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ABSTRACT

Multi-principal element alloys (MPEAs) have attracted rapidly growing atten-

tion from both research institutions and industry due to their unique

microstructures and outstanding physical and chemical properties. However,

the fabrication of MPEAs with desired microstructures and properties using

conventional manufacturing techniques (e.g., casting) is still challenging. With

the recent emergence of additive manufacturing (AM) techniques, the fabrica-

tion of MPEAs with locally tailorable microstructures and excellent mechanical

properties has become possible. Therefore, it is of paramount importance to

understand the key aspects of the AM processes that influence the microstruc-

tural features of AM fabricated MPEAs including porosity, anisotropy, and

heterogeneity, as well as the corresponding impact on the properties. As such,

this review will first present the state-of-the-art in existing AM techniques to

process MPEAs. This is followed by a discussion of the microstructural features,

mechanisms of microstructural evolution, and the mechanical properties of the

AM fabricated MPEAs. Finally, the current challenges and future research

directions are summarized with the aim to promote the further development

and implementation of AM for processing MPEAs for future industrial

applications.

Introduction

Multi-principal element alloys (MPEAs) were first

reported independently by Cantor [1] and Yeh [2] in

2004 and generally contain three to five main metallic

elements with equiatomic ratio which differs from

traditional alloys, whereby one or two elements

dominate. Since more elements would increase the

entropy of mixing of the alloy system, MPEAs are

also known as high/medium entropy alloys [3].

MPEAs tend to form simple solid solutions rather
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than intermetallic compounds, which gives rise to

their excellent mechanical properties and good ther-

mal stability [4, 5].

MPEAs have recently enjoyed a rapid development

with a clear focus on the design of new alloy systems

for potential applications in various industries, such

as turbine blades, thermal spray bond coatings, high-

temperature molds and dies, radiation-damage

resistant materials, and renewable energy industry

[6–14]. The earliest and most intensely investigated

alloy systems are 3d transition metal MPEAs, which

are based on the elements Cr, Co, Ni, Fe, Mn, V, and

Cu. Features of these MPEAs include their relatively

easy formation of a simple solid solution and excel-

lent mechanical performance and radiation resis-

tance. The first 3d transition metal MPEA has the

equiatomic composition CrCoNiFeMn and is known

as the Cantor alloy [1]. In addition, Wu et al. syn-

thesized a series of binary, ternary, and quaternary

MPEAs which are subsets of the Cantor alloy with

the same single FCC phase and excellent cryogenic

temperature mechanical properties [15–17]. It is also

worth noting that numerous studies on 3d transition

metal MPEAs contain the element Al as an additive

or principal element. The underlying reason is that Al

plays a key role in grain refinement, in suppressing

intermetallic compound formation, and in facilitating

phase transition from FCC to FCC ? BCC then to

total BCC [18–20]. Another important MPEA system

is refractory metal MPEAs system with high strength

and melting temperature (more than 1800 �C) con-

taining elements Cr, Hf, Mo, Nb, Ta, Ti, V, W with

single BCC phase or BCC ? Laves/B2 phase [21, 22].

For instance, Senkov et al. fabricated equiatomic

NbMoTaW and VNbMoTaW MPEAs with single

BCC phase structure using vacuum arc melting and

both MPEAs show high yield strength at high tem-

perature (405 MPa and 477 MPa at 1600 �C, respec-
tively) [23]. Moreover, low-density MPEAs based on

light elements Al, Li, Mg, Si, Sn, and Ti also have

promising potential applications in aerospace and

transportation industries. Khaled et al. designed and

produced Al20Li20Mg10Sc20Ti30 by mechanical alloy-

ing, combining both low density (2.67 g/cm3) and

high microhardness (5.9 GPa) [24].

Since MPEAs have generated substantial research

interest, various manufacturing techniques for pro-

cessing MPEAs have been developed in the past

decades. Arc melting and mechanical alloying are the

two main manufacturing techniques for MPEAs

[25–27]. Arc melting is the earliest and most widely

used method for processing these alloys, which con-

sists of several steps including first mixing different

metals with a fixed ratio in a crucible and then

melting the mixed metals by electrode discharge arc

heating with argon as protective atmosphere, fol-

lowed by casting into a mold. As the most popular

manufacturing technique for MPEAs, arc melting can

remove the volatile impurities (e.g., C, N, O, Si, Sn,

Sb, Pb) due to its extremely high working tempera-

ture of over 3000 �C. However, arc melting also suf-

fers some disadvantages in terms of processing

MPEAs such as restricted production geometry,

composition segregation, defects and large inner

stress, which greatly impedes its further develop-

ment and application in processing MPEAs [28].

Meanwhile, mechanical alloying is used mainly for

MPEA powder production [29]. This process gener-

ally involves a mixture of different composition

powders undergoing a repeated fracture and

rewelding process in a high energy ball-mill machine

until uniform composition is achieved in a fine

MPEA powder. Mechanical alloying can be readily

used for developing a wide range of MPEAs with

relatively low cost and high yield. However, since the

product of mechanical alloying is only MPEA pow-

der itself, other manufacturing techniques such as hot

isostatic pressing and spark plasma sintering are

required for producing practically usable MPEAs

parts. Additionally, the grinding media and atmo-

sphere in the ball-mill machine will tend to contam-

inate the raw MPEA powder.

Additive manufacturing (AM), also known as

three-dimensional (3D) printing, is regarded as a

transformative and promising technology in many

industries [30–32]. AM applies novel incremental

manufacturing techniques under computer guidance

to form a product using layer-by-layer consolidation

[33, 34]. With the recent advent and rapid develop-

ment of AM, there have been demonstrated advan-

tages in processing various metals and alloys

including Al, Ti, steel, shape memory alloys, metallic

glasses, and MPEAs, particularly for manufacturing

complex geometry components with locally tailorable

microstructure and properties [35–41].

The purpose of this review article is to present the

state-of-the-art in AM techniques for MPEAs, high-

lighting the microstructures produced, their evolu-

tion mechanisms, and the associated mechanical

properties. To conclude, some current challenges and
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future research directions are proposed with the aim

to promote the further development and implemen-

tation of AM of MPEAs.

Additive manufacturing for multi-
principal element alloys

The focus of this review article will be on two dif-

ferent additive manufacturing (AM) techniques

which represent the large majority of studies on the

fabrication of MPEAs, namely powder bed fusion

(PBF) and directed energy deposition (DED) [42, 43].

Classifications of AM technologies
for MPEAs

Powder bed fusion (PBF)

PBF is an emerging and widely used AM technology

to selectively melt layers of metal powders using

laser or electron beam as energy sources following

the scanning paths predefined by a computer-aided

design model [44]. The PBF process includes several

steps. Firstly, software slices a 3D computer-aided

design model into discrete layers and programs the

scanning paths and strategy. Secondly, the machine

selectively melts each successive layer of powder

while the un-melted powder remains loose or par-

tially loose on the substrate as support. Thirdly, the

build platform descends by one layer thickness and

the recoater spreads another layer of metal powder

on top of the previous layer for subsequent scanning

and melting. Depending on the energy sources for

melting metal powders, PBF can be categorized into

laser-powder bed fusion (LPBF) and electron beam

powder bed fusion (EPBF). LPBF shows a higher

cooling rate, which is up to 107 K/s, than EPBF,

which has a typical range from 103 to 105 K/s [45].

