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ABSTRACT

A set of numerical and analytical models is presented to predict the growth and

contraction of grain-boundary creep cavities in binary self-healing alloys. In

such alloys, the healing is realised by preferential precipitation of supersatu-

rated solutes at the free surface of the cavity. The cavity grows due to the

diffusional flux of vacancies towards the cavity, which is driven by the stress

gradient along the grain boundary. Upon deposition of healing solute atoms on

the cavity wall, effectively vacancies are removed from the cavity due to the

inverse Kirkendall effect. The competition between the inward and outward

vacancy fluxes results in a time-dependent filling ratio (i.e. the fraction of the

vacancies removed from the original cavity) of the creep cavity. It is found that

for stress levels lower than a critical stress rcr, the filling ratio can proceed to

unity, i.e. to complete filling and annihilation of the pore. For applied stresses

higher than rcr, complete filling is not achieved and the open volume of the

creep cavity will continue to grow once a maximum filling ratio is reached at the

critical time tcr. The critical stress rcr, critical time tcr, and time for complete

filling th (if fully filling is achievable) are derived from the models for different

combinations of parameters. The results from the analytical model and from

previous nanotomography experiments are compared and are found to be in

good agreement.
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GRAPHICAL ABSTRACT

Introduction

Creep takes place when metals are exposed to a

combination of a constant mechanical stress below

the yield stress and a relatively high temperature

(higher than 0.4Tm, where Tm is the melting temper-

ature). During creep loading of polycrystalline met-

als, quasi-spherical micron-sized cavities form

preferentially at those grain boundaries oriented

perpendicular to the load direction. Upon prolonged

loading, such pores grow and coalesce into micro-

and subsequent macrocracks, which leads to com-

plete fracture of the sample or even the installation

[1]. Traditionally, the strategy to improve the creep

resistance and the high-temperature properties has

been to create a microstructure which retards the

cavity formation and minimises the cavity growth as

long as possible [2–5]. However, irrespective of the

metallurgical strategy used, cavities once formed will

continue to grow, coalesce and the largest ones will

finally induce catastrophic failure. Some years ago,

the concept of self-healing has been proposed as an

alternative strategy [6–8]. In this approach, the

occurrence of creep cavities triggers dedicated solute

atoms (so-called self-healing solutes) to move

towards these cavities, to fill them and make them

harmless before they grow to catastrophic dimen-

sions. Provided that the diffusivity of the selected

solute atoms is faster than the diffusivity of the host

atoms, then due to the Kirkendall effect, the diffusion

of the healing agent towards the cavity surface results

in a net diffusion of vacancies in the opposite

direction, i.e. the vacancies are removed from the

creep-induced cavity [9] and the empty volume of the

cavity becomes smaller. Furthermore, once the cavity

is completely filled, the driving force for directed

vacancy flux is removed and the damage can be

considered to have been healed. As a result, the

coalescence of neighbouring creep cavities is pre-

vented. In case the growth of the cavities is faster

than the rate of filling, then only partial cavity filling

will take place and cavities will continue to grow but

at a lower rate than in non-self-healing system. This is

expected to have a much smaller effect on the desired

life time extension.

The self-healing concept based on selective pre-

cipitation has been tested and verified for multiple

binary and more complex metallic systems. Laha and

co-workers [10–13] reported the unintended experi-

mental finding that the addition of boron and nitro-

gen is effective in suppressing the cavity growth rate

of austenitic stainless steels (with an fcc lattice

structure). During creep, BN preferentially precipi-

tates on the free cavity surfaces and thereby partially

heals the cavities, leading to an increased creep

rupture strength. Lumley and co-workers [14, 15]

demonstrated that underaged Al alloys showed a

lower strain rate compared to a fully aged counter-

parts, which is contributed by the dynamic precipi-

tation of free solute atoms and the subsequent

retardation of dislocation motion during the creep

test. In order to demonstrate intentional filling of

creep damage by tailored precipitation on the cavity

wall, Van Dijk and Van der Zwaag initiated a number

of creep damage studies using selected binary Fe–X
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and ternary Fe–X-Y alloys, including Fe-Cu [16–18],

Fe-Au [19–23], Fe–Mo [24], Fe-W [25], and Fe-Au-W

[26]. These systems were selected on the basis of the

following considerations: (1) they can be brought into

a supersaturated state (typically 1 at.%) at a creep

relevant temperature at which the alloy is in a ferritic

state (here 550 �C) by prior homogenisation and

rapid quenching, (2) the energy barrier for precipi-

tation on a free surface is considerably lower than

that in the grain interior, (3) the diffusion coefficient

of the solute is higher than that of the iron atoms, and

finally (4) the solute atoms are not consumed in other

reactions while migrating to the cavity [8, 22]. These

alloys serve as model alloys for future self-healing

multicomponent ferritic creep steels as they have the

advantage that no other metallurgical reactions than

the intended healing reaction can take place.

Multiple characterisation techniques have been

applied to monitor the damage formation and the

subsequent precipitation healing in these alloys,

including electron microscopy techniques (SEM,

TEM, EBSD), atom probe tomography (APT), and

advanced synchrotron X-ray nanotomography. In an

early research by Zhang and co-workers [22], it is

demonstrated that a healing efficiency of 80% can be

achieved for low stress levels, while for high stress

levels, the healing precipitation rate cannot catch up

with the damage rate and that leads to a lower

healing ratio. Recent studies by Fang and co-workers

[19, 25] revealed detailed 3D distribution of creep

cavities and the healing precipitates in Fe-Au and Fe-

W systems with a voxel size down to 30 nm. It is

found that the creep cavities show a strong prefer-

ence for the stress-affected grain boundaries and that

the precipitates nucleate at one or multiple sites at the

surface of the cavities. The early-stage cavities are

usually found to be isolated and small in size (tens of

nanometres in diameter) with spherical or equiaxed

shapes, while at a late stage of creep, the grain-

boundary cavities are likely to link with their neigh-

bours, resulting in more complexed shapes and lar-

ger dimensions (equivalent diameter larger than

10 lm). It is also demonstrated that isolated cavities

can be filled completely, while the filling ratio of the

linked cavities first increases, but then decreases after

the linkage takes place. It is therefore crucial to heal

the cavities before the linkage occurs. In order to

predict the pore filling behaviour of the creep cavities

in such binary alloys, a semi-quantitative model has

been proposed by Versteylen and co-workers [9]. In

this model, the growth or shrinkage of the cavity is

determined by the competition between the inward

and outward vacancy fluxes. The inward flux, which

is controlled by the stress-induced gradient in the

chemical potential on the grain boundary surround-

ing the creep cavity, diffuses towards the cavity and

therefore leads to further growth of the cavity. The

opposite flux, resulting from the transport of the

supersaturated solute into the cavity, removes

vacancies from the cavity by the Kirkendall effect and

results in a shrinkage of the cavity. If the outward

vacancy flux is higher than or equal to the stress-

driven inward flux, the cavity can be fully healed,

and a critical stress can be calculated accordingly. A

full healing can be achieved when the applied stress

is lower that the critical value. In the case where the

stress-driven inward exceeds the Kirkendall flux, the

cavity cannot be fully healed, but a desirable reduced

strain rate can be expected. The Versteylen model [9]

was used to evaluate the healing efficiency of the iron

based binary systems, and it was concluded that Au

is the most healing-efficient solute. However, in the

model by Versteylen and co-workers the normal

stress at the grain boundary was not calculated

explicitly and the solute diffusion was simplified as a

stationary time-independent flux. In reality, however,

with the evolution of the solute diffusion profile in

the matrix, the solute flux decreases with time [22]. A

critical time, where the stress-induced inward

vacancy flux exceeds the healing flux and the healing

cannot keep up with the cavity growth, is expected.

