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ABSTRACT

A series of novel CoCrFeNi-based high-entropy alloys containing Sc and C were

designed. These HEAs exhibited hardness, fracture toughness and wear resis-

tance comparable or better than a range of selected benchmark systems.

Microstructurally, we observed composite microstructures comprising vari-

ously a Sc-rich intermetallic phase, a sigma phase and an FCC solid solution

phase within which precipitated M23C6 carbides. The Sc-rich intermetallic phase

possessed a stoichiometry close to (Co, M)2(Sc, M), where M = Ni and Fe. As the

carbon content increased, the hardness levels ‘softened’ from 799 VHN (C-free)

to 674 VHN (C = 4 at.%), though the fracture toughness was increased * 112%.

At the same time, the specific wear rate was enhanced from 0.33 9 10-3 to

0.14 9 10-3 mm3�(N m)-1. The effectiveness of these microstructures in bal-

ancing high hardness, crack deflection and a relatively low wear rate was

attributed to the enhanced stability of the FCC solid phase as the C content was

increased.
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GRAPHICAL ABSTRACT

Introduction

High-entropy alloys (HEAs), also known as multi-

principal element alloys (MPEA), have emerged as an

exciting new class of materials [1, 2]. HEAs, espe-

cially CoCrFeNi-based HEAs, exhibit remarkable

mechanical properties at room temperature and even

better properties in the cryogenic regimes, as well as

good wear resistance and other properties [3–8]. The

majority of the research on HEAs has been focused

on CoCrFeNi-based alloys and the addition of vari-

ous fifth elements to investigate the potential for

improved mechanical properties [3, 9]. For example,

adding Mn, which has a small atomic mismatch,

results in an equiatomic quinary CoCrFeNiMn alloy

that preserves a single-phase face-centred cubic

(FCC) structure with lattice parameter a = 0.359 nm

[10] that exhibits remarkable fracture toughness,

especially at cryogenic temperatures [4, 11, 12]. On

the other hand, the addition of Nb, which has a large

atomic misfit, leads to the formation of a ductile FCC

phase with lattice parameter a = 0.3606 nm (com-

pared with a = 0.3581 nm in Nb free sample), and a

second Nb-rich Laves intermetallic phase embedded

in the FCC matrix [13]. These multi-phase HEAs have

exceptional hardness and wear properties [14–16].

Jiang et al. [17] measured hardness and yield strength

values of 515 VHN and 1745 MPa, respectively, in a

CoCrFeNiNb HEA. However, as the hardness

increases, the ductility and fracture toughness of the

multi-phase HEAs decrease more rapidly that the

diminishment observed in the single phase FCC

CoCrFeNiMn alloys. Furthermore, both Mn and Nb

are relatively heavy transition elements, which can be

undesirable in structural materials.

The introduction of interstitial elements such as

oxygen (O) [18], nitrogen (N) [19] and carbon (C) [20]

has also been widely investigated. Of these, C is the

most studied interstitial elemental addition to HEAs

[21]. For example, Stepanov et al. [22] investigated the

effects of the C content on the CoCrFeNiMn HEAs and

revealed a 25% increase of the ultimate tensile strength
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compared with similarly processed C-free HEAs.

Wang et al. [23] demonstrated an increase in tensile

elongation in a Fe40.4Ni11.3Mn34.8Al7.5Cr6 HEA con-

taining 1.1 at.% C compared to the C-free alloy. The

addition of C has been shown to alter the phase sta-

bility and stacking fault energy of HEAs and has con-

sistently demonstrated excellent potential to expand

their structural properties [24, 25].

In this contribution, we have investigated the novel

combination of scandium (Sc) as a substitutional

element, in combination with C as an interstitial ele-

mental addition to the familiar CoCrFeNi-based

alloy. Sc was of particular interest as it has a large

atomic radius but is one of the lighter transition metal

elements and is widely associated with a strong

interaction with vacancies as utilised in Sc-bearing

Al-alloys gaining acceptance in the automobile and

aerospace industries [26, 27].