The lower cooling rate and lower temperature gra-

dient caused by preheating the powder bed during

EPBF tends to decrease residual stresses and cracking

compared to LPBF [46–48]. CrCoNiFe was the earliest

MPEA investigated by PBF technology and con-

firmed the feasibility to fabricate MPEAs by AM

[49, 50]. In addition, MPEAs with Al additions were

widely researched recently using PBF and their

defect phase formation mechanisms have attracted a

great deal of research interest [51–54]. Additionally,

refractory MPEAs, which are difficult to process due

to their low ductility and high strength at room

temperature, were also successfully fabricated by PBF

[55, 56].

The key adjustable processing parameters for PBF

include power of the energy sources (e.g., laser

power in LPBF, voltage and current controlled power

in EBM), hatch spacing, scanning speed, layer thick-

ness, and scanning strategy. These parameters have

been demonstrated to have a direct influence on the

solidification process, densification, and microstruc-

ture as well as properties of the fabricated MPEAs.

Therefore, to fabricate MPEAs with desired

microstructures and properties, it is essential to

establish the processing-microstructure-property

relationships for PBF of MPEAs. As such, great

efforts in the past few years have been made to

uncover the optimized PBF processing parameters for

fabricating MPEAs [56–59]. Several process opti-

mization criteria have also been developed based on

different mechanisms, including the well-known

volume energy density (VED) criterion:

VED ¼ P=vth; ð1Þ

where P, v, t, h is the laser power, scanning speed,

layer thickness and hatch space, respectively. It is

worth noting that machine learning-based process

optimization approaches have also been reported in

recent years [60–62]. However, since different MPEAs

have distinct physical and chemical characteristics

and, thus, different responses to laser and electron

beam, carefully designed experiments, physics-based

computational modeling, and data-driving machine

learning approaches should be combined and wisely

integrated to obtain the optimized PBF process win-

dow for specific MPEAs [63].

Directed energy deposition (DED)

DED is another popular AM technology for process-

ing MPEAs. Compared with the pre-laid metal

powder in PBF, DED uses a heat source, which can be

an electron beam, electric arc, or a laser beam, to

simultaneously melt raw materials which are

deposited in the form of powder or wire onto a

substrate. The raw materials feed system, which may

include several material sources (e.g., powder and

wire), offers more options for processing MPEAs

with different compositions. It can apply single noz-

zle with MPEAs powder/wire or multiple nozzles for
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in situ mixing and melting different pure element

powders/wires [64–66].

Compared with LPBF, DED has a lower cooling

rate (103–105 K/s) and a lower manufacturing accu-

racy [36]. DED is the most popular method for the

fabrication of MPEA coatings. Currently, it has suc-

cessfully deposited 3d transition metal MPEA, Al

added MPEA, and refractory MPEA coatings to give

improved wear resistance, corrosion resistance, and/

or strength [67–72]. Additionally, DED has some

advantages for the fabrication of bulk MPEA com-

ponents. These advantages derive from the powder/

wire feed systems that enable changes in composition

during the DED process across different layers which

provides significant potential for fabricating func-

tionally graded MPEA components with tailorable

compositions, microstructures, and properties

[73–77]. Without the manufacturing size limitation of

the PBF, DED is reported to be able to fabricate large

MPEA components (e.g., up to

5000 9 3000 9 1000 mm3) with a high deposition

rate (up to 300 cm3/h) [36, 78].

Key advantages and main driving force
for AM of MPEAs

High cooling and solidification rates

Compared with pure metals and traditional alloys,

MPEAs are more likely to form intermetallic com-

pounds and suffer from composition segregation due

to the presence of multi-principal elements [79–81].

However, the ultrahigh high cooling rate of AM

technologies, which ranges from 103 to 107 K/s, can

significantly mitigate existing issues which reside in

conventional manufacturing of MPEAs such as

coarse grains and chemical segregation in large

MPEA castings and forgings [45, 82, 83]. In detail, the

high degree of undercooling induced by the high

cooling rates used in AM can accelerate the move-

ment of the solid–liquid interface during AM of

MPEAs. In this process, the diffusion of elements in

MPEAs is suppressed and trapped by solidification

to form a solid solution. As the cooling rate increases,

the microstructure changes from dendritic structures

to chemically homogeneous cellular structures

[77, 84, 85]. Furthermore, a high degree of under-

cooling and a fast moving solid–liquid interface can

also increase the nucleation rate and restrain grain

growth to form fine grain structures, or even

nanograins, leading to superior mechanical proper-

ties [86, 87].

Localized melting and solidification for microstructure

tailoring in MPEAs

The ultrahigh energy sources (e.g., laser, electron

beam, etc.) in AM can theoretically melt all the

principal elements in MPEA powders or wires to

form a melt pool which has been regarded as a

unique characteristic and a meso-structure in AM

fabricated metals and alloys [88, 89]. It has been

shown that inside these melt pools, localized melting

and solidification can enable the tailoring of the

microstructure (e.g., grain size, precipitation, bi-

modal structure, etc.) of the fabricated metals and

alloys by controlling the AM processing parameters

and can also decrease the composition segregation in

fabricated metal components [90–92]. Due to the

relationship between the global and local heat flux

during the AM process and grain growth, crystallo-

graphic texture of AM MPEAs can also be readily

designed through controlling the power, hatch space,

and scanning strategy to manipulate the solidification

process within each melt pool.

Manufacturing of complex structures for various

industrial applications

MPEAs are considered promising materials for vari-

ous applications for aerospace, transportation,

biomedical devices, etc. [6]. However, these emerging

and complex materials are difficult to manufacture or

process, which has imposed some restriction on the

actual applications of MPEAs. A unique strength to

AM technology is direct manufacturing with a com-

puter-generated digital model, which eliminates the

time-consuming and costly design and usage of

mold/die design as well as multiple post-processing

stages. The layer-by-layer fabrication in AM can

lower the production requirements and offer new

opportunities to efficiently integrate the design and

manufacturing of complex-shaped MPEAs for vari-

ous applications [93–95]. Therefore, in comparison

with conventional MPEAs manufacturing techniques,

AM technology has the potential to improve the

accuracy and efficiency in both the design and pro-

duction process while reducing waste of energy,

materials, and human recourses. Reducing material

waste is especially important for MPEAs since they
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often have higher raw material cost than traditional

alloys due to the large content of more expensive

elements (e.g., Co and Ni) [96].

