Skip to main content
Log in

Recent progress on polyimide aerogels against shrinkage: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyimide aerogels are promising for diverse applications owing to their nanoporous structure and superior performance in thermal insulation, dielectric protection, etc. However, the severe shrinkage they usually suffer has long been a threat, and can pose great challenges to their shape-stable preparation and reliable applications. It is very important to clarify the effects of various factors on the shrinkage of PI aerogels and the effective strategies available for shrinkage reduction. These are also the focuses of the present review, to provide guidance for preparing PI aerogels with greatly reduced shrinkage, and thereby improved shape stability and use reliability. Since the shrinkage of PI aerogels is quite a complex issue, further studies on PI aerogels against shrinkage deserve continuous attention.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

1,3-PDA:

1,3-Propanediamine

6FDA & 6FAPB:

2,2′-Bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride

BAP4:

1,4-Bis (4-aminophenoxy) butane

BAP6:

1,6-Bis (4-aminophenoxy) hexane

BAP10:

1,10-Bis (4-aminophenoxy) decane

BAPF:

9,9′-Bis (4-aminophenyl) fluorene

BAPN:

1,3-Bis (4-aminophenoxy)-2,2-dimethylpropane

BAPP & BAPOPP:

2,2-Bis [4-(4-aMinophenoxy) phenyl] propane

BPDA:

3,3′,4,4′-Biphenyltetracarboxylic dianhydride

BTDA:

Benzophenone-3,3′,4′4′-tetracarboxylic dianhydride

DABA:

4,4'-Diaminobenzanilide

DADD:

Dodecyl diamine

DA-POSS:

N-[(Heptaisobutyl POSS) propyl]-3,5-diaminobenzamide

DMBZ:

2,2′-Dimethylbenzidine

ODA:

4,4′-Diaminodiphenyl ether

ODPA:

4,4′-Oxydiphthalic anhydride

PABZ:

2-(4-Aminophenyl)-5-aminobenzimidazole

PMDA:

Pyromellitic dianhydride

PPDA:

p-Phenylenediamine

PPG:

Poly-(propylene glycol) bis (2-aminopropyl ether)

TFMB & TFDB:

2,2’-Bis (trifluoromethyl)-4,4’-diaminobiphenyl

AgNPs:

Ag nanoparticles

AgNShs:

Ag nanosheets

AHMS:

Amine-functionalized hollow mesoporous silica (HMS) nanospheres

BTC:

1,3,5-Benzenetricarbonyl trichloride

BTMSPA:

Bis (trimethoxysilylpropyl) amine

MWCNTs:

Multi-walled carbon nanotubes (CNTs)

CNTs-NH2 :

NH2 modified CNTs

mCNTs:

Dopamine-functionalized CNTs

ME:

Melamine

m-GO:

ODA-modified graphene oxides (GO)

N3300A:

An aliphatic polyisocyanate (HDI trimer)

NH2-HBPSi:

Amine-functionalized hyperbranched polysiloxane macromer

NH2-SiO2 :

Aminated SiO2 nanoparticles

OAPS:

Octa (aminophenyl) silsesquioxane

PAPSQ:

Poly (aminophenyl) silsesquioxanes

PMA:

Poly (ethylene-alt-maleic anhydride)

PMA-D:

Poly (isobutylene-alt-maleic anhydride)

PMA-O:

Poly (maleic anhydride-alt-1-octadecene)

PMN:

Endic anhydride maleic anhydride copolymer

PSMA:

Styrene-maleic anhydride copolymer

PVPMS:

Polyvinylpolymethylsiloxane

TAB:

1,3,5-Triaminophenoxybenzene

TAPO:

Tri (3-aminophenyl) phosphine oxide

TASBF:

2,2′,7,7′-Tetraamino-9,9′-spirobifluorene

References

  1. Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626. https://doi.org/10.1021/am200007n

    Article  CAS  Google Scholar 

  2. Bheekhun N, Abu Talib AR, Hassan MR (2013) Aerogels in aerospace: an overview. Adv Mater Sci Eng 2013:406065. https://doi.org/10.1155/2013/406065