Materials and methods

Materials processing and sample
preparation

Three alloys of composition (CoCrFeNiSc)100-xCx

with C contents of x = 0, 2 and 4 at.% designated as

alloys C0, C2 and C4, respectively, were prepared

separately by arc melting. The raw materials were

99.99% purity cobalt (Co), iron (Fe), nickel (Ni),

scandium (Sc), 99.5% purity chromium (Cr) and

graphite (C) melted in an argon (Ar) atmosphere.

Each alloy was remelted five times to improve

homogeneity before being sectioned into smaller

pieces using a diamond cutting wheel. Offcuts from

each alloy were mechanically ground to 4000-grit

sandpaper and polished to a mirror-like surface

using successively finer diamond and silica suspen-

sions, gradually down to a 0.25-lm silica suspension

solution. Finally, the specimens were ion-milled

using a Gatan PECS II system under 2 kV Ar ions.

Materials characterisation methods

X-ray diffraction (XRD) was performed using a

PANalytical X’Pert Powder Cu source X-ray diffrac-

tometer between 30� and 90�. A Zeiss Ultra scanning

electron microscope (SEM) with ancillary energy-dis-

persive X-ray spectroscopy (EDXS) and electron

backscatter diffraction (EBSD) detectors was used to

investigate the microstructures. Hardness measure-

ments were taken using a LECO Vickers Hardness

Tester (LV700 AT) with a load of 3 kg and a dwell time

of 15 s. The mean value of five indentations was used

to report hardness values and associated errors [28].

The Vickers hardness indentations were also assessed

using SEM to evaluate the indentation shapes and

crack lengths. Values for the fracture toughness (KIC) of

these samples were then estimated based on the

Palmqvist method for the estimation of toughness

using the length of the cracks formed by the hardness

indenter by applying the following formulae [29–31]:

KIC ¼ 0:0028 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1000 �H � g2 � M

LTol

r

ð1Þ

LTol ¼ L1 þ L2 þ L3 þ L4 ð2Þ

where H is the hardness (VHN), LTol is the sum of

crack lengths from the corner of indentation expres-

sed as mm, M is the applied load (kg), and g is the

acceleration due to gravity (9.81 m s-2).

A ball-on-disc sliding method was used on a

commercial tribometer (NANOVEA-MT/60/NI) to

assess the wear resistance of these alloys. Tungsten

carbide balls with a radius of 2.38 mm were used,

and each test was carried out under 20 N for 30 min

with a sliding speed of 0.05 m s-1 in air at room

temperature. The specific wear rate was calculated

according to Eq. (3):

W s ¼
Dm

q� FN � L
ð3Þ

where W s corresponds to the specific wear rate (mm3

N�m
Þ,

Dm is the weight loss after the test (g), q is the density of

the material (g�mm-3), FN is the force applied on the

sample (N), and L is the sliding length (m). Transmis-

sion electron microscopy was conducted using a JEOL

2200 TEM, operating at an accelerating voltage of

200 kV. Atom probe tomography (APT) was conducted

using CAMECA LEAP3000Si operating in voltage

mode at 50 K, 20% pulse fraction, 200 kHz pulse rate

and evaporation rate of 0.2 [32]. Specimens for TEM and

APT were prepared using standard techniques.

Results and discussion

Mechanical properties

Figure 1a charts values for the specific hardness

(hardnessðVHNÞ
densityð g

cm3Þ
) of the C0, C2 and C4 alloys and provides
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a comparison to values for the relevant individual

elements, binary alloys, the CoCrNi-based ternary

and Fe-bearing quaternary HEAs, and certain

refractory HEAs taken from the literature [33–42].