Real-time monitoring of the manufacturing process

It is quite challenging to observe the evolution of

microstructure and solidification condition during

most conventional manufacturing processes for

MPEAs. However, AM is a layer-by-layer manufac-

turing process, which enable the in situ monitoring of

each layer during the fabrication process. In situ

monitoring systems such as high-speed cameras, IR

cameras, or photodiode-based melt pool monitoring

systems can be installed in the AM system to capture

the key characteristics during the melting and solid-

ification process of each layer and analyze the frac-

tion and category of processing defects, which

provides real-time feedback for adjusting the process

to improve the robustness of the manufacturing

process [97, 98]. As such, the continued development

of real-time process monitoring methodologies is

believed to underpin the future production of defect-

free and robust MPEA components via AM.

Key microstructure features
and characteristics in AM MPEAs

Densification and defects formation
during AM

Since processing defects such as porosity, cracks, and

element segregation are the main reasons for inferior

mechanical properties of AM fabricated parts,

determining how to optimize the AM process to

fabricate high quality and fully dense parts with no

or minimal processing defects is a high priority for

AM research. However, up until now most MPEAs

fabricated by AM still suffer from various processing

defects [99–103]. In addition to MPEA powder feed-

stock, the AM processing parameters are considered

as the main factors controlling the densification pro-

cess of AM MPEAs. For instance, the relationship

between the volume energy density (VED) and the

relative density of LPBF FeCoNiCuAl was investi-

gated and established by Ren et al. [104]. It was found

that poor densification was generally caused by

incomplete melting with low VED and keyhole for-

mation with high VED, both leading to the formation

of pores in the fabricated MPEA parts.

Kuzminova et al. [105] investigated CoCrNiFe

MPEAs fabricated using a range of different VED, as

shown in Fig. 1. The results showed that most

porosity can be eliminated at a VED of 250 J/mm3

Figure 1 Optical microscopy images of CoCrNiFe MPEAs

fabricated by LPBF using different VED: a 100 J/mm3, b 250 J/

mm3, c 1000 J/mm3, d 1500 J/mm3. e The porosity percentage as

a function of input energy [105]. Reproduced with permission

from Elsevier [ref. no. 5173901043280].
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while the porosity can reach 11.8% using a high VED

of 1150 J/mm3. Similarly, Niu et al. [106, 107] fabri-

cated AlCoCrNiFe and CoCrNi MPEAs by LPBF and

investigated their densification process during LPBF.

It was shown that the highest relative density of

AlCoCrNiFe and CoCrNi can reach 98.4% and 98.9%

at a VED of 97.2 and 83.3 J/mm3, respectively. As for

CoCrNiFeMn MPEAs, Jie et al. [108] fabricated a

series of MPEA samples with more than 99.5% rela-

tive density at a VED in the range 62.5–115.6 J/mm3.

It can be concluded that the optimized AM process-

ing parameters for MPEAs with different alloy com-

positions vary greatly, even when there is only a

minor difference in one element. Thus, careful work

needs to be carried out for each individual MPEA to

obtain its own and unique optimized AM processing

window.

Even though VED to some extent can be an effec-

tive criterion for optimizing the LPBF process, due to

the complexity of LPBF, other influential processing

parameters should also be considered, e.g., the

diameter of the laser beam and the scanning strategy.

Lin et al. [109] fabricated CoCrNiFe MPEAs using

different combinations of LPBF parameters with the

same VED of 170 J/mm3 (Fig. 2a–d). The results

showed very different microstructures as well as

Figure 2 Optical microscopy images of samples with the same

VED of * 170 J/mm3 but different power, hatch space and

scanning speed: a 300 W, 110 lm and 400 mm/s; b 400 W,

150 lm and 390 mm/s; c 400 W, 200 lm and 295 mm/s; d 50 W,

20 lm and 368 mm/s; and e 203.6 W, 41.6 lm and 74 mm/s,

respectively. Blue arrows show cracks, red arrows show porosity,

and yellow arrows show un-melted particles. Effects of parameter

combinations on the relative density of the LPBF fabricated

CoCrNiFe MPEAs shaded according to: f laser power and

g relative density [109]. Reproduced with permission from

Elsevier [ref. no. 5173910645320].
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porosity level and confirmed that the densification is

not simply correlated to VED. At the same time, they

proposed a multiple regression model (Fig. 2f, g)

based on polynomial regression analysis to accu-

rately illustrate how the densification varies with

multiple parameter combinations and validated its

practicability by successfully fabricating a fully dense

MPEAs part with a relative density of 99.71%

(Fig. 2e). In addition, Zhou et al. [110] presented a

model to predict the proper LPBF parameters for

fabricating high quality MPEAs parts. The model

uses the physical characteristics of the materials such

as laser absorptivity, latent heat of melting, and

specific heat capacity to calculate energy absorption

(Qa) and energy consumption (Qc), and it predicts

that an ideal part can be built when Qa/Qc has a

value between 3 and 8. Based on this model, they

successfully fabricated a CoCrNiFeMn sample with

99.9% relative density.

Cracks are another common processing defect in

AM MPEAs [106]. While porosity in PBF is mainly

caused by incomplete or excessive melting process,

cracks are believed to be generally caused by thermal

stresses and element segregation. For instance, Sun

et al. [100] investigated the mechanisms for hot

tearing in CoCrNiFe fabricated by various LPBF

process parameters and scanning strategies. Inter-

granular hot cracks were found in all the samples

with no element segregation, revealing that residual

stresses caused by the coarse grain size were the

major reason for hot crack formation.

MPEAs fabricated by DED technology are more

commonly used in coating applications; thus, there

are few studies reported on the actual densification

process while most of previous studies are focused

on the formation of processing defects during DED

[86, 111, 112]. For example, Henrik et al. [113] fabri-

cated TiZrNbTa MPEAs by DED and found that the

Figure 3 XRD patterns of the AlCoCrFeNi powder and LPBF

fabricated AlCoCrFeNi samples: a the influence of different VED;

b enlarged image of the (110) peaks from (a). The phase

distribution in different AlCoCrFeNi samples fabricated by LPBF

at different VED: c 68.4 J/mm3; d 83.3 J/mm3; e 97.2 J/mm3;

f 111.1 J/mm3 [107]. Reproduced with permission from Elsevier

[ref. no. 5173910874611].
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proper feeding speed of nozzle (100 mm/min) can

lead to high quality MPEAs samples. Moreover,

Modupeola et al. [114] investigated the influence of

processing parameters on the microstructure of DED

fabricated AlTiCrFeCoNi and AlCoCrFeNiCu

MPEAs. They indicate that using a laser power of

1200–1600 W and a scanning speed of 8–12 mm/s

can result in reduced processing defects than other

parameters. Meanwhile, they also applied a pre-

heating strategy with a temperature of 400 �C and

demonstrated its effect on the reduction of cracks

through eliminating residual stresses during the DED

process.

Phase formation and evolution in AM
MPEAs

In general, the phase composition of AM produced

MPEAs correspond well to the composition of the

same MPEAs produced by conventional manufac-

turing processes, e.g., casting. For instance, Brif et al.

