Skip to main content
Log in

Eco-friendly approach for preparation of hybrid silica aerogel via freeze drying method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, an eco-friendly method of producing hybrid silica aerogels by freeze-drying method (FD) is proposed. In the freeze-drying system, deionized water was the only solvent, hybrid aerogels were prepared by acid–base catalysis and sol–gel method using methyltrimethoxysilane (MTMS) and water–glass as co-precursors. The microstructure, specific surface area, pore size distribution and thermal properties of the hybrid aerogels were characterized and analyzed. It was found that all samples exhibited the dual-mesoporous structures, and the molar ratio of co-precursors had a significant effect on the performance of aerogels. The tap density decreased and the porosity increased with the increase in the molar ratio of MTMS, while the thermal diffusion coefficient and thermal conductivity of aerogel decreased first and then increased. Especially when the molar ratio is 2.0, the hybrid aerogels exhibited excellent insulation performance, such as thermal diffusion coefficient of 0.0183 mm s−1, thermal conductivity of 0.0460 W(m k)−1 and great thermal stability up to 540 °C. It illustrates that hybrid aerogels have broad application prospects as insulation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: an overview. J Mater 2014:127049. https://doi.org/10.1155/2014/127049

    Article  CAS  Google Scholar 

  2. Kim H, Kim K, Kim H et al (2020) Eco-friendly synthesis of water-glass-based silica aerogels via catechol-based modifier. Nanomaterials 10(12):2406. https://doi.org/10.3390/nano10122406

    Article  CAS  Google Scholar 

  3. Fricke JG (1992) Ultrasonic velocity measurements in silica, carbon and organic aerogels. J Non-Cryst Solids. https://doi.org/10.1016/S0022-3093(05)80459-4

    Article  Google Scholar 

  4. Adebajo MO, Frost RL, Kloprogge JT et al (2003) Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 10(3):159–170. https://doi.org/10.1023/A:1027484117065

    Article  CAS  Google Scholar 

  5. Buratti C, Merli F, Moretti E (2017) Aerogel-based materials for building applications: influence of granule size on thermal and acoustic performance. Energy Build 152:472–482. https://doi.org/10.1016/j.enbuild.2017.07.071

    Article  Google Scholar 

  6. Shimizu T, Kanamori K, Nakanishi K (2017) Silicone-based organic-inorganic hybrid aerogels and xerogels. Chem-A European J 23(22):5176. https://doi.org/10.1002/chem.201603680

    Article  CAS  Google Scholar 

  7. Sanli D, Erkey C (2013) Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane). ACS Appl Mater Interfaces 5:11708–11717. https://doi.org/10.1021/am403200d

    Article  CAS  Google Scholar 

  8. Li M, Jiang H, Xu D et al (2016) Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. J Non-Cryst Solids 452:187–193. https://doi.org/10.1016/j.jnoncrysol.2016.09.001

    Article  CAS  Google Scholar 

  9. Cheng X, Li C, Shi X et al (2017) Rapid synthesis of ambient pressure dried monolithic silica aerogels using water as the only solvent. Mater Lett 204:157–160. https://doi.org/10.1016/j.matlet.2017.05.107

    Article  CAS  Google Scholar 

  10. Li Z, Cheng X, He S et al (2016) Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels. Mater Lett 171(may15):91–94. https://doi.org/10.1016/j.matlet.2016.02.025

    Article  CAS  Google Scholar 

  11. Zhang Y, Xiang L, Shen Q et al (2020) Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2020.120547

    Article  Google Scholar 

  12. Wang J, Zhang Y, Wei Y, Zhang X (2015) Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Microporous Mesoporous Mater 218:192–198. https://doi.org/10.1016/j.micromeso.2015.07.019

    Article  CAS  Google Scholar 

  13. Ok SS, Gizli N (2020) Hydrophobic silica aerogels synthesized in ambient conditions by preserving the pore structure via two-step silylation-ScienceDirect. Ceram Int 46(17):27789–27799. https://doi.org/10.1016/j.ceramint.2020.07.278

    Article  CAS  Google Scholar 

  14. Freytag A, Sanchez-Paradinas S, Naskar S, N. et al (2016) Versatile aerogel fabrication by freezing and subsequent freeze-drying of colloidal nanoparticle solutions. Angew Chem Int Ed 55(3):1200–1203. https://doi.org/10.1002/anie.201508972

    Article  CAS  Google Scholar 

  15. Pan Y, He S, Gong L et al (2017) Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater Design 113:246–253. https://doi.org/10.1016/j.matdes.2016.09.083

    Article  CAS  Google Scholar 

  16. Zhou T, Cheng X, Pan Y et al (2017) Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl Surf Sci 437:321–328. https://doi.org/10.1016/j.apsusc.2017.12.146