The specific hardness of all three alloys C0, C2 and

C4 was higher than the binary alloys and the other

HEAs possessing similar densities. The specific

hardness values were almost 1.5 times larger than Ti–

6Al–4V (75 VHN cm3 g-1), * 5 times greater than

the single phase FCC CoCrFeNiMn (22 VNH

cm3 g-1) and * 6 times greater than the CoCrFeNi

base alloy (18 VNH cm3 g-1). Figure 1b summarises

the estimates of the fracture toughness of these alloys

in comparison to values from the literature of other

major HEAs and relevant alloys [43–51] using dif-

ferent methods. The C0 alloy exhibits a hardness of

799 VHN and a fracture toughness of 27.6 MPa m1/2.

The C-bearing alloys exhibit lower hardness but

higher apparent fracture toughness. Alloy C2 pos-

sessed a hardness of 705 VHN, and our estimate of

the fracture toughness was almost twice that of the

alloy C0, reaching 54.0 MPa m1/2. At 4 at.% C, the

hardness decreased by 4% compared to C2, while the

fracture toughness increased a further 8%. The

hardness of alloy C4 was * 15% lower than alloy C0,

and the fracture toughness was * 112% higher.

Figure 1c presents the specific wear rates of the HEAs

introduced here compared to other relevant alloys

[52–55]. The specific wear rates of the alloys C0, C2

and C4 were 0.33 9 10-3, 0.32 9 10-3 and

0.14 9 10-3 mm3�(N�m)-1, respectively. This is better

than the specific wear rate of the CoCrFeNi alloy

(0.4 9 10-3 mm3�(N�m)-1). The average friction

coefficient of these alloys ranged between 0.65 and

0.74. The wear resistance trended in direct propor-

tionality with the apparent fracture toughness such

Figure 1 Mechanical properties of the experimental CrNiFeCoSc-C alloys introduced here compared to other relevant alloy systems.

a Specific hardness versus density; b hardness versus fracture toughness (log–log scale); and c specific wear rate versus hardness.

J Mater Sci (2022) 57:9442–9453 9445



that alloy C4 exhibited the highest fracture toughness

and outstanding wear resistance. Here, we point out

that the literature cited in our compilations in Fig. 1

contains the details of the measurement techniques

variously used to assess the wear resistance, hardness

and fracture toughness. The techniques were not

identical, and we acknowledge that there is some

potential for technique-dependent variations

between the studies compiled. In the absence of

unitary standard measurements for these values, we

have carefully selected the studies for these compi-

lations both to summarise the state of the art and to

provide guidance in terms of how our measurements

benchmark to similar systems.

The relationship between microstructure
and mechanical properties

The XRD spectrum (supplementary) identified the

presence of the FCC matrix phase commonly repor-

ted in CoCrFeNi HEAs (Fd3m, a = 0.358 nm) [13], an

intermetallic (IM) phase with a Co2Sc type cubic

structure (Fd3m, a = 0.690 nm) and a tetragonal

Fe1.01Cr0.99 type sigma phase (P42=mnm, a = 0.878,

c = 0.456 nm) in the C0 alloy [56]. Additional peaks

for the FCC M23C6 carbide phase (Fm3m,

a = 1.059 nm) [57] were detected in both the C2 and

C4 alloys. With increasing C content, the lattice

parameter of the FCC solid solution phase

increased * 0.5% from 0.357 to 0.359 nm, and the

peaks from the sigma phase diminished in height

indicating a reduction of its phase fraction.

Figure 2 provides the EBSD and EDXS of the three

HEAs. The data in Fig. 2a–c confirm that C effectively

reduced the phase fraction of the sigma phase in this

system from 35.4% in alloy C0 to 6.3% in alloy C2 and

* 0.1%. Figure 2 further reveals that the IM phase

fraction was increased from 41.2% (C0) to 54.0% (C2)

and then unchanged from C2 to C4. In terms of the

FCC phase, Fig. 2 reveals that, from C0 to C2, the

phase fraction of the FCC phase increased from 18.9

to 26.8%.

