Skip to main content
Log in

Preparation and characteristics of silicone-modified aging-resistant epoxy resin insulation material

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to improve the aging resistance of epoxy resin insulation materials and the cost-effectiveness and reliability of power apparatuses, a novel silicone-modified aging-resistant epoxy resin insulation material was developed. The modification was achieved via chemical grating, using dihydroxydiphenylsilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane and dicyclohexylamine. Accelerated thermal aging test, accelerated hydrothermal aging test and electrical tree test were carried out to compare the aging resistance of the novel, existing silicone-modified epoxy resin and unmodified epoxy resin under high temperature, humid environment and strong electric fields. The results show that compared with the unmodified resin, the novel material has advantages in thermal, hydrothermal aging resistance and electrical tree resistance. More specifically, after modification, the dielectric strength of the novel material after thermal aging test was improved by 12%; its partial discharge inception voltage (PDIV) after hydrothermal aging test was increased by 19.4% and the growth rate of electrical trees was 12.68% of that in unmodified resin. Compared with the existing silicone-modified epoxy resin, the novel silicone-modified epoxy resin sacrifices part of the hydrothermal properties, but showed better thermal stability, and the growth rate of electrical trees in the novel silicone-modified epoxy resin was 44.26% of that in the existing resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Li Z, Sheng G, Jiang X, Tanaka T (2017) Effects of inorganic fillers on withstanding short-time breakdown and long-time electrical aging of epoxy composites. IEEJ Trans Electr Electron Eng 12(S2):S10–S15. https://doi.org/10.1002/tee.22548

    Article  CAS  Google Scholar 

  2. Yin Z, Sun P, Sima W, Li L, Wang B (2020) Synergistic enhancement of arc ablation resistance and mechanical properties of epoxy resin insulation. IEEE Trans Dielectr Electr Insul 27(3):748–756. https://doi.org/10.1109/TDEI.2020.008545

    Article  CAS  Google Scholar 

  3. Wang Y, Feng C, Luo Y (2020) The development of electrical tree discharge in epoxy resin impregnated paper insulation. IEEE Access 8:69522–69531. https://doi.org/10.1109/ACCESS.2020.2986482

    Article  Google Scholar 

  4. Schab-Balcerzak E, Janeczek H, Kaczmarczyk B, Bednarski H, Sęk D, Miniewicz A (2004) Epoxy resin cured with diamine bearing azobenzene group. Polymer 45(8):2483–2493. https://doi.org/10.1016/j.polymer.2004.02.027

    Article  CAS  Google Scholar 

  5. Yang Y, Xian G, Li H, Sui L (2015) Thermal aging of an anhydride-cured epoxy resin. Polym Degrad Stab 118:111–119. https://doi.org/10.1016/j.polymdegradstab.2015.04.017

    Article  CAS  Google Scholar 

  6. M Liang, KL Wong, A Al-gheilani (2017) Effect of accelerated aging on the electrical performance of epoxy resin nanocomposite filled with SiO2 nano particles, in 2017 International Symposium on Electrical Insulating Materials (ISEIM), 1 247–250. Doi: https://doi.org/10.23919/ISEIM.2017.8088733

  7. Li S, Han Y, Chen F, Luo Z, Li H, Zhao T (2016) The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin. Polym Degrad Stab 124:68–76. https://doi.org/10.1016/j.polymdegradstab.2015.12.010

    Article  CAS  Google Scholar 

  8. Sobhani S, Jannesari A, Bastani S (2012) Effect of molecular weight and content of PDMS on morphology and properties of silicone-modified epoxy resin. J Appl Polym Sci 123(1):162–178. https://doi.org/10.1002/app.34435

    Article  CAS  Google Scholar 

  9. Ahmad S, Gupta AP, Sharmin E, Alam M, Pandey SK (2005) Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Prog Org Coat 54(3):248–255. https://doi.org/10.1016/j.porgcoat.2005.06.013

    Article  CAS  Google Scholar 

  10. Chiang C-L, Ma C-CM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Eur Polymer J 38(11):2219–2224. https://doi.org/10.1016/S0014-3057(02)00123-4

    Article  CAS  Google Scholar 

  11. Tao Z, Yang S, Chen J, Fan L (2007) Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. Eur Polymer J 43(4):1470–1479. https://doi.org/10.1016/j.eurpolymj.2007.01.039

    Article  CAS  Google Scholar 

  12. Wen R, Huo J, Lv J, Liu Z, Yu Y (2017) Effect of silicone resin modification on the performance of epoxy materials for LED encapsulation. J Mater Sci: Mater Electron 28(19):14522–14535. https://doi.org/10.1007/s10854-017-7316-5

