar 

  220. Senthilkumar N, Sharma PK, Sood N, Bhalla N (2021) Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord Chem Rev 445:214082. https://doi.org/10.1016/j.ccr.2021.214082

    Article  CAS  Google Scholar 

  221. Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1–2):33–37

    Article  CAS  Google Scholar 

  222. The Royal Society. Industry should disclose nano safety testing methods. http://www.royalsociety.org/News.aspx?id=1369. Accessed 30 Nov 2021

  223. European Commission (2009) Scientific Committees on consumer safety (SCCS). https://ec.europa.eu/health/scientific_committees/consumer_safety_en. Accessed 24 Nov 2021

  224. Cornier J, Keck CM, Van de Voorde M (2019) Nanocosmetics: from ideas to products. Springer, Switzerland

    Book  Google Scholar 

  225. Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  Google Scholar 

  226. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101(1):4–21

    Article  CAS  Google Scholar 

  227. Shelley-Egan C, Bowman DM (2015) The challenge of distributing regulatory responsibilities for unknown risks:’Nano’-cosmetics and the EU cosmetics regulation as a case study. J Clin Res Bioeth 6(2):212. https://doi.org/10.4172/2155-9627.1000212

    Article  Google Scholar 

  228. Qiu J (2012) Nano-safety studies urged in China: exposure surveys and stronger regulations are required for the industry to thrive, researchers say. Nature 489(7416):350. https://doi.org/10.1038/489350a

    Article  CAS  Google Scholar 

  229. Scientific Committee on Consumer Safety SCCS (2019) Guidance on the safety assessment of nanomaterials in cosmetics. https://health.ec.europa.eu/system/files/2020-10/sccs_o_233_0.pdf. Accessed 20 Dec 2021

  230. Scientific Committe on Consumer Safety SCCS (2021) The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation - 11th revision adopted by the Scientific Committee on Consumer Safety. https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_250.pdf. Accessed 20 Dec 2021

  231. Bowman DM, May ND, Maynard AD (2018) Nanomaterials in cosmetics: regulatory aspects. In: Analysis of cosmetic products. Elsevier, pp 289–302.

  232. European Commission (2019) Catalogue of Nanomaterials in Cosmetic Products Placed on the Market. https://ec.europa.eu/growth/news/commission-publishes-updated-catalogue-nanomaterials-used-cosmetics-2019-11-15_en. Accessed 23 Nov 2021

  233. European Union Observatory for Nanomaterials (EUON) https://euon.echa.europa.eu/. Accessed 7 Dec 2021

  234. Rauscher H, Rasmussen K, Sokull-Klüttgen B (2017) Regulatory aspects of nanomaterials in the EU. Chem Ing Tec 89(3):224–231

    Article  CAS  Google Scholar 

  235. Kumud M, Sanju N (2018) Nanotechnology driven cosmetic products: commercial and regulatory milestones. Appl Clin Res Clin Trials Regul Aff 5(2):112–121

    Article  Google Scholar 

  236. FDA, US (2007) Nanotechnology: a report of the US Food and Drug Administration Nanotechnology task force. https://www.fda.gov/science-research/nanotechnology-programs-fda/nanotechnology-task-force-report-2007. Accessed 23 Dec 2021

  237. FDA (2014) Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products. Accessed 28 Nov 2021

  238. OECD (2009) Preliminary Review of OECD Test Guidelines for their Applicability to Manufactured Nanomaterials. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2009)21. Accessed 23 Dec 2021

  239. OECD (2010) Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials No. 27, List of Manufactured Nanomaterials and List of Endpoints for Phase One of the Sponsorship Programme for the Testing of Manufactured Nanomaterials: Revision https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2010)46&doclanguage=en. Accessed 23 Dec 2021

  240. Oberdörster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):1–35

    Article  Google Scholar 

  241. Chaudhry Q, Bouwmeester H, Hertel RF (2010) The current risk assessment paradigm in relation to the regulation of nanotechnologies. In: International handbook on regulating nanotechnologies. Edward Elgar Publishing

  242. OECD Guidelines for Testing of Chemicals: Section 4. https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788. Accessed 23 Dec 2021

  243. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mutation Res/Rev Mutation Res 681(2–3):241–258

    Article  CAS  Google Scholar 

  244. FDA (2010) Guidance for Industry: Photosafety Testing, U.S. Food and Drug Administration. https://www.fda.gov/media/71542/download. Accessed 23 Dec 2021

  245. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104(7):2050–2055

    Article  CAS  Google Scholar 

  246. Šimon P, Joner E (2008) Conceivable interactions of biopersistent nanoparticles with food matrix and living systems following from their physicochemical properties. J Food Nutr Res 47(2):51–59

    Google Scholar 

  247. Standard Administration of China SAC (2004) GB/T 19619–2004 Terminology for nanomaterials. https://books.google.com.pk/books?id=5qtFDwAAQBAJ&pg=PA28&lpg=PA28&dq=GB/T+19619-2004+Terminology+for+nanomaterials+pdf&source=bl&ots=QBQJHogML3&sig=ACfU3U2VTJ3uUW6QZxXD-YJJvVvOxRWpjA&hl=en&sa=X&ved=2ahUKEwjD2Mr5-rn5AhUhQ_EDHeqqCRsQ6AF6BAgTEAM#v=onepage&q=GB%2FT%2019619-2004%20Terminology%20for%20nanomaterials%20pdf&f=false. Accessed 23 Dec 2021

