Skip to main content
Log in

Potato starch-assisted green synthesis of nanoferrite and ferrite–semiconductor nanocomposites for effective visible light photocatalytic degradation of methylene blue

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biodegradable potato starch-assisted nanoferrite and ferrite–semiconductor nanocomposites have been synthesized by the co-precipitation method for the degradation of MB dye under visible light irradiation. Ferrite and ferrite–semiconductor composites synthesized using biodegradable potato starch displayed remarkable dye degradation activity which can be further explored for photocatalysis application. XRD confirms the pure phases for Fe3O4 (FFO) and ZnO–Fe3O4 (ZFFO), but a secondary SITO phase for TiO2–Fe3O4 (TFFO) and microwave-annealed TiO2–Fe3O4 (TFFO-MWA) due to dynamics between Fe, Ti, and NaOH. FTIR and Raman spectra confirmed the characteristic peaks of the starch surfactant and ferrite and/or semiconducting phase. TEM micrographs demonstrated mixed morphology: spherical particles of size 5–10 nm and rod shape of size 14–67 nm in length and 4–21 nm in diameter. XPS showed different valence states along with satellite peaks besides confirming the elemental composition. BET studies showed type-IV isotherms with H3 adsorption hysteresis indicative of mesoporous structures with ZFFO having the highest surface area (85.9 m2 g−1), minimum pore size, and maximum pore volume, while TFFO-MWA having the lowest surface area (19.1 m2 g−1), maximum pore size, and minimum pore volume. The direct bandgap of FFO, ZFFO, TFFO, and TFFO-MWA samples is found to be 2.50, 2.47, 3.18, and 3.16 eV, respectively. The photocatalytic degradation of MB dye under visible light irradiation was achieved to be 93% in 285 min by FFO, 96% in 150 min by ZFFO, 99% in 180 min by TFFO, and 99% in 90 min by TFFO-MWA. The R2 values of adsorption kinetics studies validated that the kinetics can be best described by the first-order model for FFO, TFFO, TFFO-MWA, and second-order model for ZFFO considering the maximum R2 values being established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Valenzuela R (2012) Novel applications of ferrites. Phys Res Int 2012:1–9

    Article  Google Scholar 

  2. Shaikh SF, Ubaidullah M, Mane RS, Al-Enizi AM (2020) Types, synthesis methods and applications of ferrites. Spinel Ferrite Nanostructures for Energy Storage Devices, pp 51–82.

  3. Gupta NK, Ghaffari Y, Kim S, Bae J, Kim KS, Md Saifuddin (2020) Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M= Co, Ni, Cu, Zn) Nanoparticles at Neutral pH. Scientific Reports 10, 4942 (1–11).

  4. Kefeni KK, Mamba BB (2020) Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustain Mater Technol 23:e00140.

  5. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9(12):2489

    Article  CAS  Google Scholar 

  6. Siwińska-Stefańska K, Kubiak A, Piasecki A, Goscianska J, Nowaczyk G, Jurga S, Jesionowski T (2018) TiO2-ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity. Materials 11(5):841

    Article  Google Scholar 

  7. Zhang F, Wang X, Liu H, Liu C, Wan Y, Long Y, Cai Z (2019) Recent advances and applications of semiconductor photocatalytic technology. Appl Sci 9:2489

    Article  CAS  Google Scholar 

  8. M.F. Bellardita, Parrino, E. I. Garcia-Lopez, G. Marci, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high value-added molecules: some chemical and engineering aspects, ACS Catal. 8(12) (2018) 11191–11225.

  9. Zhang Q, Xu X, Liu Y et al (2017) A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Sci Rep 7:46424

    Article  CAS  Google Scholar 

  10. Shamsuri AA, Jamil SNAMd (2020) A short review on the effect of surfactants on the Mechanico-Thermal Properties of polymer nanocomposites. Appl Sci 10(14):4867

    Article  CAS  Google Scholar 

  11. Klekotka U, Satuła D, Basa A, Kalska-Szostko B (2020) Importance of Surfactant Quantity and Quality on Growth Regime of Iron Oxide Nanoparticles. Materials 13(7):1747

    Article  CAS  Google Scholar 

  12. Liang Q, Liu X, Zenga G, Liu Z, Tang L, Shao B, Zeng Z, Zhang W, Liu Y, Cheng M, Tang W, Gong S (2019) Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application. Chem Eng J 372:429–451

    Article  CAS  Google Scholar 

  13. J. N. Putro, S. Ismadji, C. Gunarto, F. E. Soetaredjo, Y. H. Ju, A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release, J. Mol. Liq. 298 (2020)112034.

  14. Md. Ibrahim H. Mondal, Md. Mofakkharul Islam, Md. Khademul Islam, Md. Mohsin Hossain, Eco-Friendly Biodegradable Semi-Natural Surfactants from Starch for Green Chemistry, IOSR-JAC. 9(6) (2016) 01–09.

  15. Szymońska J, Molenda M, Wieczorek J (2015) Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts. Carbohyd Polym 134:102–109

    Article  Google Scholar 

  16. Shukla A, Bhardwaj AK, Singh S, Uttam K, Gautam N, Himanshu A, Shah J, Kotnala R, Gopal R (2018) Microwave assisted scalable synthesis of titanium ferrite nanomaterials. J Appl Phys 123:161411.