    Article  Google Scholar 

  3. Zhang D, Lin Y, Wang W, Li Y, Wu G (2021) Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption. Appl Surf Sci 543:148833. https://doi.org/10.1016/j.apsusc.2020.148833

    Article  CAS  Google Scholar 

  4. Meador MAB, Malow EJ, Silva R, Wright S, Quade D, Vivod SL, Guo H, Guo J, Cakmak M (2012) Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces 4:536–544. https://doi.org/10.1021/am2014635

    Article  CAS  Google Scholar 

  5. Guo H, Meador MAB, McCorkle LS, Scheiman DA, McCrone JD, Wilkewitz B (2016) Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties. RSC Adv 6:26055–26065. https://doi.org/10.1039/C6RA01013J

    Article  CAS  Google Scholar 

  6. Viggiano RP, Williams JC, Schiraldi DA, Meador MAB (2017) Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater Interfaces 9:8287–8296. https://doi.org/10.1021/acsami.6b15440

    Article  CAS  Google Scholar 

  7. Zhan C, Jana SC (2020) Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption. Microporous Mesoporous Mater 307:110501. https://doi.org/10.1016/j.micromeso.2020.110501

    Article  CAS  Google Scholar 

  8. Qiao S, Kang S, Zhang H, Yu J, Wang Y, Hu Z (2021) Reduced shrinkage and mechanically strong dual-network polyimide aerogel films for effective filtration of particle matter. Sep Purif Technol 276:119393. https://doi.org/10.1016/j.seppur.2021.119393

    Article  CAS  Google Scholar 

  9. Kim M, Eo K, Lim HJ, Kwon YK (2018) Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres. Compos Sci Technol 165:355–361. https://doi.org/10.1016/j.compscitech.2018.07.021

    Article  CAS  Google Scholar 

  10. Shi B, Ma B, Wang C, He H, Qu L, Xu B, Chen Y (2021) Fabrication and applications of polyimide nano-aerogels. Compos Part A-Appl Sci Manuf 143:106283. https://doi.org/10.1016/j.compositesa.2021.106283

    Article  CAS  Google Scholar 

  11. Leventis N, Sotiriou-Leventis C, Mohite DP, Larimore ZJ, Mang JT, Churu G, Lu H (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater 23:2250–2261. https://doi.org/10.1021/cm200323e

    Article  CAS  Google Scholar 

  12. Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, Mang JT, Leventis N (2010) One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem 20:9666–9678. https://doi.org/10.1039/C0JM01844A

    Article  CAS  Google Scholar 

  13. Qiao S, Kang S, Zhu J, Wang Y, Yu J, Hu Z (2021) Facile strategy to prepare polyimide nanofiber assembled aerogel for effective airborne particles filtration. J Hazard Mater 415:125739. https://doi.org/10.1016/j.jhazmat.2021.125739

    Article  CAS  Google Scholar 

  14. Jiang S, Uch B, Agarwal S, Greiner A (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9:32308–32315. https://doi.org/10.1021/acsami.7b11045

    Article  CAS  Google Scholar 

  15. Shen Y, Li D, Deng B, Liu Q, Liu H, Wu T (2019) Robust polyimide nano/microfibre aerogels welded by solvent-vapour for environmental applications. R Soc Open Sci 6:190596. https://doi.org/10.1098/rsos.190596

    Article  CAS  Google Scholar 

  16. Shen Y, Wang L, Liu F, Liu H, Li D, Liu Q, Deng B (2020) Solvent vapor strengthened polyimide nanofiber-based aerogels with high resilience and controllable porous structure. ACS Appl Mater Interfaces 12:53104–53114. https://doi.org/10.1021/acsami.0c15751

    Article  CAS  Google Scholar 

  17. Kim G, Kim J, Jeong J, Lee D, Kim M, Lee S, Kim S, Lee H, Han H (2019) High temperature applicable separator by using polyimide aerogel/polyethylene double-layer composite membrane for high-safety lithium ion battery. Int J Electrochem Sci 14:7133–7148. https://doi.org/10.20964/2019.08.18

