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ABSTRACT

Zirconia-based shape memory ceramics (SMCs) exhibit anisotropic mechanical

response when undergoing elastic deformations as well as during austenite–

martensite phase transformation. This behavior results in different types of

strain incompatibility at grain boundaries, which we study here using a

micromechanical model. A single-crystal model is implemented to provide a full

mechanistic three-dimensional description of the anisotropic elastic as well as

martensitic transformation stress–strain response, including non-Schmid

behavior caused by the significant volume change during martensitic transfor-

mation. This model was calibrated to and validated against compression tests of

single-crystal zirconia micro-pillars conducted previously, and then used to

model bi-crystals. Upon the introduction of a grain boundary, the simulation

provides detailed information on the nucleation and evolution of martensite

variants and stress distribution at grain boundaries. We identify bi-crystal

configurations which result in very large stress concentrations at very low

deformations due to elastic incompatibility, as well as others where the elastic

incompatibility is relatively low and stress concentrations only occur at large

transformation strains. We also show how this approach can be used to explore

the misorientation space for quantifying the level of elastic and transformation

incompatibility at SMCs grain boundaries.
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GRAPHICAL ABSTRACT

Micromechanics models provide insights on grain boundary elastic and phase

transformation strain incompatibility in shape memory zirconia

Elastic incompatibility

Grain boundary stiffening as a function
of disorientation

Elastic incompatibility-induced
stress concentration at grain
boundary

Transformation incompatibility

Grain boundary stress concentration at
2% strain as a function of disorientation

Transformation
incompatibility-induced
stress concentration at grain
boundary

Introduction

By virtue of a reversible martensitic transformation,

shape memory materials are able to recover their

original shape upon heating, and can exhibit

superelasticity—reversible large strains accommo-

dated by the transformation. Recent work [1–6] has

expanded the study of shape memory from metals to

martensitic ceramics, with significant attention on

zirconia-based shape memory ceramics (SMCs). At

the crystal level, SMCs can undergo reversible dif-

fusionless solid-to-solid phase transformations from

austenite to martensite similar to those observed in

metallic shape memory materials, while also having

much higher hardness, transformation stress, trans-

formation temperature, and transformation hystere-

sis. These unique properties are promising for

various applications. Large transformation stresses

on the order of GPa are expected to translate into

large output stresses when used for actuator appli-

cations [7]. High melting and transformation tem-

peratures make SMCs viable for high-temperature

applications. The ability to dissipate significant

amounts of energy makes them desirable materials

for force protection and shielding purposes.
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However, polycrystalline zirconia-based ceramics

are known to suffer from premature fracture at very

small strain levels resulting in very limited supere-

lastic cycling [8]. This embrittlement problem has

severely limited the application of these materials in

practical situations. It has been recently demon-

strated that when made into small volumes or single-

crystal forms, zirconia-based SMCs can avoid such

catastrophic cracking [1, 6]. For example, Lai et al.

manufactured zirconia micro-pillars that are able to

withstand dozens of transformation cycles at signifi-

cant strain levels of several percent, indicating great

improvement over polycrystalline superelastic zirco-

nia [1]. Large (cm-scale) single crystals of SMC also

exhibit highly reversible transformation behavior

over many cycles [9].

The issue of stress concentration and potential

intergranular fracture due to grain boundary con-

straints is well studied in polycrystalline metals

including shape memory alloy (SMAs). Extensive

studies have been conducted using models of crystal

plasticity to understand the role of microstructure

attributes such as grain orientation, grain boundary

characteristics, and specimen texture on deformation

and failure mechanism at polycrystalline grain

boundaries [10–15]. In the case of SMAs, previous

work has investigated the tendency of Cu-based

SMAs to fracture along grain boundaries due to

strain incompatibilities there [16–18]. In SMCs, grain

boundary strain incompatibility is less studied,

although recent work has provided significant

insights [9, 19–21]. Pang et al. [19] investigated the

two-dimensional compatibility of the martensite-

austenite interface via the application of the cofactor

conditions as a possible factor controlling the crack-

ing of bulk polycrystalline zirconia-based SMCs.

Their results suggested that samples with excellent

interface compatibility could avoid cracking during

thermal cycles and bulk compatibility is not neces-

sarily the dominant cause of transformation-induced

fracture. The same authors [20] analyzed the differ-

ences in thermally-induced transformation behaviors

between ZrO2-CeO2 oligocrystalline powders and

sintered pellets. The role of grain boundaries in the

damage evolution of yttria-doped zirconia subject to

thermal cyclic loading was also discussed in [9, 21].

However, these works focused on the thermally

triggered transformation, which involves more

degrees of freedom in the selection of transformation

variants as compared with a stress-triggered

transformation such as is relevant for superelasticity.

The main goal of this paper is to improve our

understanding of the sources of grain boundary

incompatibility in zirconia-based SMCs. This can

help identify grain boundary configurations that

increase the superelastic range of SMCs in polycrys-

talline form.