    Article  CAS  Google Scholar 

  13. Lin G et al (2021) Facile thiol-epoxy click chemistry for transparent and aging-resistant silicone/epoxy composite as LED encapsulant. Prog Org Coat 156:106269. https://doi.org/10.1016/j.porgcoat.2021.106269

    Article  CAS  Google Scholar 

  14. Wang Y, Zeng Z, Gao M, Huang Z (2021) Hygrothermal aging characteristics of silicone-modified aging-resistant epoxy resin insulating material. Polymers. https://doi.org/10.3390/polym13132145

    Article  Google Scholar 

  15. Kanai T, Mahato TK, Kumar D (2007) Synthesis and characterization of novel silicone acrylate–soya alkyd resin as binder for long life exterior coatings. Prog Org Coat 58(4):259–264. https://doi.org/10.1016/j.porgcoat.2006.11.002

    Article  CAS  Google Scholar 

  16. Min Lu (2012) Study on weather resistance properties of epoxy resin matrix composite for MW Wind Turbine Blade, Thesis, Hunan University of Technology

  17. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2011) Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. Comptes Rendus Mécanique 339(10):666–673. https://doi.org/10.1016/j.crme.2011.07.003

    Article  CAS  Google Scholar 

  18. Slutsker AI, Hilyarov VL, Karov DD, Polikarpov YuI (2011) Mechanisms of elementary events in the kinetics of electrical breakdown of polymer and ceramic dielectrics. Phys Solid State 53(7):1322–1327. https://doi.org/10.1134/S1063783411070262

    Article  CAS  Google Scholar 

  19. Nogueira P et al (2001) Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J Appl Polym Sci 80(1):71–80. https://doi.org/10.1002/1097-4628(20010404)80:1%3c71::AID-APP1077%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  20. Wong TC, Broutman LJ (1985) Moisture diffusion in epoxy resins Part I. Non-Fickian sorption processes. Polym Eng Sci 25(9):521–528. https://doi.org/10.1002/pen.760250903

    Article  CAS  Google Scholar 

  21. Brethous R, Colin X, Fayolle B, Gervais M (2016) Non-Fickian behavior of water absorption in an epoxy-amidoamine network. AIP Conf Proc 1736(1):020070. https://doi.org/10.1063/1.4949645

    Article  Google Scholar 

  22. Ding Y, Liu M, Li S, Zhang S, Zhou W-F, Wang B (2001) Contributions of the side groups to the characteristics of water absorption in cured epoxy resins. Macromol Chem Phys 202(13):2681–2685. https://doi.org/10.1002/1521-3935(20010901)202:13%3c2681::AID-MACP2681%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  23. Kikuchi Y et al (2008) Effects of ambient humidity and temperature on partial discharge characteristics of conventional and nanocomposite enameled magnet wires. IEEE Trans Dielectr Electr Insul 15(6):1617–1625. https://doi.org/10.1109/TDEI.2008.4712665

    Article  CAS  Google Scholar 

  24. Zongle Ma, Di Yang, Guangzhong Yang, Fubin Xv, Wei Niu, Siyuan Dai (2014) Effect of SiO2 nanoparticle on the propagation characteristic of electrical tree in silicone rubber, Insul Mater 47(01) 81–84+88

  25. Yang G, Zhang Q, Wang D, Guo Y, Li P (2019) Ability of impedance on the electrical tree of ZnO/Epoxy composite. High Volt Eng 45(01):91–96

    Google Scholar 

  26. Su J, Du B, Li J, Li Z (2020) Electrical tree degradation in high-voltage cable insulation: progress and challenges. High Volt 5(4):353–364. https://doi.org/10.1049/hve.2020.0009

    Article  Google Scholar 

  27. Wang Xia, Chen S, Cheng X, Demin T (2009) Measuring energy distribution of surface trap in polymer insulation by PEA method. Proc CSEE 29(01):127–132

    Google Scholar 

  28. Wang X, Sun X, Liui Q, Kai Wu, Demin Tu (2016) Research development of aging models of insulation materials based on space charge effect. High Volt Eng 42(03):861–867

    CAS  Google Scholar 

  29. Englund V, Huuva R, Gubanski SM, Hjertberg T (2009) Synthesis and efficiency of voltage stabilizers for XLPE cable insulation. IEEE Trans Dielectr Electr Insul 16(5):1455–1461. https://doi.org/10.1109/TDEI.2009.5293960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge gratefully the financial support of the Natural Science Foundation of Hebei Province (No. E2020502062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Wang.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zeng, Z., Huang, Z. et al. Preparation and characteristics of silicone-modified aging-resistant epoxy resin insulation material. J Mater Sci 57, 3295–3308 (2022). https://doi.org/10.1007/s10853-021-06749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06749-6

Navigation