    Article  CAS  Google Scholar 

  18. Wu Z, Han B, Zhang C, Zhu D, Yang Z (2019) Preparation and characterization of highly hydrophobic fluorinated polyimide aerogels cross-linked with 2,2′,7,7′-Tetraamino- 9,9′-spirobifluorene. Polymer 179:121605. https://doi.org/10.1016/j.polymer.2019.121605

    Article  CAS  Google Scholar 

  19. Wu S, Du A, Xiang Y, Liu M, Li T, Shen J, Zhang Z, Li C, Zhou B (2016) Silica-aerogel-powders “jammed” polyimide aerogels with excellent hydrophobicity and conversion to ultra-light polyimide aerogel. RSC Adv 6:58268–58278. https://doi.org/10.1039/C6RA11801A

    Article  CAS  Google Scholar 

  20. Wang Y, He T, Cheng Z, Liu M, Ji J, Chang X, Xu Q, Liu Y, Liu X, Qin J (2020) Mechanically strong and tough polyimide aerogels cross-linked with amine functionalized carbon nanotubes synthesized by fluorine displacement reaction. Compos Sci Technol 195:108204. https://doi.org/10.1016/j.compscitech.2020.108204

    Article  CAS  Google Scholar 

  21. Liang Y, Lu Y, Yao W, Zhang X (2015) Polyimide aerogels crosslinked with chemically modified graphene oxide. Acta Phys Chim Sin 31:1179–1185. https://doi.org/10.3866/PKU.WHXB201504146

    Article  CAS  Google Scholar 

  22. Zhu Z, Yao H, Dong J, Qian Z, Dong W, Long D (2019) High-mechanical-strength polyimide aerogels crosslinked with 4, 4′-oxydianiline-functionalized carbon nanotubes. Carbon 144:24–31. https://doi.org/10.1016/j.carbon.2018.11.057

    Article  CAS  Google Scholar 

  23. Wu Y, Zhang W, Yang R (2018) Ultralight and low thermal conductivity polyimide-polyhedral oligomeric silsesquioxanes aerogels. Macromol Mater Eng 303:1700403. https://doi.org/10.1002/mame.201700403

    Article  CAS  Google Scholar 

  24. Wu Y, Ye M, Zhang W, Yang R (2017) Polyimide aerogels crosslinked through cyclic ladder-like and cage polyamine functionalized polysilsesquioxanes. J Appl Polym Sci 134:45296. https://doi.org/10.1002/app.45296

    Article  CAS  Google Scholar 

  25. Zhang Z, Pan Y, Gong L, Yao X, Cheng X, Deng Y (2021) Mechanically strong polyimide aerogels cross-linked with low-cost polymers. RSC Adv 11:10827–10835. https://doi.org/10.1039/D0RA10633J

    Article  CAS  Google Scholar 

  26. Jeong T-Y, Lee YD, Ban Y, Lee J, Lee H, Kwon YK (2021) Polyimide composite separator containing surface-modified hollow mesoporous silica nanospheres for lithium-ion battery application. Polymer 212:123288. https://doi.org/10.1016/j.polymer.2020.123288

    Article  CAS  Google Scholar 

  27. Zhang T, Zhao Y, Muhetaer M, Wang K (2020) Silver nanoparticles cross-linked polyimide aerogels with improved high temperature microstructure stabilities and high mechanical performances. Microporous Mesoporos Mater 297:110035. https://doi.org/10.1016/j.micromeso.2020.110035

    Article  CAS  Google Scholar 

  28. Wu T, Dong J, Xu G, Gan F, Zhao X, Zhang Q (2019) Attapulgite-reinforced polyimide hybrid aerogels with high dimensional stability and excellent thermal insulation property. Polymer 176:196–205. https://doi.org/10.1016/j.polymer.2019.05.007

    Article  CAS  Google Scholar 

  29. Wu T, Dong J, De France K, Zhang P, Zhao X, Zhang Q (2020) Porous carbon frameworks with high CO2 capture capacity derived from hierarchical polyimide/zeolitic imidazolate frameworks composite aerogels. Chem Eng J 395:124927. https://doi.org/10.1016/j.cej.2020.124927