The martensitic phase transformation in zirconia

comprises a shear distortion as well as a significant

volume change, which is far larger than typical in

SMAs [9, 19, 22, 23]. Similar to shape memory alloys,

micromechanical features of martensite, including

the transformation systems (habit plane normal and

transformation direction), can be identified by the

geometrically nonlinear theory of martensite [24–27].

In the case of SMAs, there have been significant

efforts in developing continuum models of marten-

sitic transformation with micromechanical descrip-

tions of deformation at the crystal level [28–32]. In

order to incorporate details of the crystallographic

microstructure of martensite into thermodynamic

formulations, micromechanical constitutive models

take transformation strains of martensitic variants

into account by the crystallographic theory of the

martensitic transformation [33–35] or the geometri-

cally nonlinear theory of martensite [24, 27] in the

constitutive framework. Some micromechanical

models went further to consider self-accommodation,

reorientation and detwinning, and other features of

martensitic transformation [36–40]. Micromechanical

models have proven instrumental for modeling the

material response under multi-axial stress states.

Several authors obtained accurate predictions of

macroscopic mechanical behavior of SMAs

[28, 41–47]. However, there have been far fewer

continuum models for SMCs and efforts have largely

gone into the development of atomistic or phase field

models. A comprehensive review of computational

models for SMCs can be found in [48]. Zhang and

Zaeem conducted extensive molecular dynamics

(MD) studies of various aspects of inelastic defor-

mation of single crystalline yttria-stabilized tetrago-

nal zirconia (YSTZ) nanopillars including different

deformation mechanisms, orientation dependency,

grain size dependency, and the influence of preex-

isting defects [49–52]. Phase field models have also

been shown to be powerful tools in modeling

martensitic transformation in SMAs [53–55] and,

more recently, SMCs [56–58]. Various types of phase

field models have been developed for tetragonal to
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monoclinic transformation where different thermo-

dynamic potentials and order parameters are used. In

particular, in [57] a three-dimensional phase field

model for tetragonal-to-monoclinic transformation in

zirconia was proposed. The model took into account

all possible martensite variants from different corre-

spondences and was used to study the formation of a

monoclinic embryo in a tetragonal single crystal. This

model successfully captured the variant selection

process based on the minimum formation energy and

the effect of variant strain accommodation during the

tetragonal-to-monoclinic transformation. It also

reproduced the microstructural patterns observed in

experiments. In [58], the authors combined a varia-

tional formulation of crack propagation with a two-

dimensional phase field model of tetragonal-to-

monoclinic transformation. The model was employed

to study crack growth in a single-crystal tetragonal

zirconia.

In this work, we implemented a numerical frame-

work for modeling martensitic transformation in

zirconia-based SMCs at the continuum level incor-

porating micromechanical information. The aniso-

tropic rate-dependent constitutive model is based on

the three-dimensional constitutive framework for

single-crystal SMAs developed in [29–31, 39]. We

extended the framework to SMCs and used the geo-

metrically nonlinear theory of martensite to identify

the particular 24 transformation systems in zirconia-

based SMCs, based on the knowledge of lattice

parameters. In addition, we extended the modeling

framework to account for the non-Schmid effect

observed in SMCs [3], which to our knowledge has

never been done to any prior FEM-based SMC

model. The model was calibrated against micro-pillar

compression tests presented in [3, 4], and subse-

quently used to verify the orientation dependence of

transformation stress and strain. The model was

incorporated in our in-house computational frame-

work R MIT to perform large-scale finite element

simulations [59–61]. We then conducted high-reso-

lution three-dimensional finite element simulations

to explore and understand strain incompatibilities at

grain boundaries due to both elastic and transfor-

mation anisotropy in bi-crystals SMCs with general

misorientations. The organization of this paper is as

follows. In Sect. 2, we described the computational

framework including the single-crystal constitutive

formulation and update algorithm. In Sect. 3, we

calibrated the model using experimental data

obtained by micro-compression tests. In Sect. 4, we

conducted a series of finite element simulations to

investigate different types of strain incompatibilities

arising at grain boundaries in zirconia using the cal-

ibrated model, followed by analysis and discussion of

the results. Conclusions and contributions of this

paper are presented in Sect. 5.

Micromechanics-based model

The proposed constitutive model for single-crystal

zirconia-based SMCs is built upon the general con-

tinuum framework for describing martensitic trans-

formations at the single-crystal level proposed by

Anand et al [29–31, 39]. This framework requires the

identification and geometric description of the

transformation systems pertaining to the specific

crystal structure of the material. The geometric

characteristics of the transformation systems for

martensitic transformations are defined by the nor-

mal to the austenite–martensite interface plane (habit

plane), mi
0, and the transformation strain direction

vector bi0, where i is the index of the existing trans-

formation systems. These quantities can be computed

from the geometrically nonlinear theory of martensite

[24–27] based on the crystal structure of the austenite

and martensite phases of the material and the lattice

parameters in both phases. Simha [25] used this

theory to compute the transformation systems in

zirconia where the phases are respectively tetragonal

and monoclinic for a particular set of lattice param-

eters, see also [26] for a review of martensitic trans-

formation systems in other ceramics. Here, we

computed the transformation systems for the specific

composition of the ceria-doped zirconia used in the

experiments from [3]. A summary of the approach

and resulting 24 systems is shown in the Appendix

(Table 1).