Therefore, the time dependence should be taken into

consideration for a more comprehensive under-

standing of the self-healing process.

The present work aims to investigate the time

dependence of the self-healing behaviour and predict

the time evolution of the cavity under different con-

ditions. We propose a model to predict the evolution

of the open volume of a grain-boundary cavity as a

function of time. The inward vacancy flux is driven

by the stress distribution along the grain boundary,

while the time-dependent outward vacancy flux

results from the solute segregation on the cavity

surface. Both the stress distribution and the solute

flux are calculated with a multi-physics finite element

package (COMSOL� [27]). Based on the accumulated

inward and outward vacancy fluxes, the model can

be used to estimate the evolution of the filling ratio,

the critical stress below which a fully filling can be

achieved, the critical time after which the cavity
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growth exceeds the healing, and the time needed for

a complete filling. The influences of the grain-

boundary-to-bulk diffusivity ratio, the level of solute

supersaturation, and the spacing between neigh-

bouring cavities on the healing efficiency are

addressed explicitly and solutions are proposed as a

function of the imposed stress. The model does not

address the initial nucleation of the precipitate on the

cavity wall nor does it take into account the kinetics

of the internal atomic transport within the precipitate

formed. The paper ends with a simple analytical

model for the pore filling process taking the results

from the numerical model to justify the assumptions

made in the analytical model. The analytical model

provides a quick estimation of the critical stress, the

critical time, and the healing time.

Model description

Model geometry

As shown in Fig. 1a, the rotationally symmetric

simulation box is a cylinder with radius k and height

H. The radius k reflects half the distance between the

centres of neighbouring creep cavities on the same

creep affected grain boundary and the height H

reflects half of the grain size. The vertical axis (z) and

the radial axis (r) are indicated by the red dashed

lines. The z axis is set as the symmetry axis, while the

horizontal plane with z = 0 is set as a symmetry

plane. It is assumed that a pre-existing cavity is

located at the centre. According to Raj and Ashby

[28], creep cavities are lens-shaped with a cavity

radius a, an equilibrium opening angle of w & 75�,
and a cavity height h that scales with the cavity

radius as h/a = (1 – cos(w))/sin(w) & 0.77 [29]. In the

present model, the cavity is assumed to have an

ellipsoidal shape to simplify the calculation of the

stress distribution (see 2.2 for details). The cavity

radius is a, with a corresponding cavity height of h &
0.77a and an ellipsoidal cavity volume of

V ¼ 4
3 pha

2 ¼ h
a

� �
4
3 pa

3
� �

� 0:77 4
3 pa

3
� �

. Note that for a

lens-shaped cavity the cavity volume is slightly

smaller:

V ¼ 1� 3
2 cos wð Þ þ 1

2 cos
3 wð Þ

� �
4
3 pa

3
� �

� 0:62 4
3 pa

3
� �

. In

the experimental tomography studies on the Fe-Au

system [19], the evolution of the average volume of

the cavities is fitted to a power law with the form

ofV ¼ ktn. Taking k = 0.33 lm3h-0.8 and n = 0.8

(corresponding to a stress level of 100 MPa), the

average radius of the creep cavities with an ellip-

soidal shape yields 0.4 and 0.5 lm after 10 and 20 h

creep, respectively. The cavity radius a is taken as

0.5 lm in the present research. In all simulations, the

grain-boundary width is assumed to be d = 2 nm and

the height of the simulation box is fixed at

H = 10 lm. The radius of the simulation box k varies

from 2.5 to 25 lm. During the healing process, the

solute in the matrix will be depleted by diffusion

towards the cavity. The vertical diffusion length

(parallel to z direction) can be calculated by

L? ¼ 2
ffiffiffiffiffiffiffiffiffi
Ds

mt
p

, where Ds
m is the solute diffusivity in the

matrix. Given Ds
m = 7.39 9 10–19 m2/s [30], this

combination of pore and matrix dimensions ensures

that the reservoir of solute atoms (i.e. the number of

supersaturated solute atoms in the total matrix vol-

ume considered) is not depleted during the healing

process.

Cavity growth by stress-driven vacancy
diffusion

Multiple theoretical models have been proposed to

describe the growth of creep cavities. Depending on

the applied stress, temperature, and the creep stage,

the dominant cavity growth mechanism can be dif-

fusion, plasticity, grain-boundary sliding, or a com-

bination thereof [31]. A coupled model was proposed

[32–35], which proposed that the creep cavities, their

growth being controlled by grain-boundary diffusion

of vacancies, are embedded in a matrix controlled by

power-law deformation. Generally, diffusive growth

dominates cavity behaviour in case of a small cavity,

a low stress level r0, and a low temperature T, while

plasticity effects dominate otherwise. A diffusion

length K ¼ DgbXdr0
kT _e

� �1=3
[36] has been introduced to

estimate the conditions in which diffusive growth

dominates, where _e is the strain rate, k is the Boltz-

mann’s constant, Dgb is the grain-boundary diffu-

sivity, and X is the atom volume. As (a/K) increases,
the creep flow becomes more important, and the

power-law limit is reached when (a/K) ? ?. Taking

the creep data of the Fe–Au, Fe–W, and Fe–Au–W

model alloys [19, 22, 25, 26], at a stress level of

300 MPa, the diffusion lengths K in these systems

correspond to 17, 19, and 26 lm, respectively. These

diffusion lengths are comparable to or larger than the

size of the simulation box. Therefore, it is reasonable
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to assume that the growth of the cavity is properly

captured by the vacancy diffusion through the grain

boundary.

In the model, it is assumed that the cavity growth

at elevated temperatures results from vacancy diffu-

sion and that the vacancy diffusion is driven by the

stress gradient. The vacancy flux through the grain

boundary in contact with the cavity can be written as

[37–40]

Jv ¼ � 1

X

Dv
gbxv

kT
rl ð1Þ

in which Dv
gb is the vacancy diffusivity at the grain

boundary, xv is the vacancy concentration, and l is

the chemical potential. Assuming that the vacancy

concentration is at equilibrium, the stress-dependent

contribution to the chemical potential is

Dl rnð Þ ¼ �rnX, in which rn is the local normal stress

on the grain boundary [39]. The stress distribution

along the grain boundary with an ellipsoidal creep

cavity is calculated by the finite element method

using COMSOL� [27]. The Linear Elastic Material

module with stationary node and nodal serendipity

(quadratic) elements is used, and the elastic equilib-

rium equation can be expressed as r � rþ F ¼ 0, in

which F is the body force per unit volume, while r is

the Cauchy stress tensor and can be calculated with

the Hooke’s law r ¼ C : e, where e is the elastic strain
tensor and C is the fourth order of stiffness tensor. A

constant stress with the magnitude of r0 is applied

uniformly to the top edge of the simulation volume

(Fig. 1a). The material is regarded as isotropic with a

density q of 7800 kg/m3. At a temperature of

T = 550 �C (823 K), the Young’s modulus E is taken

to be 165 GPa [40] and the Poisson’s ratio m is set to

0.33 [40]. The governing equations and boundary

conditions are also summarised in the supplementary

material.