    Article  CAS  Google Scholar 

  30. Wu T, Dong J, De France K, Li M, Zhao X, Zhang Q (2020) Fabrication of polyimide aerogels cross-linked by a cost-effective amine-functionalized hyperbranched polysiloxane (NH2-HBPSi). ACS Appl Polym Mater 2:3876–3885. https://doi.org/10.1021/acsapm.0c00563

    Article  CAS  Google Scholar 

  31. Wu T, Dong J, Gan F, Fang Y, Zhao X, Zhang Q (2018) Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl Surf Sci 440:595–605. https://doi.org/10.1016/j.apsusc.2018.01.132

    Article  CAS  Google Scholar 

  32. Jiang Y, Zhang T, Wang K, Yang J (2017) Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide. J Porous Mater 24:1353–1362. https://doi.org/10.1007/s10934-017-0377-2

    Article  CAS  Google Scholar 

  33. Nguyen BN, Meador MAB, Scheiman D, McCorkle L (2017) Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Inter 9:27313–27321. https://doi.org/10.1021/acsami.7b07821

    Article  CAS  Google Scholar 

  34. Rinehart SJ, Nguyen BN, Viggiano RP, Meador MAB, Dadmun MD (2020) Quantitative evaluation of the hierarchical porosity in polyimide aerogels and corresponding solvated gels. ACS Appl Mater Interfaces 12:30457–30465. https://doi.org/10.1021/acsami.0c07971

    Article  CAS  Google Scholar 

  35. Meador MAB, McMillon E, Sandberg A, Barrios E, Wilmoth NG, Mueller CH, Miranda FA (2014) Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl Mater Interfaces 6:6062–6068. https://doi.org/10.1021/am405106h

    Article  CAS  Google Scholar 

  36. Meador MAB, Agnello M, McCorkle L, Vivod SL, Wilmoth N (2016) Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces 8:29073–29079. https://doi.org/10.1021/acsami.6b10248

    Article  CAS  Google Scholar 

  37. Guo H, Meador MAB, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M (2012) Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces 4:5422–5429. https://doi.org/10.1021/am301347a

    Article  CAS  Google Scholar 

  38. Ghaffari Mosanenzadeh S, Alshrah M, Saadatnia Z, Park CB, H.E, (2020) Naguib, Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications. Macromol Mater Eng 305:1900777. https://doi.org/10.1002/mame.201900777

    Article  CAS  Google Scholar 

  39. Mosanenzadeh SG, Saadatnia Z, Shi F, Park CB, Naguib HE (2019) Structure to properties relations of BPDA and PMDA backbone hybrid diamine polyimide aerogels. Polymer 176:213–226. https://doi.org/10.1016/j.polymer.2019.05.050

    Article  CAS  Google Scholar 

  40. Mosanenzadeh SG, Karamikamkar S, Saadatnia Z, Park CB, Naguib HE (2020) PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications. Sep Purif Technol 250:117279. https://doi.org/10.1016/j.seppur.2020.117279

    Article  CAS  Google Scholar 

  41. Zhang Z, Wang X, Liu T, Liu L, Xi S, Zhang X, Zu G, Shen J (2021) Properties improvement of linear polyimide aerogels via formation of doubly cross-linked polyimide-polyvinylpolymethylsiloxane network structure. J Non-Cryst Solids 559:120679. https://doi.org/10.1016/j.jnoncrysol.2021.120679

    Article  CAS  Google Scholar 

  42. Lin Y, Chen C, Hu S, Zhang D, Wu G (2020) Facile fabrication of mechanically strong and thermal resistant polyimide aerogels with an excess of cross-Linker. J Mater Res Technol 9:10719–10731. https://doi.org/10.1016/j.jmrt.2020.07.075

    Article  CAS  Google Scholar 

  43. Zhang T, Zhao Y, Li X, Ma X, Li S, Sun M, Liu H, Wang K (2021) Ultralight and heat-insulating mesoporous polyimide aerogels cross-linked with aminated SiO2 nanoparticles. Microporous Mesoporous Mater 319:111074. https://doi.org/10.1016/j.micromeso.2021.111074