Importantly, the martensitic transformation in zir-

conia not only involves lattice shear as in many

metallic shape memory materials, but it is also

accompanied by a significant volume change (� 4%)

[8]. From a micromechanics perspective, transfor-

mation systems in zirconia are non-orthogonal and

this results in a non-Schmid effect during the trans-

formation. In order to take into account the normal

deformation in each transformation system which is

responsible for the volume change, we adapted the
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formulation in [62] developed for crystalline silicon.

A robust explicit algorithm is developed to update

the constitutive law. The formulation of the consti-

tutive model follows closely the presentation in [31].

For completeness, the main steps in the formulation

are summarized below.

Kinematics

A multiplicative decomposition of the deformation

gradient into elastic and inelastic components is

assumed,1

F ¼ FeFp ð1Þ

Free energy

The free energy per unit reference volume w is

decomposed into three terms: the strain energy we,

the energy of phase transformation wp, and the ther-

mal energy wh [63]:

wðEe; h; nÞ ¼ weðEe; h; nÞ þ wpðn; hÞ þ whðhÞ ð2Þ

where n is the martensite volume fraction, and h is

the temperature.

The strain energy is given by:

weðEe; h; nÞ ¼ 1

2
Ee � CðnÞEe ð3Þ

where C is the fourth-order elasticity tensor. Note that

in this study we neglected the thermal expansion

term. The second Piola–Kirchhoff elastic stress tensor

Te follows from this expression as:

Table 1 Habit plane normal and transformation directions of the 24 transformation systems. The monoclinic lattice parameters are

a ¼ 0:51597; b ¼ 0:52222; c ¼ 0:53227; b ¼ 99:14

i ½mi�1 ½mi�2 ½mi�3 ½b�1 ½bi�2 ½bi�3

1 0.8230 �0.2522 �0.5090 0.0265 �0.0081 0.0169

2 �0.8230 0.2522 �0.5090 �0.0265 0.0081 0.0169

3 0.8230 0.2522 �0.5090 0.0265 0.0081 0.0169

4 �0.8230 �0.2522 �0.5090 �0.0265 �0.0081 0.0169

5 0.7856 �0.3519 �0.5090 0.0253 �0.0113 0.0169

6 �0.7856 0.3519 �0.5090 �0.0253 0.0113 0.0169,

7 0.6987 0.5027 �0.5090 0.0225 0.0162 0.0169

8 �0.6987 �0.5027 �0.5090 �0.0225 �0.0162 0.0169

9 0.5027 �0.6987 �0.5090 0.0162 �0.0225 0.0169

10 �0.5027 0.6987 �0.5090 �0.0162 0.0225 0.0169

11 �0.3519 �0.7856 �0.5090 �0.0113 �0.0253 0.0169

12 0.3519 0.7856 �0.5090 0.0113 0.0253 0.0169

13 0.7856 0.3519 �0.5090 0.0253 0.0113 0.0169

14 �0.7856 �0.3519 �0.5090 �0.0253 �0.0113 0.0169

15 0.6987 �0.5027 �0.5090 0.0225 �0.0162 0.0169

16 �0.6987 0.5027 �0.5090 �0.0225 0.0162 0.0169

17 0.7856 0.3519 �0.5090 0.0162 0.0225 0.0169

18 �0.7856 �0.3519 �0.5090 �0.0162 �0.0225 0.0169

19 0.6987 �0.5027 �0.5090 �0.0113 0.0253 0.0169

20 �0.6987 0.5027 �0.5090 0.0113 �0.0253 0.0169

21 0.2522 0.8230 �0.5090 0.0081 0.0265 0.0169

22 �0.2522 �0.8230 �0.5090 �0.0081 �0.0265 0.0169

23 �0.2522 0.8230 �0.5090 �0.0081 0.0265 0.0169

24 0.2522 �0.8230 �0.5090 0.0081 �0.0265 0.0169

1 Fp is not the plastic part of the deformation gradient as is
normally used in the plasticity theory and the subscript p is for
phase transformation.
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Te ¼ owe

oEe ¼ CEe ð4Þ

The elastic moduli C are obtained in terms of the

respective values for the austenite and martensite

phases Ca
ijkl and Cmijkl, as a function of the martensite

volume fraction n using the rule of mixtures,

Cijkl ¼ nCm
ijkl þ ð1 � nÞCaijkl ð5Þ

Te is related to the first Piola–Kirchhoff stress S and

Cauchy stress r through:

S ¼ FeTeFp�T ð6Þ

r ¼ J�1FeTeFeT ð7Þ

The energy of phase transformation is given by,

wpðn; hÞ ¼ kT
hT

ðh� hTÞnþ
1

2

X

i;j

gijninj ð8Þ

where hT � 1
2 ðhms þ hasÞ is the phase equilibrium

temperature, kT is the latent heat of phase transfor-

mation at hT, and gij is the interaction matrix that

accounts for possible energetic interactions between

transformation systems. Here we shall neglect the

interactions between systems and consider gij ¼ 0 in

our application of the theory to zirconia due to the

lack of experimental data that would allows us to

calibrate the interaction coefficients.