[49] investigated the FeCoCrNi MPEA fabricated by

LPBF and found that only FCC solid solution was

produced, which is consistent with the phase for-

mation in the previously reported FeCoCrNi MPEAs

fabricated by induction and arc melting [115–118].

However, for Al containing MPEAs, phase transi-

tions have been found to be strongly related to the

AM processes [51]. Prealloyed AlCoCrFeNi powder

with A2 (disordered BCC phase) ? B2 (ordered BCC

phase) structures was used for LPBF processing by

Niu et al. [107]. It was found that the as-built

AlCoCrFeNi kept the A2 ? B2 phase structure, and

the B2 phase was first formed at the boundary of the

melt pools where a higher cooling rate existed. From

the XRD profiles and phase composition maps shown

in Fig. 3, the amount of A2 phase decreased and the

amount off B2 phase increased with increasing VED

[82, 119]. Additionally, composition variation also

affects the phase formation and evolution in AM

MPEAs. For instance, Sun et al. [120] produced Alx-
CoCrFeNi with LPBF and found a FCC to BCC/B2-

? FCC and then to BCC/B2 transition with

increasing Al content from 0 to 1%, and all BCC/B2

phases are emerging and located in the interdendritic

and grain boundaries area. Li et al. [121] also repor-

ted a phase formation in DED fabricated (CrMnFe-

CoNi)1-xFex, a BCC phase emerged when added 60%

Fe into equal atomic ratio CrMnFeCoNi MPEAs.

More interestingly, a phase transition from BCC to

FCC was found in LPBF AlCrCuFeNix by Luo et al.

[53]. It is reported that microstructure consisted of a

B2 phase matrix and disordered BCC phase in

AlCrCuFeNi1.0 (Fig. 4a, b). Increasing the Ni ratio

from 1.0 to 3.5 caused a lamellar FCC phase to form,

while the relative fraction of basket wave and B2

matrix decreased and transformed into a spherical

morphology (Fig. 4c, d).

Solidification microstructure of AM MPEAs

It is known that the layout and morphology of the

melt pool can affect the solidification microstructure

in the AM MPEAs. Piglione et al. [122] carried out a

detailed study of the solidification microstructure in

LPBF fabricated CoCrNiFeMn MPEAs in both single

layer and bulk samples. Solidification in the single

layer occurred via the growth of grains and a fine

cellular structure along the direction of maximum

heat flux, i.e., from the existing grains in the substrate

toward the center of the single layer top surface

(Fig. 5a–c). For the bulk sample, however, columnar

grains formed primarily from the substrate and

developed via growth competition among different

directions (Fig. 5d–f). It was concluded that highly

directional heat flux promoted columnar growth of

the solidifying grains that followed the thermal gra-

dient and restrained other growth directions by

multiple remelting processes.

AM processing parameters impact not only the

processing defects but also the solidification

microstructure [114, 123]. Tong et al. [124] uncovered

the influence of DED processing parameters on the

solidification of CoCrNiFeMn MPEAs. The

microstructural feature in the vertical section is den-

dritic columnar grains which become coarser with

increasing laser power (Fig. 6a–c). Since the dendritic

columnar grains grow parallel with the build direc-

tion, the horizontal section of the columnar grains

showed and equiaxed morphology with the dimen-

sions increasing with higher laser power (Fig. 6d–f).

The influence of processing parameters on the

microstructure of LPBF fabricated CoCrFeNiTi was

reported by Takafumi et al. [93], with a focus on the

morphology of a single track scan. The results

showed that lower laser power, higher scanning

speed and smaller laser spot diameter would cause a

discontinuous melt track. Moreover, a surface texture

parameter (Sa) was introduced to evaluate the cor-

relation between the crystallographic texture and the
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LPBF processing parameters. The Sa value decreased

with increased scanning speed and power and the

surface roughness was improved for a given VED

value, as shown in Fig. 7a. It was also shown that the

solidification microstructure was largely dependent

on the VED. As VED increased from 20.8 to 83.3 and

then to 333 J/mm3, the depth and width of the melt

pool trace observed from both planes showed a

conspicuous difference (Fig. 7b–g). Regarding the

grain morphology, higher VED allowed laser energy

to transfer through more layers to promote the

growth of columnar grains (Fig. 7h–j).

Cellular microstructures are a common feature in

AM MPEAs, and they result from high-density dis-

location tangling and/or element segregation during

the rapid solidification process [51, 125, 126]. Yang

et al. [127] reported a cellular microstructure in LPBF

fabricated CrFeNiMn MPEAs. Equiaxed and elon-

gated cells can be seen inside the grains in Fig. 8a, b.

Moreover, an ultra-fine sub-cell structure formed

inside the cells (Fig. 8c). The TEM results showed

that high-density dislocations were concentrated on

the cell walls, as shown in Fig. 8d. The formation of

the ultra-fine sub-cells was mainly due to the dislo-

cation tangling inside the cells, which is seen in

Fig. 8f. EDS results in Fig. 8e–g revealed the segre-

gation of Mn and Ni in the concentrated dislocations

areas, as well as in the dendritic, cell boundaries and

even sub-cell boundaries. The formation of cellular

microstructure occurs in this case when elements

with lower melting point (e.g., Mn and Ni) enrich in

the solid–liquid interface which has a slower solidi-

fication rate than regions enriched with high melting

point elements (e.g., Cr and Fe).

Anisotropic microstructures in AM MPEAs gener-

ally arise from the combined effects of directional

global and local heat flux, build orientation, and

scanning strategy [128–130]. The microstructure of an

Figure 4 HRSEM images

showing the microstructure

evolution for the LPBF

AlCrCuFeNix MPEAs:

a Ni1.0; b high magnification

of red box area of a; c Ni2.0;

d Ni2.5; e Ni3.0; f Ni3.5 [53].

Reproduced with permission

from Elsevier [ref. no.

5187670568261].
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LPBF fabricated part can be approximated as a con-

tinuous overlay of single melt pools. As such, an

unsymmetrical melt pool can cause different solidi-

fication behavior/processes along different

directions. For example, Jeong et al. [131] reported an

LPBF produced (CoCrFeMnNi)99C1 MPEA. It has an

anisotropic solidification microstructure in YZ, XZ,

and XY planes caused by applying a bi-directional

Figure 5 a SEM image and related EBSD IPF map showing the

morphology of the cross section of single track of LPBF fabricated

CoCrNiFeMn MPEAs. b and c SEM images showing the

morphology of the cellular structure in (a). d EBSD IPF map of

a region in the LPBF fabricated CoCrNiFeMn cube. e and f SEM

images and related EBSD IPF map showing the morphology of the

substrate/build interface in the samples [122]. Reproduced with

permission from Elsevier.