    Article  CAS  Google Scholar 

  44. Zhu Z, Yao H, Wang F, Dong J, Wu K, Cao J, Long D (2019) Fiber reinforced polyimide aerogel composites with high mechanical strength for high temperature insulation. Macromol Mater Eng 304:1800676. https://doi.org/10.1002/mame.201800676

    Article  CAS  Google Scholar 

  45. Li B, Jiang S, Yu S, Chen Y, Tang X, Wu X, Zhong Y, Shen X, Cui S (2018) Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines. J Sol-Gel Sci Technol 88:386–394. https://doi.org/10.1007/s10971-018-4800-1

    Article  CAS  Google Scholar 

  46. Wu S, Du A, Huang S, Sun W, Xiang Y, Zhou B (2016) Solution-processable polyimide aerogels with high hydrophobicity. Mater Lett 176:118–121. https://doi.org/10.1016/j.matlet.2016.04.099

    Article  CAS  Google Scholar 

  47. Wu S, Du A, Huang S, Sun W, Zu G, Xiang Y, Li C, Zhou B (2016) Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane. RSC Adv 6:22868–22877. https://doi.org/10.1039/C5RA28152K

    Article  CAS  Google Scholar 

  48. Liu S, Chen W, Zhou X (2021) Polyimide aerogels using melamine as an economical yet effective crosslinker. J Porous Mater 28:1155–1165. https://doi.org/10.1007/s10934-021-01066-4

    Article  CAS  Google Scholar 

  49. Pantoja M, Boynton N, Cavicchi KA, Dosa B, Cashman JL, Meador MAB (2019) Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl Mater Interfaces 11:9425–9437. https://doi.org/10.1021/acsami.8b20420

    Article  CAS  Google Scholar 

  50. Cashman JL, Nguyen BN, Dosa B, Meador MAB (2020) Flexible polyimide aerogels derived from the use of a neopentyl spacer in the backbone. ACS Appl Polym Mater 2:2179–2189. https://doi.org/10.1021/acsapm.0c00153

    Article  CAS  Google Scholar 

  51. Guo H, Meador MAB, Cashman JL, Tresp D, Dosa B, Scheiman DA, McCorkle LS (2020) Flexible polyimide aerogels with dodecane links in the backbone structure. ACS Appl Polym Mater 12:33288–33296. https://doi.org/10.1021/acsami.0c09321

    Article  CAS  Google Scholar 

  52. Shinko A (2015) Structure and morphology control in polymer aerogels with low crosslink density, The University of Akron

  53. Vivod SL, Meador MAB, Pugh C, Wilkosz M, Calomino K, McCorkle L (2020) Toward improved optical transparency of polyimide aerogels. ACS Appl Mater Interfaces 12:8622–8633. https://doi.org/10.1021/acsami.9b17796

    Article  CAS  Google Scholar 

  54. Wu P, Zhang B, Yu Z, Zou H, Liu P (2019) Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci 136:47179. https://doi.org/10.1002/app.47179

    Article  CAS  Google Scholar 

  55. Guo H, Meador MAB, Cashman JL, Tresp D, Dosa B, Scheiman DA, McCorkle LS (2020) Flexible polyimide aerogels with dodecane links in the backbone structure. ACS Appl Mater Interfaces 12:33288–33296. https://doi.org/10.1021/acsami.0c09321

    Article  CAS  Google Scholar 

  56. Pei D, Lv B, Wang J, Qi S, Tian G, Wu D (2021) Structure and properties of polyimide aerogels with different skeleton flexibilities. Soft Mater 19:50–55. https://doi.org/10.1080/1539445X.2020.1740735

    Article  CAS  Google Scholar 

  57. Zhai C, Jana SC (2017) Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS Appl Mater Interfaces 9:30074–30082. https://doi.org/10.1021/acsami.7b09345

    Article  CAS  Google Scholar 

  58. Zhong Y, Kong Y, Zhang J, Chen Y, Li B, Wu X, Liu S, Shen X, Cui S (2018) Preparation and characterization of polyimide aerogels with a uniform nanoporous framework. Langmuir 34:10529–10536. https://doi.org/10.1021/acs.langmuir.8b01756