The thermal energy is given by,

whðhÞ ¼ cðh� h0Þ � ch ln
h
h0

ð9Þ

where c is the constant specific heat, and h0 is the

reference temperature.

Transformation conditions

Similar to the crystal plasticity theory [64], a resolved

shear stress for phase transformation in each trans-

formation system is defined as follows,

si ¼ bi0 � ðCeTeÞmi
0 ð10Þ

A thermodynamic force b (back stress) that is work

conjugate to the martensite volume fraction n is

defined as,

b ¼ owp

on
¼ kT

hT
ðh� hTÞ ð11Þ

For simplicity, we assume b remains the same for all

transformation systems. Neglecting the interaction

effects of different systems, the driving force f i for

phase transformation is defined as,

f i ¼ si � b ð12Þ
Forward and reverse transformation can only occur

when the driving force f i in the transformation sys-

tem reaches a critical value Yi. The transformation

criteria are as follows [31],

f ið _nÞ ¼
Yi
þ for _n

i
[ 0;

�Yi
� for _n

i
\0:

8
<

: ð13Þ

where Yi
þ and Yi

� are material parameters defined as

the critical transformation resistance for forward and

reverse transformation, respectively.

The consistency condition for phase transformation

in each system can be obtained in a similar manner

[29] to that in the plasticity theory [64],

_ðsi � b� Yi
þÞ

_ni ¼ 0 or
_ðsi � bþ Yi

�Þ
_ni ¼ 0 ð14Þ

Rate-dependent theory

The rate-independent formulation requires an

implicit algorithm to determine the active transfor-

mation systems and associated martensite volume

fractions. This is usually fraught with numerical dif-

ficulties which stem from the lack of convexity of the

problem. A rate-dependent transformation condition

[31], facilitates the use of an explicit algorithm, which

robustly produces acceptable numerical results

[65, 66]. Such a rate-dependent flow rule will reduce

to the rate-independent one (Eq. 14) in the limit

where the rate-dependent constant approaches zero.

Closely following the derivation in [31], the main

steps in the formulation are summarized below,

si � b ¼
þj

_n
i

�ni
jmYi

þ for _n
i
> 0;

�j
_n
i

�ni
jmYi

� for _n
i
6 0;

8
>>>><

>>>>:

ð15Þ

where the reference transformation rate �n
i
, and the

rate-dependent constant m, are additional material

parameters for the rate-dependent model.

The transformation condition in the rate-depen-

dent theory can be obtained by inverting Eq. 15,
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_n
i ¼

þ�nij s
i � b

Yi
þ

j1=m for si � b > 0;

��nij s
i � b

Yi
�

j1=m for si � b 6 0;

8
>>><

>>>:
ð16Þ

Equation 16 shows that the rate of change in

martensite volume fraction in each transformation

system _ni can be obtained in a straightforward man-

ner in the rate-dependent theory. The volume frac-

tion of martensite ni is updated at each time step

upon solving for
_ni. Closely following the framework

in [29, 31], we assume the critical transformation

stress remains the same for all transformation sys-

tems, Yi
þ ¼ Yi

� ¼ Y for simplicity and lacking better

experimental evidence.

Phase transformation flow rule

As stated before, the martensitic transformation in

zirconia is accompanied by a significant volume

change and stresses normal to the habit plane also

contribute to the driving force for martensitic trans-

formation in addition to shear stresses. From a

micromechanics perspective, this is explained by the

fact that transformation systems in zirconia are non-

orthogonal which introduces a non-Schmid effect in

the transformation response. In order to account for

this non-Schmid effect, we adapted the formulation

in [62] to include the normal deformation during

transformation.

The direction of phase transformation b0 is

decomposed as,

nb0 ¼ nss0 þ nnm0 ð17Þ

where s0 and m0 are the shear and normal directions,

respectively, and nn ¼ nb0 �m0.