The hardness trends observed in these experi-

mental alloys, where we report an 11% softening

from alloy C0 (799 VHN) to C2 (705 VHN) and a

further 4% softening from alloy C2 to C4 (674 VHN),

are attributed mainly to the increased stability of the

relatively soft FCC phase, which replaced the signif-

icantly harder sigma phase. Based on other reports

[58], the hardness of the sigma phase is * 957 VHN

and the M23C6 carbide phase is * 1250 VHN. On the

other hand, the hardness of the FCC phase has been

reported as * 120 VHN [59] and it can also be

expected to be relatively ductile. The compositing of

the hardness is overall significant, and we note that

the occurrence of the very hard M23C6 carbide phases

within the softer FCC matrix. This results in a situa-

tion whereby, notwithstanding the significant

increase in the phase fraction of the softer FCC phase,

the overall hardness changes by only * 16% overall

between the three alloys.

Although the addition of the C led to microstruc-

tural changes that affected only a minor softening of

the alloys, these changes brought about a significant

increase the fracture toughness (Fig. 2a–c.) In the C0

sample, as shown in Fig. 2a, we observed a coarse

lamellar microstructure comprised of the IM phase

and the sigma phase with residual FCC phase

occurring at the sigma-IM phase interfaces. The

introduction of C to the level of 2 at.%, as shown in

Fig. 2b, brings about a blocky-type microstructure

and the IM phase is now enveloped by the FCC phase

which also contains M23C6 carbide precipitation.

Figure 2c provides the EBSD map for the alloy con-

taining 4 at.% C, and it is dominated by coarse

lamella of the IM phase in the FCC phase, with M23C6

carbide precipitation evident in the FCC solid solu-

tion phase.

Figure 2d provides an SEM image of a crack ema-

nating from the corner of a hardness indent in the

sample C4 and reveals that the crack prefers to

propagate through the IM phase. The length of these

cracks was used to estimate of the fracture toughness

as described above. We found that the mean crack

length in the C0 samples was 59.31 lm and this value

decreased sharply by 77% to 13.67 lm after the

introduction of 2 at.% C. We suggest that the

microstructure is a key factor in the improvement of

the fracture toughness here, as has also been reported

in other systems [60]. In alloy C0 (Fig. 2a), the IM

phase occurs as coarse globules and is in direct con-

tact with the sigma phase throughout. The occurrence

of these two intermetallic phases in direct contact

appears to offer an easy crack pathway and conse-

quently, lower fracture toughness. The addition of

2 at.% C (Fig. 2b) and the associated replacement of

the brittle sigma phase by the more ductile FCC solid

solution phase that contains a dispersion of M23C6

carbides results in an inhibition of the crack
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propagation. This was also the case in alloy C4

(Fig. 2c–d), and it is apparent that the FCC phase

changes the direction of crack propagation, especially

where exists precipitation of M23C6 carbide. The

result is a further reduction of the extension of the

crack (Fig. 2d). As indicated from the XRD data, the

addition of C slightly distorted the FCC crystal

lattice, which appears to have increased the amount

of plastic deformation required to propagate the

crack [61]. Correlative EDXS maps were also recor-

ded from the alloy C4 (Fig. 2f–i). The FCC solid

solution was observed to be enriched in Cr and Fe,

the M23C6 carbides were enriched in Cr, while the Sc

rich IM phase was enriched with significant Co and

Figure 2 SEM-based imaging from the alloys investigated. a–

d are EBSD maps, as follows: a CrNiFeCoSc-based alloy (C0),

b CrNiFeCoSc-2 at.%C alloy (C2), c CrNiFeCoSc-4 at.%C alloy

(C4), d crack propagation in alloy C4. e–i are EDXS maps from

sample C4 as follows: e Cr, f Fe, g Co, h Sc and i Ni.
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Ni. Thermodynamic calculations of the effect of

C-additions to CoCrFeNi-based [62] HEAs indicate

that both FCC and M23C6 carbide can form at tem-

peratures * 1000 �C, whereas the sigma phase is

formed between * 500 and * 800 �C [63]. In our

current study, 2 at.% carbon enabled equilibrium

between both the FCC phase and the M23C6 phase

and we suggest that the sigma phase precipitated

during the cooling process. Interestingly, the co-ex-

istence of these phases has also been studied in Cr-

bearing steels [64]. From our EDXS results, both the

carbide and sigma phases were Cr rich. The ther-

modynamic and kinetic pre-requisites for the forma-

tion of M23C6 carbide and sigma phase are such that

the volume fraction of both of these phases was

reduced, which resulted in enhanced FCC stability.