    Article  CAS  Google Scholar 

  59. Li X, Wang J, Zhao Y, Zhang X (2018) Template-free self-assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect. ACS Appl Mater Interfaces 10:16901–16910. https://doi.org/10.1021/acsami.8b04081

    Article  CAS  Google Scholar 

  60. Nguyen BN, Scheiman DA, Meador MAB, Guo J, Hamilton B, McCorkle LS (2021) Effect of urea links in the backbone of polyimide aerogels. ACS Appl Polym Mater 3:2027–2037. https://doi.org/10.1021/acsapm.1c00085

    Article  CAS  Google Scholar 

  61. Kawagishi K, Saito H, Furukawa H, Horie K (2007) Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun 28:96–100. https://doi.org/10.1002/marc.200600587

    Article  CAS  Google Scholar 

  62. Meador MAB, Alemán CR, Hanson K, Ramirez N, Vivod SL, Wilmoth N, McCorkle L (2015) Polyimide aerogels with amide aross-Links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl Mater Interfaces 7:1240–1249. https://doi.org/10.1021/am507268c

    Article  CAS  Google Scholar 

  63. Chen W, Liu S, Sun Y, Zhou X, Zhou F (2022) Melamine-crosslinked polyimide aerogels from supercritical ethanol drying with improved in-use shape stability against shrinking. Macromol Mater Eng 307:2100645. https://doi.org/10.1002/mame.202100645

    Article  CAS  Google Scholar 

  64. Cheng Y, Zhang X, Qin Y, Dong P, Yao W, Matz J, Ajayan PM, Shen J, Ye M (2021) Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson’s ratio. Nat Commun 12:4092. https://doi.org/10.1038/s41467-021-24388-y

    Article  CAS  Google Scholar 

  65. Zhang T, Zhao Y, Ma X, Wang K (2021) The effect of poor solvent on the microstructures and thermal insulation performance of polyimide aerogels. Mater Lett 300:130151. https://doi.org/10.1016/j.matlet.2021.130151

    Article  CAS  Google Scholar 

  66. Liu M, Wang Y, Ji J, Chang X, Xu Q, Liu X, Qin J (2020) A facile method to fabricate the polyimide aerogels with controllable microstructure by freeze-drying. Mater Lett 267:127558. https://doi.org/10.1016/j.matlet.2020.127558

    Article  CAS  Google Scholar 

  67. Teo N, Jana SC (2018) Solvent effects on tuning pore structures in polyimide aerogels. Langmuir 34:8581–8590. https://doi.org/10.1021/acs.langmuir.8b01513

    Article  CAS  Google Scholar 

  68. Lee DH, Jo MJ, Han SW, Yu S, Park H (2020) Polyimide aerogel with controlled porosity: Solvent-induced synergistic pore development during solvent exchange process. Polymer 205:122879. https://doi.org/10.1016/j.polymer.2020.122879

    Article  CAS  Google Scholar 

  69. Teo N, Gu Z, Jana SC (2018) Polyimide-based aerogel foams, via emulsion-templating. Polymer 157:95–102. https://doi.org/10.1016/j.polymer.2018.10.030

    Article  CAS  Google Scholar 

  70. Teo N, Jana SC (2019) Surfactant-free process for the fabrication of polyimide aerogel microparticles. Langmuir 35:2303–2312. https://doi.org/10.1021/acs.langmuir.8b03841

    Article  CAS  Google Scholar 

  71. Jin C, Kulkarni A, Teo N, Jana SC (2021) Fabrication of pill-shaped polyimide aerogel particles using microfluidic flows. Ind Eng Chem Res 60:361–370. https://doi.org/10.1021/acs.iecr.0c05424

    Article  CAS  Google Scholar 

  72. Yuan S, Yu Z, Wu P, Zhou S, Zou H, Liu P (2020) Properties of gradient polyimide aerogels prepared through layer-by-layer assembly. Polym Eng Sci 60:2292–2300. https://doi.org/10.1002/pen.25472