Figure 6 SEM images showing the morphology of the vertical

and horizontal sections of DED processed CoCrNiFeMn using

different laser powers: a and d 600 W, b and e 800 W, c and

f 1000 W [124]. Reproduced with permission from Elsevier [ref.

no. 5173920449665].
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Fig. 7 a Surface texture parameter (Sa)-based LPBF processing

map with respect to laser power and scan speed; Optical

microscopy images of the top surface, side surface and IPF map

with pole figures for LPBF CoCrFeNiTi fabricated using different

energy density: b, e and h 20.8 J/mm3, c, f and i 83.3 J/mm3, d,

g and j 333 J/mm3, respectively [93]. Reproduced with permission

from MDPI.
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scanning strategy (Fig. 9a–c). Also, grains of the LPBF

produced (CoCrFeMnNi)99C1 show anisotropic

growth because of heat flux distribution in the melt

pool (Fig. 9d, e).

Heat flux was demonstrated to play a key role in

determining the growth direction of both grains and

internal cells in a single melt pool [84, 92, 114]. It is

known that by changing the scanning direction a

different heat flux with different directions can be

obtained in the melt pool of the fabricated part. Fol-

lowing this, the apparent anisotropy in both crystal-

lographic texture and grain morphology as a function

of different scanning strategies was extensively

investigated in the past few years. For example,

Bogdan et al. [132] assessed the microstructure of

LPBF fabricated CoNiCrFeMn with various scanning

strategies. One conclusion which was drawn from the

study was that applying a scanning strategy with 67�
rotation can contribute to higher relatively density

(about 99.7%) than that with 0� and 90� (about 99.2%).

It was also demonstrated that the grain morphology

and crystallographic texture were highly consistent

with meander and cheeseboard scanning strategies,

especially for the equiaxed grain aligned in the Z

direction (Fig. 10a–d). A sample with 67o rotation

between two consecutive layers using a chessboard

strategy (Fig. 10e, f) produced a spiral grain structure

(Fig. 10g, h), which further confirmed that the scan

strategies could be used to design and control the

crystallographic texture and morphology of the

solidification grain structure.

Additionally, the chemical composition and dis-

tribution dramatically impact the solidification

microstructure of AM MPEAs [53]. With the advan-

tage of DED in producing compositional graded

MPEAs, Borkar et al. [133] reported the microstruc-

ture of AlxCrCuFeNi2 by DED, as shown in Fig. 11. A

typical dendritic microstructure was observed in the

Al-free MPEA and particles distributed on the cellu-

lar boundaries were confirmed to be Cu segregation.

A needle-like secondary phase structure with dark

contrast was revealed in DED fabricated Alx-
CrCuFeNi2 with x = 0.8. Upon increasing the Al

content, fine equiaxed grains with intragranular

BCC/B2 phase and intergranular FCC phase were

formed and the relative amount of BCC/B2 phase

continued to increase until x = 1.5.

Some progress has been made in AM processing of

refractory MPEAs [43, 68, 134] in the past five years.

For instance, Takuya et al. [85] developed a structural

TiNbTaZrMo BioHEA by LPBF (Fig. 12a) and vali-

dated its suitability for biomedical applications.

A BCC solid solution structure was generated and

found to have an anisotropic grain distribution

Figure 8 SEM images of LPBF fabricated CrFeNiMn

microstructures: a equiaxed cells; b elongated cells, and c ultra-

fine sub-cells. TEM images of LPBF CrFeNiMn microstructure:

d equiaxed cells and f magnified equiaxed cells with their

corresponding EDS maps of elements distribution, e and g [127].

Reproduced with permission from MDPI.
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corresponding to the melt pool tracks. Fine grains

clustered along the boundary of the melt track while

coarse grains centralized in the melt track on the XY

plane (Fig. 12c). It was also shown that in the YZ

plane, columnar grains along the cross section of the

melt pool were caused by a 90� rotation scanning

strategy (Fig. 12d). Fine equiaxed grains were formed

at the bottom of melt pool and columnar grains grew

toward the melt pool center (Fig. 12e–g). Compared

with a conventionally cast sample, the elemental

distribution in LPBF fabricated samples was rela-

tively homogeneous, which was mainly attributed to

the fact that a high cooling rate during AM can

facilitate the formation of a solid solution structure

with reduced element segregation (Fig. 12h–k).

Figure 9 Optical microscopy images for the etched surfaces of the

LPBF processed (CoCrFeMnNi)99C1 with respect to a X; b Y; and

c Z planes. 3D visualization of LPBF processed HEA: d IPF maps

(top) and OM images (bottom) for three orthogonal planes, and

e magnified view of IPF map from Z plane [131]. Reproduced with

permission from Elsevier [ref. no. 5173920213421].
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Microstructural heterogeneity
along the build direction in AM MPEAs

During AM of MPEAs, high heating and cooling rates

as well as cyclic thermal profiles (i.e., cyclic heating

and cooling) can generate microstructures that are

very distinct from those obtained via traditional

Figure 10 EBSD IPF maps from the top view of LPBF fabricated

CoNiCrFeMn with a meander with 0� rotation, b meander with

90� rotation, c meander with 67� rotation, d chessboard with 67�
rotation. e scanning directions across six consecutive layers for the

chessboard with 67� rotation, f corresponding top view, g OM

images of LPBF CoNiCrFeMn fabricated by e. h EBSD IPF maps

of the white square area of g [132]. Reproduced with permission

from Elsevier [ref. no. 5173921058780].

cFigure 11 a–f SEM images of DED AlxCrCuFeNi2 with

increasing Al content; g–l corresponding SEM images at higher

magnification, White circles show secondary phase, yellow arrow

shows along the grain boundary, red circle shows fine-scale FCC

precipitates and white arrows show cellular/dendritic boundaries

[133]. Reproduced with permission from Elsevier [ref. no.

5173961154619].
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manufacturing processes, in particular the heteroge-

neous and meta-stable microstructure in AM MPEAs.

Unfortunately, the cyclic thermal profiles along with

high heating and cooling rates during AM are quite

complex phenomena to understand experimentally.

This is mainly because in situ microstructural obser-

vation during AM is still quite challenging although

more and more advanced in situ monitoring systems

and techniques for AM have been developed

recently. In recent years, great efforts have been made

to uncover these above-mentioned unclear phenom-

ena and some studies about the heterogeneity of

microstructures of MPEAs produced by AM were

recently reported [125, 128, 135]. For example, Wang

et al. [136] investigated the microstructural evolution

of LPBF fabricated CoCrFeMnNi with respect to

cyclic and rapid thermal profiles. In their study, five

specimens from the built part along the building

direction (Fig. 13a) were selected. It was found that

nanograins with average size ranging from several

nanometers to tens of nanometers (i.e., 50 to 70 nm)

were observed in the top region I and II, respectively

(Fig. 13b–e). In region III, grains of several microm-

eters in size containing a random distribution of

Figure 12 a LPBF fabricated lattice structure for a TiNbTaZrMo

alloy. b EBSD IPF maps of c XY plane and d YZ plane. e SEM

image of the bottom of melting pool. f corresponding IPF mapping

and g IPF mapping at higher magnification. Dendritic structure and

corresponding EDS mapping in h and i LPBF fabricated

TiNbTaZrMo, j and k casting TiNbTaZrMo [85]. Reproduced

with permission from Elsevier.
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dislocations were observed (Fig. 13f, g). The

microstructure in region IV contained elongated

grains of * 3.4 lm in length and 1.3 lm in width.