By including the normal deformation across the

habit plane, the transformation velocity gradient

becomes,

Lp ¼
XN

i¼1

_n
i

1 þ nin
bi0 �mi

0 ð18Þ

In summary, the rate-dependent flow rule of the

phase transformation reads,

_Fp ¼ LpFp

Lp ¼
XN

i¼1

_n
i

1 þ nin
bi0 �mi

0

_n
i ¼ �nj s

i � bi

Y
j1=msgnðsi � biÞ

ð19Þ

Summary of governing and constitutive
equations

The linear momentum balance:

Div Sþ b ¼ q0 €u ð20Þ

The elastic stress–strain relation:

Te ¼ C½Ee � Aðh� h0Þ� ð21Þ

The transformation back stress:

b ¼ owp

on
¼ kT

hT
ðh� hTÞ ð22Þ

The resolved shear stress for each transformation

system:

si ¼ bi0 � ðCeTeÞmi
0 ð23Þ

The rate-dependent phase transformation flow rule:

_Fp ¼ LpFp;

Lp ¼
XN

i¼1

_n
i

1 þ nin
b0

i �m0
i

_n
i ¼ �nj s

i � b

Y
j1=m sgnðsi � bÞ;

ð24Þ

It bears emphasis that the use of the constitutive

model in calculations requires the specification of the

constitutive model parameters: anisotropic elastic

moduli in both phases Ca
ijkl; C

m
ijkl, the transformation

stress Y, the back stress b, and the orientation of each

crystal relative to the frame of the simulations in

which the loading directions are specified. In our

implementation of the model, we use the rotation

matrix to define the crystal orientation with respect to

the global reference frame. This rotation matrix is

used to effect the necessary tensorial transformations

to the global coordinate system in which the loading

is applied. The rotation matrix can also be obtained

from the Euler angles determined experimentally.
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Explicit constitutive update algorithm

An explicit algorithm that solves for the volume

fraction of martensite in each transformation system

in a sequential manner is implemented for updating

the constitutive equations [65, 66]. Each transforma-

tion system is handled iteratively in such a calcula-

tion. The determination of forward or reverse

transformation is distinguished by the sign of the

overstress, where positive values indicate forward

transformation (to monoclinic martensite) and nega-

tive ones a reverse transformation (to tetragonal

austenite). At each time step, the transformation

system with largest absolute overstress jsi � bj is

identified and the corresponding volume fraction is

updated according to Eq. 16. The computation pro-

ceeds with the other systems in decreasing order of

absolute overstress until there is no inactive system

with admissible overstress (i.e., for the forward

transformation the resolved shear stress exceeds the

back stress, and for the reverse transformation the

resolved shear stress is smaller than the back stress).

The detailed algorithm is as follows,

1. Calculate the volume fraction ni for all systems

based on the step tn;

2. Compute Fe ¼ Fnþ1F
p�1

n and evaluate si for all

systems;

3. Calculate the overstress si � b for all systems and

determine its largest absolute value. If this over-

stress is negative: if si � b[ 0 for all systems, go

to step 6; if this overstress is positive: if si � b\0

for all systems, go to step 6. Otherwise:

4. Evaluate DFp ¼ _n
i

n

1þnin
dtðbi0 �mi

0Þ based on the sys-

tem i with the largest absolute value of overstress;

5. Premultiply Fp by DFp, return to step 2 using the

updated Fp;

6. Compute new volume fraction rates _ni for each

transformation system.

Model calibration using nano-pillar
compression tests

The constitutive model described above is calibrated

against the micro-pillar compression tests in [3, 4],

where grain orientations of single-crystal micro-pillar

samples were identified using electron backscatter

diffraction and correlated with room temperature

mechanical response. 24 transformation systems are

identified from correspondence B. (Neither corre-

spondence A or C produces any habit plane for this

specific set of lattice parameters.) These experiments

provide the following data: the critical stress for room

temperature transformation, the transformation

strain that results, and an approximate value for the

loading (tetragonal) elastic modulus. A wide variety

of mechanical responses was observed amongst dif-

ferently oriented samples, including martensitic

transformation without cracking, plastic slip, and

fracture. An important limitation of micro-pillar

compression experiments is the significant difference

between the measured and theoretical loading mod-

ulus [4]. In this particular reference, it was observed

that for most of the samples with smaller transfor-

mation stresses, micro-compression experiments

underestimated elastic moduli significantly. This

discrepancy was attributed to several aspects of the

micro-compression experiments such as substrate

and tip compliance, minor misalignments, possible

defects in the micro-pillar samples and indentation

compliance at the point of contact of the tip and

pillar.

We conducted simulations of zirconia micro-pillars

with various orientations undergoing compression.

In the simulation, we assumed an idealized com-

pression test and artificial compliance was not con-

sidered. We therefore expect to obtain a much stiffer

elastic response than the experiments. A test of a

micro-pillar with Euler angles E1 ¼ 53�, E2 ¼ 122�,

E3 ¼ 299� that underwent full martensitic transfor-

mation without cracking was taken as the basis for

calibrating the model parameters.