Figure 2 shows the normal stress rn (i.e. the z

component of the stress tensor) distribution as a

function of (a/r) for different (k/a) ratios, in which r

is the distance from the centre of the (empty) cavity

with radius a. Note that this stress is normalised by

the applied stress r0. A stress concentration occurs at

(a) (b) (c)

(d)

λ

a = 0.5 μm

δ/2 = 1 nm
H

 =
 1

0 
μm

h

σ0

z

r

Figure 1 (a) and (b): Dimensions of the cylindrical model. The

creep cavities have a fixed radius of a = 0.5 lm with an inter-

cavity spacing of k. Constant stress r0 is applied to the upper edge

of the cell. The elliptical cavity has a height given by the ratio h/

a = (1 - cos(w))/sin(w), where w = 75�. The half width of the

grain boundary is d/2 = 1 nm. (c) and (d): Mesh for the model (for

the case with k = 5 lm). Four layers of boundary mesh are applied

to the grain boundary.
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the edge of the cavity (a/r) ? 1 while rn approaches

the applied stress r0 at the far end of the grain

boundary with (a/r) ? (a/k). The stress distribution

shows similar profiles along the grain boundary for

the cases where (k/a) C 5. Therefore, the stress dis-

tribution is fitted with a simple phenomenological

expression independent of (k/a):
rn
ro

¼ 1þ A exp B
a

r

� �
� 1

h i
ð2Þ

where A = 1.65(2) 9 10–3 and B = 6.82(3) are dimen-

sionless constants. The numbers in brackets are the

uncertainty in the last digit. The inward vacancy flux

in Eq. (1) can now be estimated using Eq. (2) and is

proportional to the applied stress r0.

The equilibrium vacancy concentration at the grain

boundary corresponds to [41]:

xv ¼ xeqv ¼ exp �
Q 1þ as2
� �

kBT

	 

ð3Þ

where Q is the vacancy formation energy at the grain

boundary, a = 1.28 is a dimensionless proportionality

constant, and s ¼ ð1�sÞX

1�XsþYs
3
2�Zs

7
2

� � is the relative mag-

netic order parameter in the ferromagnetic state

(scaled to its value at T = 0 K). s is the reduced

temperature (s = T/TC with the Curie temperature

TC = 1043 K). X = 0.368, Y = 0.11, Z = 0.129 [42] are

constants. The vacancy formation energy at the grain

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

σ n
/σ

0

a/r

λ/a = 2

λ/a = 3

λ/a = 4

λ/a = 5

λ/a = 10

λ/a = 15

λ/a = 20

λ/a = 30

λ/a = 50

(a) (b)

(c)

Figure 2 (a) Distribution of the normal stress rn (normalised by

the applied stress r0). b: The circled region in (a). c: Distribution

of the normal stress rn along the grain boundary for various k/

a ratios. r0 and a correspond to the applied stress and the void

radius, respectively. Note that the scale is different in (a) and (b).
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boundary Q = Qgb & Qm/2 is taken as half of that in

the bulk with Qm = 0.58 eV [43]. The vacancy diffu-

sivity at the grain boundary is taken as the Fe grain-

boundary diffusivity of the Fe host atoms [43], i.e.

Dv
gb = Dh

gb = DFe
gb = 1.74 9 10–12 m2s-1 at a tempera-

ture of 550 �C. The equilibrium vacancy concentra-

tion at the grain boundary of bcc Fe then corresponds

to xeqv & 7.4 9 10–4 at 550 �C.

Solute diffusion and cavity closing

When a grain-boundary cavity, and hence an open

volume, is present, then healing solute atoms start to

diffuse towards the cavity in order to precipitate at

the cavity surface leading to a reduction in the level

of supersaturation. The diffusion of solute atoms is

driven by the solute concentration gradient, which

can be described by

Js ¼ � 1

X
Dsxs
kT

rl ¼ � 1

X
Dsrxs ð4Þ

where Ds and xs are the diffusivity and the concen-

tration of the solute (atom fraction), respectively.

In a binary alloy system containing also vacancies,

the mass balance gives xs ? xh ? xv = 1, where xh is

the concentration of host atoms. Assuming that the

vacancy concentration is low everywhere in the sys-

tem, and at equilibrium, the flux of the host atoms

can be written as Jh ¼ � 1
XDhrxh � 1

XDhrxs. The dif-

ference in diffusivity between the host and the solute

atoms results in a net vacancy flux, i.e. the Kirkendall

flux:

JKv ¼ � Js þ Jhð Þ � 1

X
Ds �Dhð Þrxs ð5Þ

The vacancy flux is oriented opposite to the direc-

tion of the fastest diffusing component. In a self-

healing system, the solute atoms need to show a

higher diffusivity than the host atoms in order to

generate a vacancy flux oriented outwards of the

cavity. ‘Vacancies’ making up the open volume of the

pre-existing cavity can be removed from the cavity

when the Kirkendall vacancy flux JKv
�� �� (oriented out-

wards) is higher than the stress-driven vacancy flux

Jrv
�� ��(oriented inwards).

The Transport of Diluted Species module with linear

Lagrange elements in COMSOL� [27] is used to

simulate the solute transport to the cavity. The gov-

erning diffusion equation without source is
oxs
ot þ XrJs ¼ 0, where xs is the concentration of the

solute s (atom fraction) and Js is the flux

(atom•m-2•s-1) and can be calculated by

Js ¼ � 1
XDsrxs. The solute concentration at the cavity

edge is maintained at 0.07 at.%, while the initial

solute concentration in the bulk and the grain

boundary is set at 0.25, 0.5, 1, 2, 3, and 4 at.%,

respectively. The Au diffusivity in bcc Fe at 550 �C
(7.39 9 10–19 m2/s) [30] is used as the solute diffu-

sivity in the bulk, while the self-diffusivity for bcc Fe

at 550 �C (1.50 9 10–21 m2/s) [30] is set as the host

diffusivity in the bulk. In order to estimate the effect

of (1) the grain-boundary diffusivity and (2) the

interspacing between two neighbouring cavities on

the solute transport efficiency, the grain-boundary

diffusivity is set to be 10n times the diffusivity in the

bulk, in which n = 1–9, while the length of the sim-

ulation box is set to 2.5, 5, 10, and 25 lm, corre-

sponding to the relative inter-cavity spacing (k/a) of
5, 10, 20, and 50. The simulation time is 1000 h for all

cases. In total 8319, 14,527, 21,601, and 26,113 ele-

ments with 7395, 13,456, 20,398, and 24,800 vertices

are used for the simulation box with the length of 2.5,

5, 10, and 25 lm, respectively. The governing equa-

tions and boundary conditions are also summarised

in the supplementary material. After calculating the

solute transport to the cavity, the net vacancy flux

(i.e. the Kirkendall flux) is calculated by Eq. (5).

Results and discussion

Solute transfer profile

Figure 3a–c shows the solute concentration profile for

different Dgb/Dm ratios after 1000 h, for a condition

where the supersaturation is 1 at% and the relative

inter-cavity spacing is k/a = 20. The white arrows

indicate the transport direction of the solute. In

Fig. 3a, it can be seen that for a relatively low grain-

boundary diffusivity (Dgb/Dm = 10) the solute

transport has a 3D nature: the solute concentration

contour reflects the geometry of the cavity, indicating

a more or less uniform solute transport in both the

matrix and in the grain boundary. As shown in

Fig. 3c, for a relatively high value for the grain-

boundary diffusivity (Dgb/Dm = 108) the concentra-

tion profile reflects primarily the grain-boundary

geometry (instead of the cavity geometry), indicating

the 1D nature of the solute transport towards the

grain boundary. In this case, the grain boundary
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provides a fast diffusion path. As a result, the solute

in the matrix tends to diffuse vertically towards the

grain boundary with a vertical diffusion length L? ¼
2
ffiffiffiffiffiffiffiffiffi
Ds

mt
p

(Ds
m is the solute diffusivity in the matrix).