Cellular substructures with high dislocation density

were also observed within the grains in region IV

(Fig. 13h). Fine twins with 30 nm thickness were also

observed to contain a random distribution of dislo-

cations rather than a cellular substructure (Fig. 13i).

In region V, there was an increase in the quantity of

stacking faults and thinner nano-twinned structures

Figure 13 a A schematic illustration of a SLM fabricated

CrMnFeCoNi alloy with marked region I to V. b–k TEM

images corresponding to region I, II, III, IV and V, respectively

[136]. l APT results from a middle layer of the SLM fabricated

CrMnFeCoNi [137]. a–e Reproduced with permission from

Elsevier [ref. no. 5173970202568]. f–k Reproduced with

permission from Elsevier [ref. no. 5173970350427].

l Reproduced with permission from Cambridge University Press

[ref. no. 5173970646629].
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while the cellular dislocation substructure in these

regions decreased (Fig. 13j). Moreover, an HCP phase

was observed in Fig. 13k, revealing that an FCC to

HCP phase transition occurred at the bottom of the

sample. The atom probe tomography (APT) data, as

shown in Fig. 13l, exemplified the segregation of Mn

and Ni in dislocation cell walls, which can be eluci-

dated by precipitation order and extent of partition-

ing of elements during solidification [137].

In addition to the LPBF fabricated MPEAs, both

Cai et al. [64, 138] and Shou et al. [64, 138] fabricated

an FeCoCrNi part using DED, which exhibited a

heterogeneous microstructure consisting of a solidi-

fication grain structure with columnar grains at the

bottom and equiaxed grains at the top of the fabri-

cated MPEAs, respectively. Moreover, the composi-

tion gradient generated by the DED process can also

lead to a heterogeneous microstructure. Henrik et al.

[113] fabricated refractory MPEAs by DED with a

composition varying from Ti23Zr0Nb42Ta35 to Ti23-
Zr43Nb0Ta34 (Fig. 14a). This composition change was

accompanied by a change in microstructure from

dendrites to fine grains in the matrix (Fig. 14b–k),

with EBSD mapping revealing a decrease in average

grain size from 60 to * 2 lm (Fig. 14l). Overall, the

heterogeneous microstructures exhibited by many

MPEAs suggest that process parameter adjustment

would be required during the build to achieve a

homogeneous microstructure. Or, alternatively, there

is a great opportunity to fabricate graded structures

with location specific mechanical properties, for

example harder at the surface and tougher at the

subsurface.

Mechanical behavior of AM MPEAs

Mechanical properties are important selection criteria

when considering AM MPEAs for various industrial

applications. Compared with MPEAs fabricated

through conventionally manufacturing techniques,

MPEAs produced by AM generally exhibit superior

hardness, strength, and fatigue resistance

[111, 121, 130]. This enhancement in mechanical

properties is mainly attributed to solid solution

strengthening, grain boundary strengthening, and

dislocation strengthening, which are closely related

to the high heating and cooling rates as well as layer-

wise manufacturing nature endowed by AM [139].

Comprehensive understanding of mechanical

behavior of AM MPEAs can underpin the design and

manufacturing of MPEAs with desired properties for

potential applications.

Hardness of AM FCC MPEAs such as CoCrFeNi,

CoCrFeNiMn, and Al0.5CoCrFeNi vary from 200 to

400 HV [92, 105, 140]. Introducing BCC phases or

secondary particles by adding Al, C, B and Ti can

generally increase the hardness in AM MPEAs

(Fig. 15a) [107, 133, 141]. Refractory MPEAs, either

fabricated using AM or conventional manufacturing

methods, often exhibit higher hardness due to their

BCC structure and the lattice disorder caused by

larger atoms (e.g., Ta and W). For example, the

hardness of DED fabricated TiZrNbWMo was 700

HV, and it increased to 1300 HV after annealing at

800 �C for 20 h [68]. In addition, tensile properties of

AM MPEAs can also be influenced dramatically by

the addition or removal of components. The quinary

CoCrFeMnNi produced by PBF exhibited a yield

strength of 510 MPa, an ultimate strength of

610 MPa, and an elongation of 36% [142]. In contrast,

quaternary MPEAs CoCrFeNi fabricated by using the

same AM technique had a yield strength, an ultimate

tensile strength and an elongation of 600 MPa,

745 MPa and 32%, respectively [140].

The AM processing parameters play a key role in

controlling the microstructure of MPEAs and, hence,

their mechanical properties. Lin et al. [109] showed

that highly dense (a relative density of 99.71%)

FeCoCrNi fabricated by optimized LPBF parameters

exhibits superior properties with a yield strength of

600 MPa, ultimate tensile strength of 720 MPa and

elongation of 31.85% (Fig. 15b). Xiang et al. [138]

demonstrated that an increased yield strength from

189 to 290 MPa can be achieved in DED fabricated

bFigure 14 a Composition gradient ranging from Ti23Zr43Nb0Ta34
to Ti23Zr0Nb42Ta35 in a DED fabricated part and corresponding

hardness value. b–f SEM BSE images showing the microstructure

corresponding to locations a to e, (g–k are enlarged images of

these locations). l SEM BSE image of the entire sample with

overlaid EBSD IPF map, including a magnified IPF map of the

sample in the vicinity of the Mo substrate/sample interface [113].

Reproduced with permission from Elsevier [ref. no.

5173970829239].
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CrMnFeCoNi MPEAs through increasing the laser

power from 1000 to 1400 W. This was attributed

mainly to grain morphology evolution from colum-

nar grains at low laser power to equiaxed grains at

high laser power. More heat accumulation at higher

laser power promoted a columnar-to-equiaxed

structure transition (CET), which enhanced the

strength of the DED fabricated CrMnFeCoNi.