Figure 3 TEM and APT analysis of alloy C4. a and b TEM

bright-field images with inset SAED patterns of the Sc-rich IM, the

Fe-rich FCC solid solution phase and the M23C6 carbide phases.

Some dislocation debris remains in the FCC phase. c APT atom

map of an interface between the Sc-rich IM phase and the M23C6

phase. An SEM image of the corresponding APT tip is inset.

d Atom map and the element concentration profile across the

phase boundary in (c). The concentration profiles for each element

are plotted as the trace of the mean with the standard error shaded.
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TEM and APT analyses were conducted on alloy C4

to better understand this microstructure. As is evident

in the TEM images provided in Fig. 3a–b, the Cr-rich

M23C6 precipitation that occurred in the FCC solid

solution phase possessed an ellipsoidal morphology.

The TEM images indicate that these carbides were

between 100 and 300 nm in their longest dimension.

The SAED pattern inset in Fig. 3b indicates that the

FCC phase and M23C6 carbide exhibit orientation

relationships such that f111gFCC//f111g M23C6

and\ 011[FCC//\ 011[M23C6. An APT analysis at

the interface between the Sc-rich IM phase and an

M23C6 carbide is provided in Fig. 3c–d. The carbide

appears enriched in both Cr and Fe, and there is some

evidence of a C-rich region at the phase boundary. We

have used this analysis to estimate the Sc-rich IM

phase as comprising 28.7 at.% Sc, 35.3 at.% Ni, 20.2

at.% Co, and 12.7 at.% Fe suggestive of a (Co, M)2(Sc,

M) stoichiometry, where M = Ni and Fe. Strengthen-

ing/hardening from carbide precipitation as well as

changes to the phase fractions are put forward as the

critical factors that explain the simultaneous reduction

in hardness and increase fracture toughness with

increasing C content. The fact that M23C6 carbide

formed instead of the sigma phase is demonstrated in

Fig. 2a, b. Both phases are hard but brittle. The overall

fraction of these phases reduced with increasing FCC

phase fraction. For example, the more local observa-

tions in Fig. 2d, Fig. 3b, d, the embedded hard M23C6

carbides were dispersed in the relative soft FCC phase.

This seems to achieve a desirable balance in hardness

and fracture toughness.

The changes in the type and distribution of the

microstructural phases also contributed to changes in

the measured wear resistance. Compared to the

CoCrFeNi-based alloy, where the microstructure was

dominated by the sigma phase, the specific wear rate

of the C4 alloy decreased * 65%. From the Sc-bear-

ing alloy C0 to the Sc ? C-bearing alloy C4, the

specific wear rate decreased more than 50%. The

replacement of the sigma phase by the carbides

within the FCC phases played a key role as does the

toughness of the Sc-bearing IM phase.

Conclusions

In summary, we have measured the hardness, frac-

ture toughness and the specific wear rate of a novel

series of CoCrFeNi HEAs to which Sc and C were

added. The new Sc- and C-bearing HEAs not only

maintained high hardness, but also exhibited higher

fracture toughness and improved wear resistance

than many comparable systems.

Microstructurally, we observed a Sc-rich inter-

metallic phase of approximate composition 28.7 at.%

Sc, 35.3 at.% Ni, 20.2 at.% Co, and 12.7 at.% Fe, and a

FCC solid solution phase within which occurred

M23C6 carbides, which was effective at supporting

high hardness, deflecting cracks and a low wear rate.
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