The 1D nature of the diffusion pattern can also be

induced from the direction of the diffusion indicated

by the white arrows: in Fig. 3c, the solute diffusion is

approximately perpendicular to the grain boundary,

while in (a), the diffusion direction is perpendicular

to the cavity edge. As shown in Fig. 3b, an interme-

diate value for the relative grain-boundary diffusivity

(Dgb/Dm = 104) provides a diffusion pattern that

reflects a crossover between 1 and 3D solute diffu-

sion. The present findings are in line with previous

results by Versteylen and co-workers [29].

Vacancy fluxes

As a result of the Kirkendall effect, the solute diffu-

sion generates a vacancy flux in the opposite direc-

tion. Thereby the vacancies present in the cavity can

be removed through either the cavity/matrix inter-

face, or the cavity/grain-boundary interface. Fig-

ure 3d shows the percentage of the vacancy flux

through the cavity/grain-boundary interface. It is

clear that the higher the grain-boundary diffusivity,

the larger fraction of vacancies that is removed via

the grain boundary. In previous work [22], the ratio

for Au diffusivity in the grain boundary DAu
gb

� �
and

in the bcc Fe matrix DAu
m

� �
was estimated to be

DAu
gb =D

Au
m ¼ 105�106, meaning that the grain bound-

ary carries approximately 99% of the transport

(a) (b)

(c) (d)

Figure 3 (a)–(c): Solute concentration pattern after 1000 h. The

supersaturation is set to Dx = 1 at.%, and the relative inter-cavity

spacing is k/a = 20. The grain-boundary/matrix diffusivity ratios

are 10, 104, and 108, respectively. The white arrows indicate the

local direction of the solute flux. (d): Fraction of Igb in Itotal, where

Itotal is the total surface integrated vacancy flux removed from the

cavity and Igb the is vacancy flux removed through the grain-

boundary/cavity interface.
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capacity for (k/a) C 20 (Fig. 3d), 91% for (k/a) = 5,

and 97% for (k/a) = 10.

Figure 4 shows the evolution of the inward stress-

driven vacancy flux (dashed lines) and the outward

Kirkendall vacancy flux (solid lines) as a function of

time. The inward vacancy flux is constant in time and

proportional to the applied stress, while the outward

Kirkendall flux decreases with time and is affected by

the grain-boundary diffusivity Dgb, the supersatura-

tion Dx, and the half inter-cavity spacing k. The

Kirkendall flux, which is proportional to the solute

flux transported to the cavity, shows a power-law

relationship with time JKv / tn, with an time exponent

n ranging from n = - 1/2 to n = 0, depending on

(Dgb/Dm) and (k/a). From the value of the time

exponent n, one can estimate whether the solute-

driven vacancy diffusion has a 1D, 2D, or 3D char-

acter [29]. For instance, in Fig. 4a, for a low diffusivity

ratio value (Dgb/Dm = 10), the comparable diffusivity

in the bulk and in the grain boundary leads to a

solute diffusion field that is almost uniform in the

bulk and in the grain boundary (as shown in Fig. 3a),

indicating the 3D character of the diffusion. This is

consistent with the time exponent n, which shows an

increase from an initial value of about -1/2 and

approaches 0 for longer times. It is worth to note that

for an ideal 3D diffusion, the solute flux is constant

for longer time scales, but even for a low diffusivity

ratio, the 3D diffusion character will eventually

breakdown once the depletion zone reaches the edge

of the simulation box. After that, the depletion of the

solute is no longer uniform throughout the matrix

and the grain boundary, and the solute flux (as well

as the Kirkendall vacancy flux) can no longer remain

constant. For a high grain-boundary diffusivity (Dgb/

Dm = 106–109), the solute in the grain boundary

depletes first, and during this stage, the outward

vacancy flux is determined by the grain-boundary

Figure 4 (a)–(c): Stress-driven vacancy flux Jrv
�� �� (inward vacancy

flux) and Kirkendall vacancy flux JKv
�� �� (outward vacancy flux)

through the cavity surface. The effect of a the ratio of a variable

grain-boundary diffusivity Dgb with respect to the matrix

diffusivity Dm, b relative inter-cavity spacing k/a, and c

supersaturation Dx on the Kirkendall flux. The open volume of

the cavity shrinks if the Kirkendall vacancy flux JKv
�� �� is larger than

the stress-driven vacancy flux Jrv
�� �� and grows otherwise. The cross-

over of the inward and outward fluxes corresponds to the critical

time, at which the possible maximum filling is achieved and the

open volume of the cavity starts to grow if not fully healed. The

integrated area between the two fluxes corresponds to the net

amount of vacancies removed by the Kirkendall flux at the

corresponding time (in mol unit). An example is shown in (d).
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diffusivity Dgb and the width of the grain boundary

d. This process can be simplified as a 2D diffusion,

where the solute atoms are mainly transported from

the grain boundary (instead of the matrix) to the

cavity surface and the time exponent for JKv corre-

sponds to n = 0. After that, the grain boundary acts as

a fast diffusion path, through which the solute in the

bulk can be transported towards the cavity, and the

diffusion pattern experiences a transition from 2 to

1D. Once the 1D diffusion pattern is developed, the

bulk solute diffusivity becomes the limiting parame-

ter for the solute transport, while the grain-boundary

diffusivity no longer limits the diffusion. Therefore,

for high Dgb/Dm ratios (at fixed values of k/a and

supersaturation Dx) on longer time scales, the flux

into the cavity approaches to the same level and the

time exponent stabilises at n = - 1/2.

The 2D to 1D transition can be seen clearly in

Fig. 4b: for a relatively large value of k/a (see e.g. k/
a = 50), the time exponent n decreases gradually from

0 to - 1/2. For a fixed grain-boundary diffusivity

Dgb, the transition time for the crossover from 2 to 1D

behaviour is determined by the time required for the

depletion of the solute in the grain boundary. This

crossover time from 2 to 1D behaviour t2D-1D can be

estimated by comparing the diffusion length 2
ffiffiffiffiffiffiffiffiffi
Dgbt

p

with the distance between the cavity and the edge of

the simulation box k—a, resulting in

t2D�1D � 4 k� að Þ2=Dgb � 4k2=Dgb. For relatively small

values of k/a (see k/a = 5 and 10), the 1D diffusion

pattern is developed within relatively short time

scales, so that the time exponent starts from -1/2 in

our simulations. During the 2D diffusion stage, the

outward vacancy flux, which is limited by the grain-

boundary diffusivity Dgb, is the same for different k/
a ratios as the diffusion profile has not reached the

edge of the diffusion box. While during the 1D dif-

fusion stage, where the matrix diffusivity Dm is the

limiting parameter, the outward vacancy flux is

proportional to the (k/a)2. It is observed from Fig. 4c

that the supersaturation Dx does not change the

nature of the diffusion, but a higher supersaturation

leads to a higher concentration gradient, and there-

fore a larger solute flux into the cavity.

As explained in Sect. 2, the open volume of the

cavity shrinks when the Kirkendall vacancy flux is

larger than the stress-driven vacancy flux and grows

otherwise. The time integrated difference between

the two vacancy fluxes equals to the amount of

vacancies removed from the pre-existed cavity at the

corresponding time (in mol). Since the stress-driven

vacancy flux is assumed to be constant, while the

outward vacancy flux decreases with time, a cross-

over takes place at a certain time tcr, at which the

possible maximum filling is achieved and the cavity,

if not fully healed, starts to grow although solutes

remain to be transported to the cavity, as illustrated

in Fig. 4d. This is different from the previous research

[9]. In the previous study, both the Kirkendall flux

and the stress-induced vacancy flux were assumed to

be time independent. Therefore, fully filling can be

achieved as long as the (initial) Kirkendall flux is

higher than the stress-induced flux. In the present

research, however, it is possible that the cavity cannot

be fully filled, even if the Kirkendall flux initially

exceeds the stress-induced flux before tcr. As illus-

trated in Fig. 4d, the cavity can only be fully filled if

the net amount of vacancies (indicated by the green

shadow) is higher than the volume of the original

cavity.

