Skip to main content
Log in

Elastic polybenzimidazole nanofiber aerogel for thermal insulation and high-temperature oil adsorption

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal insulation and hot oil adsorption have been paid increasing attention to industrial development. Decomposition and combustion of commercial heat insulation materials may happen in the continuously high temperature (≥ 200 °C) or/and instantaneously ultra-high temperature (≥ 250 °C). Nanofiber aerogel with versatile properties is a potential candidate for thermal insulation and hot oil adsorption. In this work, a novel three-dimensional polybenzimidazole nanofiber aerogel is designed and fabricated for thermal insulation and adsorption of high-temperature oil. Directional freeze casting and freeze-drying techniques are applied to build the three-dimensional structure. A nanofiber-corbelled porous-layer architecture is obtained by optimization with the adhesive effect of starch-derived carbon. Thanks to this architecture, the polybenzimidazole nanofiber aerogel owns suitable mechanical flexibility for delaying heat diffusion. Furthermore, the adsorption and thermal insulation at high temperatures are simultaneously achieved with its high porosity, low thermal conductivity, and thermal stability. This study proposes a promising path for aerogel preparation and applications on effective thermal insulation and hot oil adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kasliwal A, Furbush NJ, Gawron JH et al (2019) Role of flying cars in sustainable mobility. Nat Commun 10:1555. https://doi.org/10.1038/s41467-019-09426-0

    Article  CAS  Google Scholar 

  2. Aberoumand S, Jafarimoghaddam A, Moravej M et al (2016) Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl Therm Eng 101:362–372. https://doi.org/10.1016/j.applthermaleng.2016.01.148

    Article  CAS  Google Scholar 

  3. Li T, Song J, Zhao X et al (2018) Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci Adv 4:eaar3724. https://doi.org/10.1126/sciadv.aar3724

    Article  CAS  Google Scholar 

  4. Zhu J, Xiong R, Zhao F et al (2019) Lightweight, high-strength, and anisotropic structure composite aerogel based on hydroxyapatite nanocrystal and chitosan with thermal insulation and flame retardant properties. ACS Sustain Chem Eng 8:71–83. https://doi.org/10.1021/acssuschemeng.9b03953

    Article  CAS  Google Scholar 

  5. Ma Z, Liu X, Xu X et al (2021) Bioinspired, highly adhesive, nanostructured polymeric coatings for superhydrophobic fire-extinguishing thermal insulation foam. ACS Nano 15:11667–11680. https://doi.org/10.1021/acsnano.1c02254

    Article  CAS  Google Scholar 

  6. Machado NCF, de Jesus LAM, Pinto PS et al (2021) Waste-polystyrene foams-derived magnetic carbon material for adsorption and redox supercapacitor applications. J Clean Prod 313:127903. https://doi.org/10.1016/j.jclepro.2021.127903

    Article  CAS  Google Scholar 

  7. Haridevan H, McLaggan MS, Evans DAC et al (2021) Dispersion methodology for technical lignin into polyester polyol for high-performance polyurethane insulation foam. ACS Appl Polym Mater 3:3528–3537. https://doi.org/10.1021/acsapm.1c00430

    Article  CAS  Google Scholar 

  8. Zang D, Zhang M, Liu F et al (2016) Superhydrophobic/superoleophilic corn straw fibers as effective oil sorbents for the recovery of spilled oil. J Chem Technol Biot 91:2449–2456. https://doi.org/10.1002/jctb.4834

    Article  CAS  Google Scholar 

  9. He J, Zhao H, Li X et al (2018) Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J Hazard Mater 346:199–207. https://doi.org/10.1016/j.jhazmat.2017.12.045

    Article  CAS  Google Scholar 

  10. Bi H, Xie X, Yin K et al (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425. https://doi.org/10.1002/adfm.201200888

    Article  CAS  Google Scholar 

  11. Cao M, Liu B, Zhang L et al (2021) Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Compos B Eng 225:109309. https://doi.org/10.1016/j.compositesb.2021.109309

    Article  CAS  Google Scholar 

  12. Nakanishi Y, Hara Y, Sakuma W et al (2020) Colorless transparent melamine-formaldehyde aerogels for thermal insulation. ACS Appl Nano Mater 3:49–54. https://doi.org/10.1021/acsanm.9b02275

    Article  CAS  Google Scholar 

  13. Cai C, Wei Z, Huang Y et al (2020) Ultralight programmable bioinspired aerogels with an integrated multifunctional surface for self-cleaning, oil absorption, and thermal insulation via coassembly. ACS Appl Mater Interfaces 12:11273–11286. https://doi.org/10.1021/acsami.0c00308