  248. CFDA (2016) Guidance on regulations compliance of cosmetic products in China 2016. https://www.cirs-reach.com/Uploads/file/20160329/20160329150938_52766.pdf. Accessed 23 Dec 2021

  249. Chemical Inspection and Regulation Service CIRS (2013) The Inventory of Existing Chemical Substance in China – IECSC (2013 and updates). https://www.cirs-reach.com/news-and-articles/the-inventory-of-existing-chemical-substance-in-china-iecsc-2013-and-updates.html. Accessed 23 Dec 2021

  250. Safety and Technical Standard for Cosmetics (2015) http://www.sesec.eu/app/uploads/2016/02/Cosmetics-Safety-and-Technical-Standards-2015-Version-Foreword-and-summary.pdf. Accessed 23 Dec 2021

  251. CFDA Revised the Regulations Concerning the Hygiene Supervision of Cosmetics and Consulted Public Comments on the Draft Version (2014) https://www.cirs-reach.com/news/CFDA_Revised_the_REGULATIONS_CONCERNING_THE_HYGIENE_SUPERVISION_OF_COSMETICS_and_Consulted_Public_Comments_on_the_Draft_Version.html. Accessed 23 Dec 2021

  252. Jarvis DS, Richmond N (2011) Regulation and governance of nanotechnology in China: regulatory challenges and effectiveness. Eur J Law Technol 2(3):1–11

    Google Scholar 

  253. Wacker MG, Proykova A, Santos GML (2016) Dealing with nanosafety around the globe—regulation vs innovation. Int J Pharmaceut 509(1–2):95–106

    Article  CAS  Google Scholar 

  254. NICNAS (2020) Australian Government, Department of Health—Australian Industrial Chemicals Introduction Scheme (AICIS)—Overview of AICIS. https://www.industrialchemicals.gov.au/cosmetics-and-soap/cosmetics-and-therapeutics. Accessed 20 Dec 2021

  255. AICIS (2019) Australian Government, Department of Health—Australian Industrial Chemicals Introduction Scheme (AICIS)—Overview of AICIS. https://www.industrialchemicals.gov.au/about-us/industrial-chemicals-law-australia. Accessed 20 Dec 2021

  256. AICIS Australian Government, Department of Health—Australian Industrial Chemicals Introduction Scheme (AICIS)—Overview of AICIS. https://www.industrialchemicals.gov.au/business/overview-aicis. Accessed 20 Dec 2021

  257. Rao SV, Sravya BN, Padmalatha K (2018) A review on cubosome: the novel drug delivery system. GSC Biol Pharmaceut Sci 5(1):76–81

    Article  CAS  Google Scholar 

  258. Dermosome™ https://www.ulprospector.com/en/eu/PersonalCare/Detail/1241/44044/Dermosome. Accessed 23 Dec 2021

  259. Decorte https://www.decortecosmetics.com/skincare/liposome. Accessed 23 Dec 2021

  260. Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomed 8:495–504

    Article  Google Scholar 

  261. Mangale M, Pathak S, Mene H, More B (2015) Nanoemulsion: as pharmaceutical overview. Int J Pharmaceut Sci Rev Res 33(1):244–252

    CAS  Google Scholar 

  262. Padmadevi C, Ariffin FD, Ahmad M, Asaad A, Nagib A (2016) Nanoemulsion for cosmetic application. Eur J Biomed Pharmaceut Sci 3(7):8–11

    Google Scholar 

  263. Patel RP, Joshi JR (2012) An overview on nanoemulsion: a novel approach. Int J Pharm Sci Res 3(12):4640–4650

    CAS  Google Scholar 

  264. Sathali A, Ekambaram P, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102

    Google Scholar 

  265. Ramteke K, Joshi S, Dhole S (2012) Solid lipid nanoparticle: a review. IOSR J Pharm 2(6):34–44

    Google Scholar 

  266. Chanel Fragrance https://www.chanel.com/en. Accessed 23 Dec 2021

  267. Solanki P, Kitawat S, Dashora A (2017) Nanocapsules used in drug delivery system. Int J Pharmaceut Erudit 6(4):1–10

    CAS  Google Scholar 

  268. Chantecaille http://www.totalbeauty.com/reviews/product/6184661/chantecaille-nano-gold-energizing-cream. Accessed 28 Nov 2021

  269. Ameizi https://www.aliexpress.com/item/AMEIZII-NanoGold-Original-Liquid-Skin-Care-Face-Day-creams-Facial-Whitening-Moisturizing-Anti-Aging. Accessed 28 Nov 2021.

  270. Madhav N, Saini A (2011) Niosomes: a novel drug delivery system. Int J Res Pharm Chem 1(3):498–511

    CAS  Google Scholar 

  271. Gandhi M, Sanket P, Mahendra S (2014) Niosomes: novel drug delivery system. Int J Pure Appl Biosci 2(2):267–274

    Google Scholar 

  272. Thakur V, Arora S, Prashar B, Vishal P (2012) Niosomes and liposomes-vesicular approach towards transdermal drug delivery. Int J Pharmaceut Chem Sci 1(3):981–993

    Google Scholar 

  273. Ramos-Cabrer P, Campos F (2013) Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomed 8:951. https://doi.org/10.2147/IJN.S30721

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The listed authors are obliged to the representative universities for providing the literature services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Imran or Muhammad Bilal.

Ethics declarations

Conflict of interest

None.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaid, A., Imran, M., Latif, S. et al. Multifunctional attributes of nanostructured materials, toxicology, safety considerations, and regulations. J Mater Sci 57, 17021–17051 (2022). https://doi.org/10.1007/s10853-022-07679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07679-7

Navigation