AM induced processing defects in the fabricated

MPEA components, such as pores and cracks, can

also be a source for fracture and can hence deteriorate

the mechanical properties. Hot isostatic pressing

(HIP) is commonly used for post-processing of AM

Figure 15 a Variation in Vickers hardness of a compositionally

graded DED AlxCrCuFeNi2 [133]. b Stress–strain curves of OP-V,

CS-A, CS-B, CS-C, and OP-P, respectively, correspond to a–e in

Fig. 2 [109]. c Summary of tensile yield strength and elongation

for AM MPEAs [143]. a Reproduced with permission from

Elsevier. [ref. no. 5173970948635] b Reproduced with permission

from Elsevier. [ref. no. 5173970060838] c Reproduced with

permission from John Wiley and Sons [ref. no. 5173971271338].
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fabricated MPEAs to improve the densification and

strength. Li et al. [142] enhanced the densification of a

LPBF fabricated CrCoNiFeMn MPEA from 98.2 to

99.1% by HIP, which increased the tensile strength

from 601 to 646 MPa. However, the ductility

decreased from 35 to 18%. Joseph et al. [77] reported a

decrease in elongation around 88% in DED fabricated

AlxCoCrFeNi after HIP. This ductility loss was

mainly caused by a transition from ductile fracture to

brittle fracture due to precipitation of the r-phase
after HIP. Annealing is another post-AM processing

that influences properties of MPEAs by reducing

residual stress, altering grain size, and/or reducing

chemical segregation. For example, Lin et al. [144]

reported the influence of annealing temperature on

the mechanical properties of LPBF fabricated

FeCoCrNi. Increasing the annealing temperature

from 773 to 1573 K can change the yield strength,

ultimate tensile strength, and ductility from 581.9 to

221 MPa, 707.9 to 633.2 MPa and 20 to 45%, respec-

tively. A summary of previous studies on the yield

strength and elongation of most MPEAs fabricated by

different AM technologies is illustrated in Fig. 15

(c) [143]. It can be seen that for MPEAs with an FCC

crystal structure, an excellent strength-ductility bal-

ance can be achieved with the strength ranging from

200 to 600 MPa and elongation up to 70%. Addi-

tionally, by introducing a BCC phase or particles to

AM fabricated FCC MPEAs, the strength of the

MPEAs can be further increased to around 800 MPa

but with some ductility sacrificed at the same time.

Current challenges and future
development for AM of MPEAs

Current challenges

MPEA powder feedstock scarcity for AM

Currently, only a limited number of MPEAs, mainly

3d transition metal MPEAs and a few refractory

MPEAs, have been successfully fabricated by AM,

particularly for PBF [50, 145]. The main reasons are

twofold. Firstly, MPEA powders which are suit-

able for AM are generally difficult to produce via

existing metal powder production techniques, e.g.,

gas-atomization. As for PBF, it has stringent

requirements on the size, flowability, and oxygen

content as well as other aspects (e.g., surface state) of

the powder feedstock since these characteristics of

powders seriously affect the PBF process as well as

the microstructure and properties of fabricated

MPEAs [146–148]. Additionally, solubility, mixing

entropy, and melting point difference between com-

position elements also need to be considered to avoid

liquid phase precipitation or intermetallic compound

formation during MEPA powder fabrication

[149, 150]. Moreover, the high melting temperature

and poor machinability caused by the high strength

of refractory MPEAs also make them difficulties in

powder production [151, 152]. The MPEAs powders

fabricated by atomization methods exhibited high

spherical, low oxygen content, and uniform compo-

sition [153–155]. However, it is a relatively high cost

and low efficiency process. Mechanical alloying,

compared with atomization, can conveniently pro-

duce MPEA powders with any ratios of elements

materials and high solid solubility, but the flowability

of powders produced by this method is relatively

lower [156]. Thus, producing prealloyed powders for

MPEAs with the high solid solubility, homogeneous

composition and high spherical degree is a chal-

lenging and costly process. Secondly, not all MPEAs

are suitable for AM. For instance, intrinsic factors

such as high laser reflectivity, high concentration of

volatile elements, high thermal conductivity, and/or

high melting point can make it difficult to establish

optimized AM processing parameters for producing

fully dense and crack-free MPEAs [157]. Compared

with traditional alloys for AM such as stainless steel,

Ti6Al4V, etc., these features of MPEAs can compli-

cate the AM process optimization, which will further

pose a challenge to the subsequent microstructure

control and properties tailoring for these alloys or

even prevent successful manufacturing of any high

quality MPEA parts.

Control of processing defects during AM of MPEAs

Although optimized processing parameters can help

the densification or bonding process during the AM

fabrication process of MPEAs parts, processing

defects are still ubiquitous in MPEAs produced by

AM [158, 159]. For example, in addition to the defects

listed in Sect. 3, MPEA feedstock with high oxygen

content could result in high level of porosity in the

fabricated MPEA parts, which is mainly attributed to

the balling effects and the formation of oxides during

solidification [160, 161]. Moreover, due to the
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different evaporation rates of elements in MPEAs, the

high temperature, and repeated melting and remelt-

ing process during AM can also lead to a composi-

tional variation compared with the original powder,

in particular when one the principal elements has a

low boiling/evaporation point [157, 162]. This will

not only affect the microstructure and properties of

the fabricated MPEAs but also influence the certifi-

cation and qualification of MPEAs parts if demand-

ing industrial applications, such as aerospace, are

targeted. Furthermore, the support structure for AM

fabricated parts is another critical factor for produc-

ing MPEAs with complex geometry. Defective sup-

port structure can give rise to an uneven stress

distribution which can further cause a severe defor-

mation in the fabricated MPEAs parts during AM, in

most cases resulting in the failure of the MPEAs build

[163–165]. Thus, optimized process parameters, high

flowability and low oxygen content feedstock, gas

control during printing and well-designed support

structure are the possible actions to reduce defects in

MPEAs produced by AM.

Limited understanding of the microstructure evolution

in AM fabricated MPEAs

AM, as a class of emerging advanced manufacturing

technique, has a unique layer-wise manufacturing

process. Some of the key characteristics for AM, such

as rapid heating and cooling rates, directional and

steep heat flux and thermal gradient, and cyclic

heating and cooling generally lead to unique

microstructures in AM MPEAs which are different

from the microstructures in their counterparts

obtained using conventional manufacturing tech-

niques [64, 136, 166]. Although great research effort

has been devoted in recent years, the microstructure

evolution of AM MPEAs has not been fully under-

stood. For example, the influence of thermal history

on the spatial distribution of MPEA elements in the

fabricated parts is still unknown. The effect of

changing heat flux direction on grains growth in the

melt pool of the AM MPEAs is not clear with several

proposed mechanisms still under ongoing debate.

There is also a lack of understanding of how the

minor deviations in composition due to element

evaporation during AM will impact the microstruc-

ture formation and evolution as well as the phase

formation in the fabricated MPEAs. These scientific

questions will need systematic and in-depth research

in future to be answered.

Repeatability and reproducibility of AM of MPEAs

AM is a complicated process wherein many machine-

related processing parameters (e.g., energy power,

scanning speed, hatch space, layer thickness, and

scanning strategies) have a huge impact on the fab-

rication process as well as the microstructure and

properties of the MPEAs. Moreover, fluctuations in

laser scan speed, variation of mechanical properties

(elasticity, friction coefficient, and damping coeffi-

cients) of powder particles, variation of diffusion

coefficient of the material, uncertainty of absorption

coefficient and measurement errors of AM increase

the uncertainty of AM. With the added complexity

imposed by the presence of multi-principal elements

in MPEAs, it becomes even more challenging to

obtain satisfactory repeatability and reproducibility

of the AM process for these alloys [167–169]. For

example, even for MPEA samples manufactured in

the same batch within the same PBF machine using

the same processing parameters, different

microstructures, and properties may arise in the

MPEAs. This is probably attributed to multiple rea-

sons including relative position of MPEA parts on the

build plate, influence of flowing gas patterns in the

build chamber and the irregular splash movement/

behavior from melt pools, etc. As such, it will be an

important area for future development to improve

the robustness of the AM processes and/or systems

with the aim to enhance the repeatability and repro-

ducibility of the AM process.