Elastic constants for both austenite and martensite

phases were obtained from [67]. Figure 1a shows the

results of the model using the theoretical values of

the elastic constants, where the transformation stress

Y ¼ 6 MPa and backstress b ¼ 3 MPa are calibrated to

match the experimental results. In this particular

orientation, the elastic loading modulus in the

experiment was about three times smaller than the

theoretical value, as a result of the machine compli-

ance issues described above. Accordingly, in Fig. 1b

we perform an a posteriori linear machine compli-

ance correction of the strain, to force a match with the

theoretical modulus of the tetragonal phase at zero

strain. Since the loading and unloading moduli are

similar, we used the value obtained from the
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austenite phase for both loading and unloading cases

for simplicity. Figure 1b shows that after adjusting

the moduli to the theoretical value, the model cap-

tures the stress–strain response of the test using the

calibrated parameters quite well.

To verify the ability of the calibrated model to

capture the orientation dependence of transformation

stress in zirconia, we conducted simulations using

various orientations of the samples tested in [4] that

underwent martensitic transformation without frac-

ture. As a way of summarizing the results, we

extracted from the simulation results the calculated

transformation stresses for each orientation and

compared them with the experimentally measured

values in Fig. 2. The results show that, except for a

few outliers, the theoretical predictions are a rea-

sonable match to the measured values, despite the

unquantified uncertainties, including those in the

measurements of grain orientation, possible defects

in the micro-pillars, the control of boundary condi-

tions and shape of the micro-pillars.

Figure 1 Simulation results compared with experiments, Euler angles = [53, 122, 299].

Figure 2 Orientation dependence of critical transformation stress:

simulation results compared with experiments.
Figure 3 An example of the bi-crystal specimen.

11140 J Mater Sci (2022) 57:11132–11150



Figure 4 Contours of: a von Mises; c–e martensite volume

fraction; in the bi-crystal cross section with normal y; b von Mises

in the bi-crystal cross section with normal z. The figures illustrate

that there is a strong stress concentration near the bi-crystal

interface at a low strain level. Figures b–d show at that level, there

is an incipient but very low transformation. Martensitic

transformation is primarily triggered in system 19, but the

overall amount of martensite volume fraction is still very small.
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Competition between phase
transformation and incompatibility
at grain boundaries in bi-crystals

To improve our understanding of incompatibilities

arising from elastic anisotropy as well as incompati-

bility of transformations at grain interfaces, high-

resolution three-dimensional finite element simula-

tions of bi-crystal zirconia specimens subjected to

compressive loading were conducted. We considered

a simple scenario in which two cubic grains were

stacked along the z axis. The grain boundary plane

was oriented parallel to the x� y plane and the

loading direction is along the z�axis. Figure 3 illus-

trates the geometry of the bi-crystal specimen. Unit

cells in each grain demonstrate different orientations

of the top and bottom grain.

We first sampled misorientation space to explore

different types of grain boundary incompatibilities.

We selected orientations from the experiments in [4]

that exhibited martensitic transformation under

compression, and avoided orientations that slipped

or fractured in the single-crystal tests. We started by

fixing the orientation of the bottom grain (E1=3�,

E2=146�, E3=306�) and considered two different ori-

entations for the top grain which resulted in distinct

strain incompatibility types.

We ran simulations up to 5% strain which exceeds

the transformation strain for the single-crystal orien-

tations tested here, and monitored the evolution of

the von Mises equivalent stress at the grain boundary

as the deformation progresses. The von Mises stress

provides a metric for quantifying the magnitude of

the complex deviatoric stress state at the grain

boundary. We also monitored the volume fraction of

martensite in each transformation system and overall

to understand the onset and progression of the

transformation at the grain boundary versus the bulk

of the grain. To understand the influence of grain

boundaries on the stress field, we conducted corre-

sponding simulations on single crystals with the

same orientations as each individual grain in the bi-

crystal.

We considered two different cases which, as we

shall see, result in two distinct types of incompati-

bility. In Case 1, the top grain orientation is given by

Euler angles E1=53�, E2=122�, E3=299�, whereas in

Case 2, the Euler angles for the top grain are E1=84�,

E2=142�, E3=118�. The results of the two simulations

are shown in Figs. 4, 5, 6, 7.

Figure 4a, b, and c, respectively, shows snapshots

of the von Mises stress at different cross sections, and

the total martensite volume fraction at the bi-crystal

grain boundary obtained in Case 1 at a small strain

level of 0:6%, at which point the deformation is still

ostensibly elastic with martensite volume fraction on

the order of 10�2. As can be observed, there is a sig-

nificant amount of stress concentration at the grain

boundary plane in the bi-crystal, despite there being

almost no transformation. The maximum von Mises

Figure 5 Case 1: Grain boundary configuration with high elastic incompatibility.
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Figure 6 Contours of: a von Mises; c martensite volume fraction

in the bi-crystal cross section with normal y; b von Mises in the bi-

crystal cross section with normal z at e = 0.3%; d von Mises; f–

j martensite volume fraction in the bi-crystal cross-section with

normal y; e von Mises in the bi-crystal cross-section with normal

z at e = 2%. Figures a–c illustrate that there is no significant

stress concentration near the bi-crystal interface at this strain level.

Figures d–j show that at a higher strain level, the bottom crystal

has almost fully transformed and there is a strong stress

concentration near the bi-crystal grain boundary. System 19 is

the most favorably oriented system for transformation.
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stress can be seen near grain boundary (	 0.96 GPa).