Filling ratio

Starting from a pre-existing cavity with an initial

volume V0, hypothetical ‘vacancies’ making up the

cavity are being removed by the Kirkendall flux

JKv [ 0
� �

and real vacancies coming from the solid

matrix are added by the stress-driven vacancy flux

Jrv\0
� �

. In the current model, we do not actually

calculate the displacement of the original pore-matrix

boundary, but keep it constant and only calculate the

total volume of solute atoms entering the cavity and

forming the precipitate. We make no assumptions on

the shape of the precipitate, nor do we describe the

precipitate/remaining empty pore interface. In this

sense, the model is a degenerate moving boundary or

Stephan problem [44].

The filling ratio can now simply be defined as the

ratio between the net amount of the removed

vacancies and the amount vacancies in the original

cavity (V/X):

FR ¼ X
V

	 
Z t

0

I

S

JKv þ Jrv
� �

dS

2

4

3

5dt0 ð6Þ

where S is the cavity surface and t the time (note that

the positive direction for the flux through the closed

surface S is pointing outwards). It is assumed that the

stress-driven vacancy flux only enters the cavity
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through the grain-boundary/cavity interface, while

the Kirkendall flux can enter the cavity from both the

grain boundary and from the matrix.

Figure 5 compares the time evolution of the filling

ratio for different values of the supersaturation Dx,
the grain-boundary/matrix diffusivity ratio Dgb/Dm,

the relative inter-cavity spacing k/a, and the applied

stress r0. We can clearly distinguish two sorts of

overall behaviour: for the first one, the cavity can

become fully filled (i.e. proceeds to a FR of 1.0) at the

healing time th and the reaction stops. For the second

type, the filling ratio initially increases and then

peaks at a critical time tcr at a level below FR = 1,

which corresponds to the maximum filling ratio that

can be achieved. For t[ tcr, the filling ratio again

decreases, indicating that the open volume of the

cavity starts to grow faster than can be made up by

the solute transport. When the filling ratio eventually

reaches a negative value (FR\ 0), the open volume of

the partially filled cavity is larger than its original

size. For the sake of completeness, the dashed line

segments in the Figs. 5 for conditions at which the

condition FR = 1 is reached show the hypothetical

behaviour assuming that achieving the completely

filled state does not lead to a change in transport rate.

The filling ratio demonstrates the competition

between the outward Kirkendall vacancy flux and the

inward stress-driven vacancy flux. Generally, at a

given time, a higher filling ratio can be achieved with

a higher supersaturation, a higher grain-boundary

diffusivity, and a larger relative inter-cavity spacing,

while a higher stress level results in a lower filling

ratio.

Figure 6 shows the maximum filling ratio for var-

ious combinations of parameters. In Fig. 7, the time of

healing th (solid line, for the case where the cavity can
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Figure 5 Time evolution of the filling ratio as a function of

applied stress r0 for different values of the supersaturation Dx, the
grain-boundary diffusivity to matrix diffusivity ratio Dgb/Dm and

the relative inert-cavity spacing k/a. A cavity with a filling ratio

equal to or higher than 1 (highlighted green) is regarded as fully

filled. The transport of the vacancies and solute stops after the

cavity is fully filled. The data in a for 200 MPa are below the

lower limit.
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be fully filled) and the critical time tcr (dotted line, for

the case where the cavity cannot be fully filled) are

presented. Since the stress-driven inward vacancy

flux eventually will exceed the outward Kirkendall

vacancy flux, for proper healing it is crucial that the

cavity becomes free of any remaining ‘empty’ volume

before tcr is reached.

Critical stress

From Figs. 6 and 7, it is clear that there is an upper

threshold for the applied stress, above which the

cavity cannot be fully filled. In Fig. 8, the calculated

critical stress as a function of the grain-boundary/

bulk diffusivity ratio Dgb/Dm is shown for different

values of the relative inter-cavity spacing k/a and the

supersaturation Dx. It can be seen that both the grain-

boundary diffusivity and the inter-cavity spacing

play a significant role in the critical stress. The critical

stress increases with the grain-boundary diffusivity

Dgb, until it reaches a level where a quasi-1D diffu-

sion pattern exists and the bulk diffusivity becomes

the limiting diffusion rate. When Dgb is high enough

so that Dm becomes the limiting diffusion rate, a

larger inter-cavity spacing k results in a higher critical

stress, since the solute atoms are collected and

transported towards the cavity over a larger grain-

boundary surface area p(k2 – a2).

With a small relative inter-cavity spacing (e.g. k/
a = 5), the critical stress level is expected to be low

even if the grain-boundary diffusivity is sufficiently

high. This is the situation for the late creep stages:

more cavities are located at the grain boundary,

resulting in a decrease in the cavity interspacing. This

further leads to a fast growth of the open volume of

the cavity and the subsequent coalesce of neigh-

bouring cavities, which causes the catastrophic fail-

ure of the material. In the initial creep stage, where

the grain-boundary cavities have a small size and the

inter-cavity interspacing is large, the cavities can still

be filled relatively easy. In the fully filled cavities, the

open volume disappears and the open volume will

need to nucleate somewhere else at the grain
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Figure 6 Maximum filling ratio as a function of applied stress r0
for different values of the supersaturation Dx, the grain-boundary

diffusivity to matrix diffusivity ratio Dgb/Dm, and the relative

inert-cavity spacing k/a. For a maximum filling ratio equal to or

higher than 1, the cavity can be fully filled under the corresponding

combination of parameters. Note that the curves overlap for Dgb/

Dm[ 106.

J Mater Sci (2022) 57:12034–12054 12045



boundary, in which case the vacancy and solute dif-

fusion start over again.

From Fig. 8, it can be deduced that the critical

stress can be raised by increasing (a) the supersatu-

ration level, and (b) the diffusivity difference

between the healing solute and the host. In practice,

the intended supersaturation level should not be

higher than a certain limit dictated by the criteria that

the healing atoms are fully soluble in the matrix at the

homogenising temperature and that the strain pen-

alty between the matrix and the precipitate is large

enough to suppress solute consuming precipitation in

the bulk. Furthermore, the diffusivity for the solute

should always be higher than the diffusivity of the

host, while a higher solute ratio is beneficial.

For the situation of 3D diffusion, the grain-

boundary diffusivity and the bulk diffusivity should

be comparable, and the solute atoms can be trans-

ported to the cavity if their distance to the cavity

surface is less than the diffusion length L ¼ 2
ffiffiffiffiffiffiffi
Dst

p
(Ds

being the diffusivity of the solute atoms), resulting in

a depletion zone of the healing atoms resembling the

shape of the cavity, and the critical stress is inde-

pendent of the interspacing distance k. For the situ-

ation of 1D diffusion, as explained in Sects. 3.1 and

3.2, all the solute atoms within a volume p k2 � a2
� �

L?
on both sides of the grain boundary can be
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Figure 7 Time of healing th at which the cavity is fully filled

(solid lines, for the situations where the cavity can be fully filled)

and critical time tcr at which the maximum filling is achieved

(dotted lines, for the situations where fully filling cannot be

achieved) as a function of applied stress r0 for different values of
the supersaturation Dx, the grain-boundary diffusivity to matrix

diffusivity ratio Dgb/Dm, and the relative inert-cavity spacing k/a.