Future prospects and research directions

Design of new MPEAs for AM

Research and applications of AM MPEAs are still in

its early stage. Most published works are focused on

the 3d transition and refractory metal element

MPEAs. New alloy systems/compositions should be

explored and developed for AM to further expand

the MPEAs materials palette and uncover their

potential applications, e.g., lightweight MPEA sys-

tems consisting of Li, Mg, Al and Si that can be used

in aerospace applications. Additionally, precious

metal MPEAs, for example IrOsReRhRu and

PdPtCuNiP, have shown excellent catalytic
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performance as have HEA composed of lower cost

elements such as FeCoNiAlTi [13, 14, 170]. If these

MPEAs can be successfully designed and fabricated

into complex structures with large surface areas

using AM technologies, it is anticipated that related

applications will become possible and more value

will also be added to their practical applications. To

facilitate this alloy design process, computational

modeling can be used. Currently, density functional

theory (DFT) and molecular dynamics (MD) are

widely used in designing new MPEAs with different

compositions through the modeling of the phase

stability, solidification behavior, and crystallization

kinetics of MPEAs, mainly targeting the design of

MPEAs with novel or enhanced properties [171, 172].

Once new MPEAs have been designed, the produc-

tion of high quality prealloyed powder or filament

feedstock from these new and novel MPEAs will

become another important cornerstone as prerequi-

site for future research on AM of MPEAs.

Integrated computational materials engineering for AM

of MPEAs

Similar to other metals and alloys, many complex

physical phenomena such as laser-material interac-

tions, surface tension, and residual stresses, Mar-

angoni flow inside melt pools, melt pool dynamics,

phase transitions, and rapid solidification processes

with cyclic heating and cooling that occur during the

AM process of MPEAs are difficult to analyze and

understand only through experiments. Therefore,

finite element modeling, molecular dynamics simu-

lation, CALPHAD modeling, and other advanced

and high fidelity integrated computational materials

engineering (ICME) techniques have also been

introduced into the AM field in recent years to help

investigate and understand the solidification process,

thermal histories, melt pool evolution, processing

defect formation, and microstructure formation and

properties of AM produced MPEAs and other critical

problems mentioned above [173, 174]. Additionally,

with the aim to design, qualify, and certify AM fab-

ricated components, there is a current effort to couple

computer-aided engineering, digital twins, and

internet of things (IoT) with AM to simulate, monitor,

and predict the overall microstructure and properties

and service performance of AM fabricated compo-

nents [175, 176]. However, these computational

modeling methods and ICME techniques generally

require high quality experimental data, very accurate

materials properties and characteristics (e.g., high

temperature properties) and substantial computing

power as the models become sophisticated with less

simplifications. As such, how to obtain the required

materials properties, and how to design and develop

new and efficient computational models to better

represent the real AM processing of MPEAs and at

the same time consume less computing power will be

one of the critical problems to solve in future.

Machine learning for AM of MPEAs

Machine learning has been recognized as a powerful

and effective tool for solving complex problems in

many research fields due to its capability of pro-

cessing and understanding high-dimensional and

very large dataset without consuming too much

computing power. It is expected that machine learn-

ing can also improve the development of AM MPEAs

in several ways [177]. Firstly, it can enable the

exploration of new MPEAs and the characterization

of their solid solution structure and the evaluation of

their AM processability by analyzing their physical

and chemical properties [178–180]. Secondly, large

optimal processing windows for AM of MPEAs can

be established by machine learning methods which

will allow the tailoring of their microstructures and

properties, which has been recently demonstrated for

conventional alloys [62, 63]. Thirdly, exploring the

relationships between the alloy composition, pro-

cessing, microstructure, and properties for AM

MPEAs would generally require a huge number of

experiments, which poses a significant challenge in

terms of needed time and resources. In contrast,

machine learning models can be established for pre-

dicting the process-microstructure-property relation-

ships of many AM MPEAs by using only a limited

amount of experimental data [181]. In future, it is

expected that a giant database consisting of charac-

teristics of feedstock materials, AM fabrication tech-

niques and process, microstructure information, and

various final component properties will be generated

with the assistance of machine learning techniques.

This database will be able to automatically match

materials and AM processes with corresponding

design guidelines and methods for manufacturing

MPEAs for various industrial applications.
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Compared with traditional manufacturing tech-

niques, various AM technologies have potential

advantages in producing MPEAs with either uniform

or graded composition, complex geometric shapes,

and tailorable local microstructures and hence tai-

lorable properties. Nonetheless, the development of

new AM technologies will be desirable in future to

further improve the robustness of the AM processes

as well as the processability of MPEAs by AM, which

will lead to improved quality of the AM fabricated

MPEAs. Some small but important advancements

such as optimizing the feedstock system in DED

technology and inserting a more homogenous pre-

heating system in PBF machines can improve the

quality of the AM fabricated MPEAs by reducing

residual stresses. Other new opportunities including

integrating a magnetic, acoustic, or gravitational field

into the current AM processes, can also bring new

advances in manufacturing high quality MPEAs

parts with intricate structures and more functionali-

ties, e.g., changing shape and structure in response to

environment stimuli [182, 183].

Conclusion

MPEAs are a class of relatively new engineering

materials designed via a novel design concept, i.e.,

increasing the entropy of mixing of the alloy system.

They often form simple phase solid solution structure

with large lattice distortion caused by the multiple

element composition. As such, MPEAs have potential

to deliver excellent properties, such as fatigue per-

formance, high-temperature creep and hydrogen

brittleness resistance, corrosion resistance, and radi-

ation resistance that make them attractive for many

applications such as turbine components, coatings,

catalysts, biomedical devices, and nuclear reactor

materials. However, the conventional manufacturing

of MPEAs has some drawbacks or limitations such as

coarse grains and composition segregation. The

layer-wise manufacturing process renders AM an

attractive manufacturing technique for the fabrication

of MPEAs with complex geometry, unique

microstructures, and tailorable properties, which can

unlock the potential of MPEAs for different applica-

tions. In the past decade, AM MPEAs has received

more and more attention from both academia and

industry. However, although promising progress has

been made, AM MPEAs research is still in its early

stage with many identified challenges. Therefore, this

review on AM MPEAs aims to provide insight into

the state-of-the-art in the AM MPEA field, with a

focus on the microstructure characteristics, mechan-

ical properties, current challenges, and research

prospects for AM MPEAs.

It is hoped that this review can arouse interest and

stimulate inspiration for more and more researchers

to join the collective efforts in the AM MPEAs field. It

is anticipated and strongly believed that more and

more detailed and comprehensive research studies

will be carried out and reported in coming years to

promote and accelerate the real application and wide

implementation of AM MPEAs for broad industrial

sectors.
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