    Article  CAS  Google Scholar 

  73. Wu Q, Pan L, Wang H, Deng W, Yang G, Liu X (2016) A green and scalable method for producing high-performance polyimide aerogels using low-boiling-point solvents and sublimation drying. Polym J 48:169–175. https://doi.org/10.1038/pj.2015.86

    Article  CAS  Google Scholar 

  74. Li X, Dong G, Liu Z, Zhang X (2021) Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy. ACS Nano 15:4759–4768. https://doi.org/10.1021/acsnano.0c09391

    Article  CAS  Google Scholar 

  75. Fan W, Zhang X, Zhang Y, Zhang Y, Liu T (2019) Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 173:47–52. https://doi.org/10.1016/j.compscitech.2019.01.025

    Article  CAS  Google Scholar 

  76. Zhao F, Zhu J, Peng T, Liu H, Ge S, Xie H, Xie L, Jiang C (2021) Preparation of functionalized halloysite reinforced polyimide composite aerogels with excellent thermal insulation properties. Appl Clay Sci 211:106200. https://doi.org/10.1016/j.clay.2021.106200

    Article  CAS  Google Scholar 

  77. Feng C, Yu S (2021) 3D printing of thermal insulating polyimide/cellulose nanocrystal composite aerogels with low dimensional shrinkage. Polymers. https://doi.org/10.3390/polym13213614

    Article  Google Scholar 

  78. Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T (2020) Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 385:123963. https://doi.org/10.1016/j.cej.2019.123963

    Article  Google Scholar 

  79. Zhu J, Zhao F, Peng T, Liu H, Xie L, Jiang C (2021) Highly elastic and robust hydroxyapatite nanowires/polyimide composite aerogel with anisotropic structure for thermal insulation. Compos Part B-Eng 223:109081. https://doi.org/10.1016/j.compositesb.2021.109081

    Article  CAS  Google Scholar 

  80. Hou X, Li Y, Luo X, Zhang R (2021) SiC whiskers-reinforced polyimide aerogel composites with robust compressive properties and efficient thermal insulation performance. J Appl Polym Sci 138:49892. https://doi.org/10.1002/app.49892

    Article  CAS  Google Scholar 

  81. Miao Z, Jia Z, Yu Z, Chen S, Zhou S, Liu P, Zou H (2020) Preparation of polyimide/multi-walled carbon nanotubes composite aerogels with anisotropic properties. J Appl Polym Sci 137:49357. https://doi.org/10.1002/app.49357

    Article  CAS  Google Scholar 

  82. Chen X, Liu H, Zheng Y, Zhai Y, Liu X, Liu C, Mi L, Guo Z, Shen C (2019) Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl Mater Interfaces 11:42594–42606. https://doi.org/10.1021/acsami.9b14688

    Article  CAS  Google Scholar 

  83. Fan W, Zuo L, Zhang Y, Chen Y, Liu T (2018) Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure. Compos Sci Technol 156:186–191. https://doi.org/10.1016/j.compscitech.2017.12.034

    Article  CAS  Google Scholar 

  84. Zhao X, Yang F, Wang Z, Ma P, Dong W, Hou H, Fan W, Liu T (2020) Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos Part B-Eng 182:107624. https://doi.org/10.1016/j.compositesb.2019.107624

    Article  CAS  Google Scholar 

  85. Zhang X, Ni X, He M, Gao Y, Li C, Mo X, Sun G, You B (2021) A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Mater Chem Front 5:804–816. https://doi.org/10.1039/D0QM00724B

    Article  CAS  Google Scholar 

  86. Xu G, Li M, Wu T, Teng C (2020) Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers. React Funct Polym 154:104672. https://doi.org/10.1016/j.reactfunctpolym.2020.104672

    Article  CAS  Google Scholar 

  87. Fei Z, Yang Z, Chen G, Li K, Zhao S, Su G (2018) Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area. J Mater Sci 53:12885–12893. https://doi.org/10.1007/s10853-018-2553-4

    Article  CAS  Google Scholar 

  88. Hou X, Mao Y, Zhang R, Fang D (2021) Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem Eng J 417:129341. https://doi.org/10.1016/j.cej.2021.129341