Figure 4c–e shows the total volume fraction as well as

the volume fraction in selected transformation sys-

tems (3 and 19). Though the overall martensitic vol-

ume fraction is extremely small, it is still worth

mentioning that the main contribution of martensitic

transformation came from system 19, which in this

case is the most favorably oriented for transforma-

tion, i.e., where the resolved shear stress is the lar-

gest. In contrast, system 3 is an example of a system

where transformation has not yet been triggered and

the volume fraction is 3 orders of magnitude smaller

than that in system 19. Figure 5a shows the compar-

ison of the von Mises stress in the single crystals and

the maximum value in the bi-crystal grain boundary

as a function of strain for Case 1. As may be noted,

the von Mises stress at the grain boundary plane

grows significantly larger than that in either single-

crystal before the occurrence of phase transformation.

These results suggest that the source of strain

incompatibility is elastic anisotropy.

Figures 6 and 7 show the corresponding results for

Case 2. Figures 6a, b and c show the von Mises stress

at different bi-crystal cross sections and correspond-

ing martensitic volume fraction when � ¼ 0:3%. At

this strain level, the stress concentration at the grain

boundary plane is extremely low and there is no

transformation. (Total volume fraction is on the order

of 10�4.) This grain boundary configuration therefore

has insignificant elastic incompatibility. Figure 6d–j

show the corresponding results at � ¼ 2%, as well as

martensite volume fraction in several transformation

systems. There is a significant stress concentration at

the grain boundary plane at this strain level, as the

maximum von Mises stress at the grain boundary is

about 1.3 GPa, which is about 1.44 times larger than

that in the regions that are farther from grain

boundary. As shown in Fig. 6e, the corresponding

Figure 6 continued.
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martensitic volume fracture in the bottom grain at

this strain level is about 1 except for the region near

grain boundary, which indicates that the bottom

grain has fully transformed to martensitic phase

except for the region near grain boundary. The top

grain has also seen a significant amount of transfor-

mation with the volume fraction ranging from 0.38 to

0.6, which suggests that stress concentrations are due

to the incompatibility of the anisotropic transforma-

tion strain at the grain boundary instead of elastic

anisotropy at this level of deformation. It is also

worth mentioning that martensitic volume fraction in

system 19 is 3–4 orders of magnitude larger than that

in other systems, which makes it the dominant

transformation system as it contributes the most to

the total volume fraction. As shown in Fig. 7a, there

is a very low level of elastic incompatibility in the

austenite phase, as the three initial slopes coincide.

As a result, the maximum von Mises stress at the

grain boundary plane remains similar to that in the

single crystal. However, as transformation pro-

gresses, the maximum von Mises stress at the bi-

crystal interface grows much larger than inside either

single crystal. At strain level � ¼ 2%, the stress con-

centration factor at the grain boundary is about 1.6.

The maximum von Mises stress at the grain bound-

ary grows from 1 to 1.3 GPa during transformation,

while von Mises stresses in the two single-crystal

cases plateau at 0.7 GPa and 1 GPa, respectively. This

suggests that the source of stress concentration is the

incompatibility of the transformation strains. Specif-

ically, at the grain interface, the transformation strain

on one grain cannot be accommodated by that in the

neighboring grain due to the anisotropic nature of the

martensitic transformation, and the deformation

constraints lead to stress concentration. These fig-

ures suggest that a possible way to quantify the level

of elastic incompatibility is to compare the growth of

the von Mises stress at the grain boundary relative to

the single-crystal response during the elastic range.

Similarly, one way to quantify the transformation

incompatibility is to compare the von Mises stress at

the grain boundary relative to the single-crystal

response at a certain strain level during

transformation.

Having established the two basic types of sources

of incompatibilities, we next conducted a series of

simulations with 43 different orientations of the top

grain with the orientation of the bottom grain fixed.

The grain misorientations are presented in a pole

figure in the Appendix (Fig. 8). We used the ratio of

the initial rate of growth of the von Mises stress at the

bi-crystal grain boundary relative to the single-crystal

response of the bottom grain as a measure of the

grain boundary stiffness induced by elastic incom-

patibility. Similarly, we used the ratio of the von

Mises stress at the bi-crystal grain boundary at 2:2%

strain (stress concentration factor), relative to the

Figure 7 Grain boundary configuration with low elastic incompatibility.
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single-crystal response of the bottom grain to mea-

sure transformation incompatibility.