For t\ tcr, the net vacancy flux is oriented away from the cavity

and therefore the cavity is shrinking as the vacancies are removed

from the open volume of the cavity by the Kirkendall flux. For

t[ tcr, the net vacancy flux is oriented towards the cavity, leading

to a growth of the open volume of the cavity. Note that the curves

overlap for Dgb/Dm[ 106.
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transported to the cavity (where L? is the vertical

diffusion length determined by the solute diffusivity

in the bulk Ds
m), and therefore a large k significantly

increases the healing capacity. In practice, a quasi-1D

diffusion pattern is observed [22] since the grain-

boundary diffusivity is usually orders of magnitude

higher than the bulk diffusivity.

The effect of the supersaturation on the critical

stress is shown in Fig. 9. A scaling relation rCritical /
Dxð Þm applies, with m & 1 for a lower Dgb/Dm ratio

(indicating a 3D diffusion), and m & 2 for a higher

Dgb/Dm ratio (indicating a 1D diffusion), respec-

tively. The 3D to 1D transition is especially obvious

with a lower interspacing/pore radius ratio k/a = 10,

since less time is required to develop the 1D diffusion

pattern for a lower interspacing-radius ratio. In fact,

when k/a = 10, the bulk diffusivity becomes the

limiting parameter when Dgb/Dm C 106, while for a

higher interspacing-radius ratio k/a = 50, the grain-

boundary diffusivity Dgb still plays a role on the

critical stress when Dgb/Dm = 108.

The interspacing-radius ratio k/a has a crucial

influence on the critical stress, as demonstrated in

Fig. 10. A scaling relationship rCritical / k=að Þk is

obtained with k = 0–4. For a lower Dgb/Dm ratio,

which corresponds to a 3D diffusion regime, the

critical stress is almost independent of k/a. In this

situation, the healing atoms are transported through

the bulk, and whether a solute atom can be trans-

ported towards the cavity is determined by its dis-

tance to the cavity surface. Therefore, the

interspacing distance k does not significantly affect

the healing kinetics. However, a higher Dgb/Dm ratio

results in a 1D diffusion, where a solute atom can be

transported towards the cavity through the grain

boundary (instead of through the bulk) as long as its

vertical distance to the grain boundary is within the

diffusion length L? ¼ 2
ffiffiffiffiffiffiffiffiffi
Dm

x t
p

. As a result, a larger k

means that more solute atoms can be used to heal the

cavity, leading to a higher critical stress. It is worth to

note that for stress levels up to 300 MPa, the growth

of the cavity can be regarded as being controlled by

vacancy diffusion, as discussed in Sect. 2.2. This
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Figure 8 Critical stress as a function of the grain-boundary/bulk

diffusivity ratio Dgb/Dm for different values of the relative inter-

cavity spacing k/a (colours) and the supersaturation Dx (markers

and line types). Full filling can only be achieved when the applied

stress is below the critical value.

Figure 9 Critical stress as a function of supersaturation Dx. Different colours correspond to grain-boundary/bulk diffusivity ratio Dgb/Dm.

From (a) to (c), the inter-cavity spacing k/a ratio is equal to 10, 20, and 50, respectively.
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stress range is larger than the stress range we are

interested in, and also covers the applied stresses in

previous experimental research [19, 22, 25, 26]. With

an increase in applied stress, the diffusion length

decreases and the cavity growth mechanism shifts

towards creep flow. The results for high stresses

above 300 MPa are also presented in Figs. 6, 7, 8, 9

and 10 for completeness.

Analytical model

From the finite element model simulations, we can

identify the dominant mechanism for the self-healing

of creep cavities by supersaturated solute corre-

sponds to 1D matrix diffusion of the solute towards

the grain boundary and subsequently transport of

this solute though the grain boundary towards the

free cavity surface connected to the grain boundary.

This 1D solute diffusion is observed for the following

conditions: (1) Dgb � Ds
m [Dh

m and

(2) 2
ffiffiffiffiffiffiffiffiffi
Dgbt

p
� k� að Þ. The first condition indicates

Figure 10 Critical stress rcr as a function of the relative inter-cavity spacing k/a for different levels of supersaturation Dx and different

values of the grain-boundary/bulk diffusivity ratio Dgb/Dm. From (a) to (d), supersaturation Dx is equal to 1, 2, 3, and 4 at.%, respectively.
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that the grain boundary acts as a much faster trans-

port route for solute than the matrix. In order to

reverse the vacancy flux by the Kirkendall effect, the

diffusivity of the solute atoms needs to be higher than

that of the host atoms in the matrix. The second

condition requires that the grain boundary is largely

depleted from supersaturated solutes as the diffusion

length exceeds the distance between the creep cavity

surface and the edge of the simulation box (half of the

inter-cavity spacing). This condition can only be met

for a finite inter-cavity spacing, which is generally the

case for practical situations. The second condition can

also be translated in a time requirement:

t � t2D�1D � 4 k� að Þ2=Dgb. For k = 20 lm and Dgb-

= 2.4 9 10–14 m2s-1 (at 550 �C) [22] this characteristic
time for the onset of 1D diffusion amounts to t2D-1D &
400 s. Under these conditions, an approximate ana-

lytical model will be constructed, for which the

results can than subsequently be compared to those

of the full finite element model.

The time evolution of the cavity depends on the

competition between the stress-driven vacancy flux

and the Kirkendall vacancy flux. Combining Eqs. (1)

and (2), the stress-driven vacancy flux at the interface

between the cavity surface and the grain boundary

ðr ¼ aÞ can be written as:

Jrv að Þ ¼
Dv

gbxv

kT

	 

rrjr¼a¼ �

Dv
gbxv

kT

	 

AB expðBÞ r0

a

� �

ð7Þ

where A and B are the fitting parameters for the

stress distribution along the grain boundary.

This inward stress-driven vacancy flux is constant

in time given a stable stress distribution. The inte-

grated stress-driven flux provides the time evolution

of the open volume of the cavity:

V tð Þ ¼ V 0ð Þ þ Vr tð Þ ¼ V0 � 2padð ÞJrv að ÞXt ¼ V0 þ ar0t

ð8Þ

where V0 / a3 is the initial cavity volume and a ¼
Dv

gb
xv

kT

� �
2pdð ÞXAB expðBÞ is a temperature-dependent

constant.

For 1D solute diffusion in the matrix towards the

grain boundary, the difference in diffusivity between

the solute and the host atoms results in a 1D Kirk-

endall vacancy flux at the interface between the

matrix and the grain boundary. When the solute

transport is much faster in the grain boundary than in

the matrix, the solute concentration in the grain

boundary is nearly constant and close to its equilib-

rium value. In that case, the 1D Kirkendall vacancy

flux at the interface between the matrix and the grain

boundary can be estimated by [29]:

JKv zj j ¼ d
2
; t

	 

� �

Ds
m �Dh

m

� �
Dx

X
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p Ds

m �Dh
m

� �
t

q ð9Þ

where Ds
m and Dh

m are the matrix diffusivities for the

solute and the host atoms, respectively. This Kirk-

endall vacancy flux is time dependent and for

Ds
m [Dh

m oriented from the grain boundary towards

the matrix. The integrated vacancy flux provides the

time evolution of the open volume of the cavity:

V1D
K tð Þ � 2 p k2 � a2

� �� �
X
Z t

0

JKv zj j ¼ d
2
; t0

	 

dt0 ¼ �bt1=2

ð10Þ

where the factor arises from the vacancy transport at

the top and bottom interfaces of the grain boundary

and b ¼ 4 k2 � a2
� �

Dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p Ds

m �Dh
m

� �q
is a temperature-

dependent constant.