    Article  CAS  Google Scholar 

  14. Liu Y, Su Y, Guan J et al (2018) Asymmetric aerogel membranes with ultrafast water permeation for the separation of oil-in-water emulsion. ACS Appl Mater Interfaces 10:26546–26554. https://doi.org/10.1021/acsami.8b09362

    Article  CAS  Google Scholar 

  15. Zhang S, Huang X, Feng J et al (2020) Structure, compression and thermally insulating properties of cellulose diacetate-based aerogels. Mater Des 189:108502. https://doi.org/10.1016/j.matdes.2020.108502

    Article  CAS  Google Scholar 

  16. Li H, Ye M, Zhang X et al (2021) Hierarchical porous iron metal-organic gel/bacterial cellulose aerogel: ultrafast, scalable, room-temperature aqueous synthesis, and efficient arsenate removal. ACS Appl Mater Interfaces 13:47684–47695. https://doi.org/10.1021/acsami.1c14938

    Article  CAS  Google Scholar 

  17. Liu H, Chen X, Zheng Y et al (2021) Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 31:2008006. https://doi.org/10.1002/adfm.202008006

    Article  CAS  Google Scholar 

  18. Song J, Chen C, Yang Z et al (2018) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12:140–147. https://doi.org/10.1021/acsnano.7b04246

    Article  CAS  Google Scholar 

  19. Zhou S, You T, Zhang X et al (2018) Superhydrophobic cellulose nanofiber-assembled aerogels for highly efficient water-in-oil emulsions separation. ACS Appl Nano Mater 1:2095–2103. https://doi.org/10.1021/acsanm.8b00079

    Article  CAS  Google Scholar 

  20. Li Y, Zhu L, Grishkewich N et al (2019) CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation. ACS Appl Mater Interfaces 11:9367–9373. https://doi.org/10.1021/acsami.8b22159

    Article  CAS  Google Scholar 

  21. Jiang S, Uch B, Agarwal S et al (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9:32308–32315. https://doi.org/10.1021/acsami.7b11045

    Article  CAS  Google Scholar 

  22. Hou X, Mao Y, Zhang R et al (2021) Super-flexible Polyimide nanofiber cross-linked Polyimide aerogel membranes for high efficient flexible thermal protection. Chem Eng J 417:129341. https://doi.org/10.1016/j.cej.2021.129341

    Article  CAS  Google Scholar 

  23. Zhang S, Tian L, Chen X et al (2021) Ultralight graphene/carbon nanofibers/carbon nanotubes aerogels with thermal insulating and hot-oil adsorption performance. J Mater Sci 56:7409–7419. https://doi.org/10.1007/s10853-021-05772-x

    Article  CAS  Google Scholar 

  24. Ghosh B, Xu F, Hou X (2021) Thermally conductive poly (ether ether ketone)/boron nitride composites with low coefficient of thermal expansion. J Mater Sci 56:10326–10337. https://doi.org/10.1007/s10853-021-05923-0

    Article  CAS  Google Scholar 

  25. Ma Q, Wang H, Zhan G et al (2021) Preparing multifunctional high-performance cross-linked polybenzoxazole aerogels from polybenzoxazine. ACS Appl Polym Mater 3:2352–2362. https://doi.org/10.1021/acsapm.0c01309

    Article  CAS  Google Scholar 

  26. Wang P, Peng J, Yin B et al (2021) Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells. J Mater Chem A 9:26345–26353. https://doi.org/10.1039/d1ta06883k

    Article  CAS  Google Scholar 

  27. Wang J, He Y, Wu Q et al (2019) A facile non-solvent induced phase separation process for preparation of highly porous polybenzimidazole separator for lithium metal battery application. Sci Rep 9:19320. https://doi.org/10.1038/s41598-019-55865-6

    Article  CAS  Google Scholar 

  28. Hardian R, Pogany P, Lee YM et al (2021) Molecular sieving using metal-polymer coordination membranes in organic media. J Mater Chem A 9:14400–14410. https://doi.org/10.1039/d1ta02601a

    Article  CAS  Google Scholar 

  29. Hu J, Hardian R, Gede M et al (2022) Reversible crosslinking of polybenzimidazole-based organic solvent nanofiltration membranes using difunctional organic acids: toward sustainable crosslinking approaches. J Membr Sci 648:120383. https://doi.org/10.1016/j.memsci.2022.120383

    Article  CAS  Google Scholar 

  30. Rhine WE, Mihalcik D (2016) Benzimidazole based aerogel materials. U.S. Patent 20160032072

  31. Kim EK, Lee SY, Nam SY et al (2017) Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions. Polym Int 66:1812–1818. https://doi.org/10.1002/pi.5426