    Article  CAS  Google Scholar 

  17. He F, Zhao H, Qu X et al (2009) Modified aging process for silica aerogel. J Mater Process Technol 209(3):1621–1626. https://doi.org/10.1016/j.jmatprotec.2008.04.009

    Article  CAS  Google Scholar 

  18. Jiang Y, Feng J, Feng J (2017) Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity. J Sol-Gel Sci Technol 83(1):64–71. https://doi.org/10.1007/s10971-017-4383-2

    Article  CAS  Google Scholar 

  19. Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199(1–3):10–26. https://doi.org/10.1016/j.jmatprotec.2007.10.060

    Article  CAS  Google Scholar 

  20. Gurav JL, Rao AV, Nadargi DY, Park HH (2010) Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids. J Mater Sci 45(2):503–510. https://doi.org/10.1007/s10853-009-3968-8

    Article  CAS  Google Scholar 

  21. He J, Li XL, Su D, Ji HM, Wang XJ (2016) Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites. J Eur Ceram Soc 36:1487–1493. https://doi.org/10.1016/j.jeurceramsoc.2015.11.021

    Article  CAS  Google Scholar 

  22. Song H, Dongmei H, Haijiang B, Zhi L, Hui Y, Xudong C (2015) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non-Cryst Solids 410:58–64. https://doi.org/10.1016/j.jnoncrysol.2014.12.011

    Article  CAS  Google Scholar 

  23. Sing KSW, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22(10):773–782. https://doi.org/10.1260/0263617053499032

    Article  CAS  Google Scholar 

  24. Sarawade PB, Kim JK, Hilonga A et al (2011) Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate. Microporous Mesoporous Mater 139(1–3):138–147. https://doi.org/10.1016/j.micromeso.2010.10.030

    Article  CAS  Google Scholar 

  25. Rojas F, Kornhauser I, Felipe C, Esparza JM, Cordero S, Domínguez A, Riccardo JL (2002) Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys Chem Chem Phys 4:2346–2355. https://doi.org/10.1039/b108785a

    Article  CAS  Google Scholar 

  26. Stojanovic A, Comesaña SP, Rentsch D, Koebel MM, Malfait WJ (2019) Ambient pressure drying of silica aerogels after hydrophobization with mono-, di- and tri-functional silanes and mixtures thereof. Microporous Mesoporous Mater 284:289–295. https://doi.org/10.1016/j.micromeso.2019.04.038

    Article  CAS  Google Scholar 

  27. Mahadik SA, Pedraza F, Parale VG, Park H-H (2016) Organically modified silica aerogel with different functional silylating agents and effect on their physico-chemical properties. J Non-Cryst Solids 453:164–171. https://doi.org/10.1016/j.jnoncrysol.2016.08.035

    Article  CAS  Google Scholar 

  28. Zong S, Wei W, Jiang Z, Yan Z, Zhu J, Xie J (2015) Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification. RSC Adv 5:55579–55587. https://doi.org/10.1039/c5ra08714g

    Article  CAS  Google Scholar 

  29. Yu H, Liang X, Wang J, Wang M, Yang S (2015) Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method. Solid State Sci 48:155–162. https://doi.org/10.1016/j.solidstatesciences.2015.08.005

    Article  CAS  Google Scholar 

  30. Hung WC, Horng RS, Shia RE (2021) Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites. J Sol-Gel Sci Technol 97:414–421. https://doi.org/10.1007/s10971-020-05444-3

    Article  CAS  Google Scholar 

  31. Chen YX, Sepahvand S, Gauvin F, Schollbach K, Yu Q (2021) One-pot synthesis of monolithic silica-cellulose aerogel applying a sustainable sodium silicate precursor. Constr Build Mater 293(11):123289. https://doi.org/10.1016/j.conbuildmat.2021.123289

    Article  CAS  Google Scholar 

  32. Huijuan L, Wei S, Cooper AT, Maohong F (2009) Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf A Physicochem Eng Asp 347(1–3):38–44. https://doi.org/10.1016/j.colsurfa.2008.11.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Nation Key R&D Program of China (2017YFB0309100), China Postdoctoral Science Foundation (No.2019T120390); Jiangsu Planned Projects for Postdoctoral research funds (No. 2018K018A) ; the National Natural Science Foundation of China [No.31470509] and the Key Laboratory of Eco-textiles, Ministry of Education— (supported by “the Fundamental Research Funds for the Central Universities NO. JUSRP52007A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbo Wang or Jiajia Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$${\text{Porosity}} = \left( {1 - \rho /\rho s } \right) \times 100\%$$
(1)

Appendix 2

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S., Yu, K., Meng, C. et al. Eco-friendly approach for preparation of hybrid silica aerogel via freeze drying method. J Mater Sci 57, 7491–7502 (2022). https://doi.org/10.1007/s10853-021-06835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06835-9

Navigation