Combining all contributions to the time evolution

of the open volume of the cavity gives:

V tð Þ ¼ V 0ð Þ þ Vr tð Þ þ V1D
K tð Þ ¼ V0 þ ar0t� bt1=2

ð11Þ

Healing of a creep cavity is achieved when the

open volume of the cavity vanishes as a result of the

solute transport at V = 0. The lowest time solution is

given by t1=2 ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ar0V

q� 
=2ar0. The critical

maximum stress for which a solution can be obtained

is:

rcr ¼
b2

4aV0
/ a

k2 � a2

a2

	 
2
Ds

m �Dh
m

Dv
gb

 !

Dxð Þ2

� a
k
a

	 
4 Ds
m

Dv
gb

 !

Dxð Þ2 ð12Þ

Equation 12 agrees well with the results in Figs. 8,

9 and 10. It is worth to note that the numerical results

are all based on a fixed initial cavity radius, i.e.

a = 0.5 lm, which corresponds to the average size of

the creep cavities in a Fe-Au system with a stress

level of 100 MPa after 10—20 h creep [19]. For a

cavity with smaller size (which is usually the case at
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early stage of creep), the healing time for the cavity

will be shorter, and the critical stress increases

accordingly. From Eq. 12, the critical stress scales as

rcr / a k
a

� �4 Ds
m

Dv
gb

� �
Dxð Þ2/ a�3. When the radius of the

cavity a is half of the value, the critical stress will be

increased by a factor of 8 and the healing time to fully

fill the cavity will be decreased by a factor of 8.

The corresponding critical time is related to the

critical stress by atcrrcr ¼ V0. As shown in Fig. 11, the

value of atcrrcr=V0 is approximately constant for a

low inter-spacing ratio k/a. For an inter-spacing ratio

k/a = 5 and a diffusivity ratio Dgb/Dm higher than

105, a value of atcrrcr=V0 = 2.3 is found, which indi-

cates that the simplified analytical model is a rea-

sonable approximation. Assuming that the region

where the processes are dominated by 1D diffusion is

marked by a value of atcrrcr=V0 \ 10, then it can be

seen that for diffusivity ratio Dgb/Dm higher than 107,

the 1D diffusion behaviour is found for k/a\ 30. For

lower values of the diffusivity ratio (Dgb/Dm\ 107),

the critical k/a value for 1D diffusion behaviour

continuously decreases and reaches a value of k/a &
10 for Dgb/Dm = 104. This behaviour is qualitatively

in line with the 1D diffusion results in the absence of

stress [29]. The critical time is the maximum time for

which a solution can be obtained and this scales as:

tcr ¼
4V0

b2
/ k2 � a2

a2

	 
�2

Ds
m �Dh

m

� ��1
Dxð Þ�2

� k
a

	 
�4

Ds
m

� ��1
Dxð Þ�2 ð13Þ

For a stress below the critical stress r0\rcrð Þ, the
time to complete filling th can be expressed in terms

of the critical time tcr and the critical stress rcr:

th
tcr

¼ rcr
r0

	 
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r0

rcr

r� 2
ð14Þ

The healing time grows continuously to th ¼ tcr for

r0 ¼ rcr. These results of the simplified analytical

model for the case of 1D solute diffusion are quali-

tatively in line with the results of the finite element

model calculations. It is worth to recall that these

time scales need to be large compared to the char-

acteristic time scale t2D�1D � k2=ð4DgbÞ, which is

required to deplete the solute in the grain boundary

and establish the 1D diffusion pattern.

The predictions of the analytical model are com-

pared with the experimental tomography data in ref

[19]. The results for the volume of precipitates, vol-

ume of open cavities, and the ratio between the vol-

ume of the precipitate and the sum of that volume

and the remaining empty cavity Vprec

�
Vprec þ Vopen

� �

are compared. For the Fe-Au system, where Dgb �
DAu

m � DFe
m (DAu

m and DFe
m are the bulk diffusivities of

Au and Fe, respectively), the precipitation volume

and open cavity volume can be estimated by Vprec ¼

4 k2 � a2
� �

Dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pDAu

m t
p

and Vopen ¼ V0 þ ar0t�
ffiffiffiffiffiffiffiffiffi
DAu

m

�r

�DFe
m ÞDAu

m Vprec � V0 þ ar0t� Vprec, respectively. The

evolution of Vprec, Vopen, and Vprec

�
Vprec þ Vopen

� �

with time is shown in Fig. 12. The cavity radius at

t = 0 is taken as 0.5 lm. The inter-cavity spacing is

estimated based on the number density of cavities

and the grain size in the Fe-Au alloy. Assuming that

the cavities are uniformly spaced on the grain

boundaries, the half inter-cavity spacing k, the grain

size dg, and the number density of cavities N0 (lm
-3)

fulfil the following relationship 1
�
4k2 ¼ N0dg. Taking

the grain size dg = 57 lm and number densities from

ref [19], the half inter-cavity spacing yields 7.9, 7.6,

4.8, and 6.9 lm, respectively. In Fig. 12, the half inter-

cavity spacing is taken as 5.7 lm, i.e. k = dg/10. The

stress level is taken as 100 MPa. The calculated vol-

umes of both the precipitates and the open cavities

Figure 11 The value of atcrrcr=V0 for as a function of the relative

inter-cavity spacing k/a and the grain-boundary/bulk diffusivity

ratio Dgb/Dm for a supersaturation Dx of 4 at.%. A value close to 1

represents a 1D diffusion pattern. The contour where atcrrcr=V0 ¼
10 is plotted to indicate the boundary for the 1D diffusion regime.
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have the same magnitude as the experimental data,

while the decrease in the Vprec

�
Vprec þ Vopen

� �
ratio

with time agrees well with the model. It is worth to

note that the tomography data were taken from the

creep-failed experiments. At an earlier stage of creep,

when the cavities are smaller and the inter-cavity

spacing is larger, it is likely that the cavities can be

fully filled.

In Fig. 13, the results for Vprec, Vopen and

Vprec

�
Vprec þ Vopen

� �
are calculated using the experi-

mental data (i.e. half inter-cavity spacing k = 7.9, 7.6,

4.8 and 6.9 lm; the stress level and lifetime are

60 MPa (642 h), 80 MPa (376 h), 100 MPa (210 h),

and 117 MPa (57 h), respectively) and are compared

with the experimental results. Again, the calculation

is in good agreement with the experimental data.

Conclusions

We have developed a set of models which predicts

the growth and filling of grain-boundary creep cavi-

ties in self-healing binary alloys as a function of time,

stress, level of supersaturation, and inter-cavity

spacing and diffusion ratios. The competition

between the inward and outward vacancy fluxes

results in the growth or shrinkage of the open volume

of the creep cavity. It is found that the filling ratio

shows a maximum value at a critical time tcr, which

corresponds to the time when the inward vacancy

flux exceeds the outward vacancy flux (integrated

over the surface area). Two conditions can be dis-

tinguished: one where the cavity becomes fully filled

before this critical time is reached (and the process

stops) and one where the only partial filling will take

place and the growth of the cavity will continue. For

each combination of parameters, the critical applied

stress rcr is calculated, below which the cavity can be

fully filled.
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Figure 12 Comparison between the analytical model and the

experimental data for (a) Vprec, (b) Vopen and (c)

Vprec

�
Vprec þ Vopen

� �
in Fe-Au system. The half inter-cavity

spacing is taken as k = dg/10. The stress level is taken as

100 MPa. The experimental data are from ref [19].
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Figure 13 Comparison between the analytical model and the experimental data for a Vprec, b Vopen, and c Vprec

�
Vprec þ Vopen

� �
. The

experimental data are from ref [19].
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The analytical model, fed by insights from the

numerical model, shows that for conditions leading

to quasi-1D solute transport, the critical stress

approximately scales as rcr / k=að Þ4 Ds
m=Dgb

� �
Dxð Þ2,

where k=a is the relative inter-cavity spacing, Ds
m=Dgb

the ratio of the solute diffusivity in the matrix and the

vacancy diffusion in the grain boundary and Dx is the
supersaturation of the solute. The critical healing

time obtained at the critical stress scales as tcr / 1=rcr,
while for lower stresses the pore filling time th can be

expressed in terms of tcr and rcr. The results from the

analytical model are in good agreement with the

results from the nanotomography experiments.
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[29] Versteylen CD, Szymański NK, Sluiter MHF, van Dijk NH

(2018) Finite element modelling of creep cavity filling by

solute diffusion. Philos Mag 98:864–877. https://doi.org/10.