Figure 9a shows the grain boundary stiffness ratios

in 43 bi-crystal specimens and their disorientation

angles. Each point represents a bi-crystal with a dis-

orientation angle defined as the minimum rotation

angle with the misorientation axis located in the

Standard Stereographic Triangle. As indicated in

Fig. 9a, among these bi-crystals with various misori-

entations, the largest stiffness ratio is slightly below

1.2, suggesting that in general elastic incompatibility

in this zirconia-based SMC is rather low. One can also

notice that there is a clear correlation between dis-

orientation angles and elastic incompatibilities. Most

bi-crystal specimens with smaller disorientation

angles are shown to have small stiffness ratios. By

contrast, when the disorientation angle is larger,

elastic incompatibility is higher which results in lar-

ger stress concentrations in the elastic range. It is

worth noting that the two bi-crystals with smallest

disorientation angles appear to be outliers with much

larger incompatibilities from elasticity than those

with disorientation angles between 30� and 50�.

Figure 9b shows the respective results of maxi-

mum von Mises stress concentration factor at the

grain boundary plane at 2:2% strain. Among the 43

bi-crystals, the largest von Mises stress concentration

factor is 3.1 and it occurs in the bi-crystal with a

disorientation angle about 70�. As demonstrated in

Fig. 9b, bi-crystals with larger von Mises stress and

therefore higher transformation incompatibility often

correspond to larger disorientation angles, with some

outliers in the results especially for samples with

small orientation angles. The outliers could be due to

the inaccuracy in identifying the grain orientation of

the samples. Another possible explanation for the

outliers is that the correlation between disorientation

angles and stress concentration factors is more evi-

dent in samples with large orientation angles, yet the

correlation is not very clear for samples with smaller

disorientation angles. These results also suggest that

elastic incompatibility in zirconia may be lower in

magnitude relative to incompatibilities resulting from

transformation.

Conclusion

We have conducted a simulation study attempting to

characterize the sources and magnitude of strain

incompatibility at bi-crystal interfaces in SMCs. To

this end, we have implemented a micromechanics-

based model for SMCs incorporating both elastic and

transformation anisotropy at the grain level. We

incorporated the non-Schmid effect into the model to

account for the volume changes during martensitic

transformation which is a unique feature for zirconia-

based SMCs. The model was calibrated against

micro-compression tests conducted in [3, 4] and

shown to capture the orientation dependence of

transformation fairly accurately. Three-dimensional

finite element simulations using the micromechanical

model enabled the investigation of the evolution of

stress concentrations at the grain boundary due to

either elastic or transformation strain incompatibility,

as well as the analysis of the evolution of the

martensite volume fraction, which has not been

addressed in SMCs before. The level of stress con-

centration at the grain boundary as measured by the

maximum von Mises stress strongly depends on the

crystal boundary misorientation. Large elastic aniso-

tropy leads to severe deformation incompatibility

and high von Mises stress concentration at the grain

boundary at relatively low strains. We identified two

particular cases with distinct stress–strain responses

and found that when the crystals are elastically

compatible, high stress concentrations at the grain

Figure 8 A pole figure showing the [100], [010], [001] crystal

directions of the bottom (blue) and top grain (red) of 43 bi-crystals

studied in the simulations with the long axis [001] pole labeled.
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boundary, and therefore transformation strain

incompatibilities are still possible due to the aniso-

tropic nature of the martensitic transformation. We

then conducted a series of simulations over the

misorientation space, in search of grain boundary

configurations that can achieve the full ductility

potential of the single crystal. We analyzed the rela-

tionship between different types of incompatibilities

and grain boundary characteristics, and the results

indicate a strong correlation between both types of

strain incompatibilities and the disorientation angle.

This approach could be used to identify misorienta-

tions that reduce or minimize elastic and

transformation incompatibility, thus extending the

superelastic range of SMCs to potentially achieve the

ductility limits of single crystals.
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Appendix

Habit plane normal and transformation
directions of the 24 transformation systems
used in the model

Given the lattice parameters and symmetry of the

austenite and martensite phases, we applied the

Figure 9 Quantitative indicators of elastic and transformation

incompatibility at bi-crystal grain boundary vs. disorientation

angles (bottom grain [3, 146, 306]).
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nonlinear theory of martensite to obtain the trans-

formation systems for zirconia [25]. The calculation

requires the knowledge of the mapping from the

austenite configuration to the martensite one, which

can be obtained by constructing the deformation

gradient that takes a unit cell in the austenite phase to

martensite. From there one then obtains the stretch

tensor U0, as well as all possible variants of marten-

site by applying rotations to the U0. Then one can

obtain the transformation systems by solving the

twinning and habit plane equations. The algorithm is

summarized as follows:

1. Construct Bain strains U0(a mapping from the

austenite point group Pa to the martensite point

group Pm) for the tetragonal to monoclinic

transformation in zirconia;

2. Calculate all the possible variants of martensite

Ui ¼ QiU0Q
T
i , Qi 2 Pa;

3. Solve the twinning equation to obtain the twin-

ning system for all possible combinations of i, j: a

and n̂: RUj � Ui ¼ a� n̂;

4. Solve the habit plane equation to obtain the

transformation system b and m̂ for all possible

combinations of i, j:

QðUi þ ð1 � lÞa� n̂Þ ¼ Iþ b� m̂.

The transformation systems obtained can be found in

Table 1.
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