    Article  CAS  Google Scholar 

  32. Fishel KJ, Gulledge AL, Pingitore AT et al (2016) Solution polymerization of polybenzimidazole. J Polym Sci Pol Chem 54:1795–1802. https://doi.org/10.1002/pola.28041

    Article  CAS  Google Scholar 

  33. Zhu J, Lv S, Yang T et al (2020) Facile and green strategy for designing ultralight, flexible, and multifunctional PVA nanofiber-based aerogels. Adv Sustain Syst 4:1900141. https://doi.org/10.1002/adsu.201900141

    Article  CAS  Google Scholar 

  34. Huang T, Zhu Y, Zhu J et al (2020) Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater 2:338–347. https://doi.org/10.1007/s42765-020-00054-8

    Article  CAS  Google Scholar 

  35. Wang Y, Wu K, Xiao M et al (2018) Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr Polym 197:284–291. https://doi.org/10.1016/j.carbpol.2018.06.009

    Article  CAS  Google Scholar 

  36. Zhu L, Swihart MT, Lin H (2017) Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. J Mater Chem A 5:19914–19923. https://doi.org/10.1039/C7TA03874G

    Article  CAS  Google Scholar 

  37. Berber MR, Nakashima N (2019) Tailoring different molecular weight phenylene-polybenzimidazole membranes with remarkable oxidative stability and conductive properties for high-temperature polymer electrolyte fuel cells. ACS Appl Mater Interfaces 11:46269–46277. https://doi.org/10.1021/acsami.9b18314

    Article  CAS  Google Scholar 

  38. Davood Abadi Farahani MH, Chung TS (2019) A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Sep Purif Techol 209:182–192. https://doi.org/10.1016/j.seppur.2018.07.026

    Article  CAS  Google Scholar 

  39. Zhang Y, Zeng Z, Ma XYD et al (2019) Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles. Appl Surf Sci 479:700–708. https://doi.org/10.1016/j.apsusc.2019.02.173

    Article  CAS  Google Scholar 

  40. Xiao Y, Wang S, Tian G et al (2021) Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes. J Membr Sci 620:118858. https://doi.org/10.1016/j.memsci.2020.118858

    Article  CAS  Google Scholar 

  41. Ahmad M, Gani A, Hassan I et al (2020) Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci Rep 10:3533. https://doi.org/10.1038/s41598-020-60380-0

    Article  CAS  Google Scholar 

  42. Tian J, Yang Y, Xue T et al (2022) Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J Mater Sci Technol 105:194–202. https://doi.org/10.1016/j.jmst.2021.07.030

    Article  Google Scholar 

  43. Zhao X, Yang F, Wang Z et al (2020) Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos B Eng 182:107624. https://doi.org/10.1016/j.compositesb.2019.107624

    Article  CAS  Google Scholar 

  44. Wei X, Zhou H, Chen F (2019) High-efficiency low-resistance oil-mist coalescence filtration using fibrous filters with thickness-direction asymmetric wettability. Adv Funct Mater 29:1806302. https://doi.org/10.1002/adfm.201806302

    Article  CAS  Google Scholar 

  45. Malakooti S, Qin G, Mandel C et al (2019) High thermo-mechanical stability in polybenzoxazine aerogels. ASME IMECE. https://doi.org/10.1115/IMECE2019-11590

    Article  Google Scholar 

  46. Gong X, Wang Y, Zeng H et al (2019) Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly (vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain Chem Eng 7:11118–11128. https://doi.org/10.1021/acssuschemeng.9b00066

    Article  CAS  Google Scholar 

  47. Zhu Q, Pan Q, Liu F (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470. https://doi.org/10.1021/jp2043027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the joint financial support provided by the Fundamental Research Funds for the Central Universities (2232022D-09), Shanghai Sailing Program (22YF1400400), Natural Science Foundation of China (No. 51703024), and the “Chenguang Program” (18CG37) by Shanghai Education Development Foundation and Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Contributions

DL: Methodology, Visualization, Writing an original draft. GH: Methodology, Investigation, Data Curation, Formal analysis, Visualization, Writing-review & editing. TH: Conceptualization, Formal analysis, Funding acquisition, Project administration, Supervision, Writing-review & editing. BY: Project administration, Resources, Supervision, Writing-review & editing. HY: Project administration, Resources, Supervision, Writing-review & editing. MZ: Supervision.

Corresponding authors

Correspondence to Tao Huang or Bin Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Hu, G., Huang, T. et al. Elastic polybenzimidazole nanofiber aerogel for thermal insulation and high-temperature oil adsorption. J Mater Sci 57, 12125–12137 (2022). https://doi.org/10.1007/s10853-022-07300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07300-x

Navigation