    Article  CAS  Google Scholar 

  89. Dong J, Yin C, Zhao X, Li Y, Zhang Q (2013) High strength polyimide fibers with functionalized graphene. Polymer 54:6415–6424. https://doi.org/10.1016/j.polymer.2013.09.035

    Article  CAS  Google Scholar 

  90. Wu Y, Zhang X, Guo Y, Wang X (2019) Reduced graphene oxide (rGO)/ZrO2 reinforced polyimide nanocomposite aerogels with enhanced properties: a synergistic effect of the nanofillers. ChemistrySelect 4:10868–10875. https://doi.org/10.1002/slct.201902542

    Article  CAS  Google Scholar 

  91. Xu Q, Chang X, Zhu Z, Xu L, Chen X, Luo L, Liu X, Qin J (2021) Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Adv 11:11760–11770. https://doi.org/10.1039/D0RA10929K

    Article  CAS  Google Scholar 

  92. Xue T, Fan W, Zhang X, Zhao X, Yang F, Liu T (2021) Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Compos Part B-Eng 219:108963. https://doi.org/10.1016/j.compositesb.2021.108963

    Article  CAS  Google Scholar 

  93. Zuo L, Fan W, Zhang Y, Zhang L, Gao W, Huang Y, Liu T (2017) Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos Sci Technol 139:57–63. https://doi.org/10.1016/j.compscitech.2016.12.008

    Article  CAS  Google Scholar 

  94. Guo J, Nguyen BN, Li L, Meador MAB, Scheiman DA, Cakmak M (2013) Clay reinforced polyimide/silica hybrid aerogel. J Mater Chem A 1:7211–7221. https://doi.org/10.1039/C3TA00439B

    Article  CAS  Google Scholar 

  95. Fang G, Li H, Liu J, Ni H, Yang H, Yang S (2015) Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels: synthesis and characterization. Chem Lett 44:1083–1085. https://doi.org/10.1246/cl.150396

    Article  CAS  Google Scholar 

  96. Xi S, Wang X, Liu T, Zhang Z, Zhang X, Shen J (2021) Moisture-resistant and mechanically strong polyimide-polymethylsilsesquioxane hybrid aerogels with tunable microstructure. Macromol Mater Eng 306:2000612. https://doi.org/10.1002/mame.202000612

    Article  CAS  Google Scholar 

  97. Zhao X, Wang W, Wang Z, Wang J, Huang T, Dong J, Zhang Q (2020) Flexible PEDOT:PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications. Chem Eng J 395:125115. https://doi.org/10.1016/j.cej.2020.125115

    Article  CAS  Google Scholar 

  98. Qiao S, Zhang H, Kang S, Quan J, Hu Z, Yu J, Wang Y, Zhu J (2020) Hydrophobic, pore-tunable polyimide/polyvinylidene fluoride composite aerogels for effective airborne particle filtration. Macromol Mater Eng 305:2000129. https://doi.org/10.1002/mame.202000129

    Article  CAS  Google Scholar 

  99. Mosanenzadeh SG, Saadatnia Z, Karamikamkar S, Park CB, Naguib HE (2020) Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Adv 10:22909–22920. https://doi.org/10.1039/D0RA03907A

    Article  CAS  Google Scholar 

  100. Zhuo L, Ma C, Xie F, Chen S, Lu Z (2020) Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance. Cellulose 27:7677–7689. https://doi.org/10.1007/s10570-020-03311-6

    Article  CAS  Google Scholar 

  101. Qian Z, Wang Z, Chen Y, Tong S, Ge M, Zhao N, Xu J (2018) Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A 6:828–832. https://doi.org/10.1039/C7TA09054D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51904312), Applied Foundational Research Funds of Tianjin Province (21JCQNJC00740), Fundamental Research Funds for the Central Universities (3122022100), and Scientific Research Foundation of Civil Aviation University of China (2020KYQD115). The authors are deeply grateful to these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhou, X., Wan, M. et al. Recent progress on polyimide aerogels against shrinkage: a review. J Mater Sci 57, 13233–13263 (2022). https://doi.org/10.1007/s10853-022-07505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07505-0

Navigation