1080/14786435.2017.1418097

[30] Versteylen CD, van Dijk NH, Sluiter MHF (2017) First-

principles analysis of solute diffusion in dilute bcc Fe-X

alloys. Phys Rev B 96:094105–094113. https://doi.org/10.

1103/PhysRevB.96.094105

[31] Kassner ME, Hayes TA (2003) Creep cavitation in metals.

Int J Plast 19:1715–1748. https://doi.org/10.1016/s0749-64

19(02)00111-0

[32] Beere W, Speight MV (1978) Creep cavitation by vacancy

diffusion in plastically deforming solid. Metal Sci

12:172–176. https://doi.org/10.1179/msc.1978.12.4.172

[33] Edward GH, Ashby MF (1979) Intergranular fracture during

power-law creep. Acta Metall Mater 27:1505–1518. https://d

oi.org/10.1016/0001-6160(79)90173-1

[34] Needleman A, Rice JR (1980) Plastic Creep Flow Effects in

the Diffusive Cavitation of Grain-Boundaries. Acta Metall

Mater 28:1315–1332. https://doi.org/10.1016/0001-6160(80

)90001-2

[35] Van Der Giessen E, Van Der Burg MWD, Needleman A,

Tvergaard V (1995) Void growth due to creep and grain

boundary diffusion at high triaxialities. J Mech Phys Solids

43:123–165. https://doi.org/10.1016/0022-5096(94)00059-e

[36] Chen IW, Argon AS (1981) Diffusive growth of grain-

boundary cavities. Acta Metall Mater 29:1759–1768. http

s://doi.org/10.1016/0001-6160(81)90009-2

[37] Herring C (1950) Diffusional viscosity of a polycrystalline

solid. J Appl Phys 21:437–445. https://doi.org/10.1063/1.

1699681

J Mater Sci (2022) 57:12034–12054 12053

https://doi.org/10.4028/0-87849-428-6.3145
https://doi.org/10.1016/S1359-6454(02)00164-7
https://doi.org/10.1016/S1359-6454(02)00164-7
https://doi.org/10.1007/s10853-013-7411-9
https://doi.org/10.1007/s10853-013-7411-9
https://doi.org/10.1103/PhysRevB.82.174111
https://doi.org/10.1103/PhysRevB.82.174111
https://doi.org/10.1103/PhysRevB.81.094103
https://doi.org/10.1103/PhysRevB.81.094103
https://doi.org/10.1016/j.actamat.2016.09.023
https://doi.org/10.1016/j.actamat.2013.08.015
https://doi.org/10.1016/j.actamat.2013.08.015
https://doi.org/10.1002/adem.201400511
https://doi.org/10.1002/adem.201400511
https://doi.org/10.1007/s11661-015-3169-9
https://doi.org/10.1007/s11661-015-3169-9
https://doi.org/10.1016/j.jallcom.2013.09.011
https://doi.org/10.1016/j.jallcom.2013.09.011
https://doi.org/10.1007/s11661-016-3642-0
https://doi.org/10.1007/s11661-016-3642-0
https://doi.org/10.1016/j.actamat.2019.01.014
https://doi.org/10.1016/j.actamat.2019.01.014
https://doi.org/10.1007/s11661-020-05862-6
https://doi.org/10.1007/s11661-020-05862-6
http://www.comsol.com
https://doi.org/10.1016/0001-6160(75)90047-4
https://doi.org/10.1016/0001-6160(75)90047-4
https://doi.org/10.1080/14786435.2017.1418097
https://doi.org/10.1080/14786435.2017.1418097
https://doi.org/10.1103/PhysRevB.96.094105
https://doi.org/10.1103/PhysRevB.96.094105
https://doi.org/10.1016/s0749-6419(02)00111-0
https://doi.org/10.1016/s0749-6419(02)00111-0
https://doi.org/10.1179/msc.1978.12.4.172
https://doi.org/10.1016/0001-6160(79)90173-1
https://doi.org/10.1016/0001-6160(79)90173-1
https://doi.org/10.1016/0001-6160(80)90001-2
https://doi.org/10.1016/0001-6160(80)90001-2
https://doi.org/10.1016/0022-5096(94)00059-e
https://doi.org/10.1016/0001-6160(81)90009-2
https://doi.org/10.1016/0001-6160(81)90009-2
https://doi.org/10.1063/1.1699681
https://doi.org/10.1063/1.1699681


[38] Eliaz N, Banks-Sills L (2008) Chemical potential, diffusion

and stress – common confusions in nomenclature and units.

Corros Rev 87–103. https://doi.org/10.1515/corrrev.2008.87

[39] Hull D, Rimmer DE (1959) The growth of grain-boundary

voids under stress. Philos Mag 4:673. https://doi.org/10.10

80/14786435908243264

[40] (1990) ASM Handbook, Volume 1. ASM International,

Materials Park, OH

[41] Ruch L, Sain DR, Yeh HL, Girifalco LA (1976) Analysis of

diffusion in ferromagnets. J Phys Chem Solids 37:649–653.

https://doi.org/10.1016/0022-3697(76)90001-9

[42] Arrott AS, Heinrich B (1981) Application of magnetization

measurements in iron to high temperature thermometry.

J Appl Phys 52:2113. https://doi.org/10.1063/1.329634

[43] Inoue A, Nitta H, Iijima Y (2007) Grain boundary self-dif-

fusion in high purity iron. Acta Mater 55:5910–5916. http

s://doi.org/10.1016/j.actamat.2007.06.041

[44] Javierre E, Vuik C, Vermolen FJ, van der Zwaag S (2006) A

comparison of numerical models for one-dimensional Stefan

problems. J Comput Appl Math 192:445–459. https://doi.

org/10.1016/j.cam.2005.04.062

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

12054 J Mater Sci (2022) 57:12034–12054

https://doi.org/10.1515/corrrev.2008.87
https://doi.org/10.1080/14786435908243264
https://doi.org/10.1080/14786435908243264
https://doi.org/10.1016/0022-3697(76)90001-9
https://doi.org/10.1063/1.329634
https://doi.org/10.1016/j.actamat.2007.06.041
https://doi.org/10.1016/j.actamat.2007.06.041
https://doi.org/10.1016/j.cam.2005.04.062
https://doi.org/10.1016/j.cam.2005.04.062

	Modelling the growth and filling of creep-induced grain-boundary cavities in self-healing alloys
	Abstract
	Graphical abstract

	Introduction
	Model description
	Model geometry
	Cavity growth by stress-driven vacancy diffusion
	Solute diffusion and cavity closing

	Results and discussion
	Solute transfer profile
	Vacancy fluxes
	Filling ratio
	Critical stress
	Analytical model

	Conclusions
	Acknowledgements
	References