  17. Kumar A, Kuang Y, Liang Z, Sun X (2020) Microwave chemistry, recent advancements and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater Today Nano 11:100076.

  18. Kuang Y, Zhang X, Zhou S (2020) Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12(2):587

    Article  Google Scholar 

  19. Silva VAJ, Andrade PL, Silva MPC, Bustamante A, Luis De Los Santos Valladares D, Aguiar JA (2013), Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. J Magn Magn Mater 343:138–143.

  20. Fonin M, Pentcheva R, Dedkov, Yu. S., Sperlich M, Vyalikh DV, Scheffler M, Rudiger U, Guntherodt G (2005) Surface electronic structure of the Fe3O4(100): Evidence of a half-metal to metal transition. Phys Rev B 72:104436.

  21. Singh A, Vishwakarma HL (2015) Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. MATER SCI-POLAND 33(4):751–759

    Article  CAS  Google Scholar 

  22. Guza L, Famá L, Candal R, Goyanes S (2017) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1619

    Article  Google Scholar 

  23. Wang Y-L, Li X-B, Wang B, Zhou Q-S, Qi T-G, Liu G-H, Peng Z-H, Zhou K-C (2019) Interactions of iron and titanium-bearing minerals under high-temperature Bayer digestion conditions. Hydrometallurgy 184:192–198

    Article  CAS  Google Scholar 

  24. Sharotri N, Sud D (2015) A greener approach to synthesize visible light responsive nanoporous S-doped TiO2 with enhanced photocatalytic activity. N J Chem 39:2217– 2223.

  25. Díaz de León JN, Rodríguez JR, Rojas J, Esqueda-Barrón Y, Cardenas L, Ramesh Kumar G, Alonso-Nuñez, Fuentes-Moyado S (2019) New Insight on the Formation of Sodium Titanates 1D Nanostructures and Its Application on CO2 Hydrogenation. Front Chem 7:750.

  26. De Vidales JLM, Delgado AL, Vila E, López FA (1999) Effect of the starting solution on the physico-chemical properties of zinc ferrite synthesized at low temperature. J Alloys Comp 287:276–283

    Article  Google Scholar 

  27. Roeinfard M, Bahari A (2017) Nanostructural characterization of the Fe3O4/ZnO magnetic nanocomposite as an application in medicine. A J Supercond Nov Magn 30:3541

    Article  CAS  Google Scholar 

  28. Wei JH, Leng CJ, Zhang XZ, Li WH, Liu ZY, Shi J (2009) Synthesis and magnetorheological effect of Fe3O4–TiO2 nanocomposite. J Phys Conf 149:012083.

  29. Tsuji E, Ken-ichi Fukui, Imanishi A (2014) Influence of surface roughening of Rutile Single-Crystalline TiO2 on photocatalytic activity for oxygen photoevolution from water in acidic and alkaline solutions. J Phys Chem C 118 (10):5406–5413.

  30. Nagarajan S, Kuppusamy KA (2013) Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnol 11:39

    Article  Google Scholar 

  31. Liang Y, He X, Chen L, Zhang Y (2014) Facile preparation of graphene/Fe3O4/TiO2 multifunctional composite for highly selective and sensitive enrichment of phosphopeptides. RSC Adv 4:18132–18135

    Article  CAS  Google Scholar 

  32. May M (2015) Eid, spectroscopic characterization of iron oxide nanoparticles functionalized with Chitosan biosynthesis by a clean one pot method. Middle East J Appl Sci 5(5):18–22

    Google Scholar 

  33. Ravindra AV, Chandrika M, Ch. Rajesh, Pratap Kollu, Shaohua Ju, Ramarao SD (2010) Simple synthesis, structural and optical properties of cobalt ferrite nanoparticles. Euro Phys J Plus 134:296.

  34. de Jesus Ruiz-Baltazar A, Reyes-Lopez SY, Perez R (2017) Magnetic structures synthesized by controlled oxidative etching: structural characterization and magnetic behavior. Results Phys 7:1828–1832.

  35. Khan TM, Bibi T, Hussain B (2015) Synthesis and optical study of heat-treated ZnO nanopowder for optoelectronic applications. Bull Mater Sci 38(7):1851–1858

    Article  CAS  Google Scholar 

  36. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vib Spectrosc 37:33–38

    Article  CAS  Google Scholar 

  37. Fábio S, Adailton A-F, Mauricelio B, Karla B, Jean-Louis B, Ewerton C, Roberto M, Valder F, Ariete R, Raman P (2018) FTIR, and DFT study of Na2Ti3O7 microcrystals. J RAMAN SPECTROSC 49(3):538–548

    Article  Google Scholar 

  38. Svetlichnyi VA, Shabalina V, Lapin IN, Goncharova DA, Kharlamova TS, Stadnichenko AI (2019) Comparative study of magnetite nanoparticles obtained by pulsed laser ablation in water and air. Appl Surf Sci 467–468:402–410

    Article  Google Scholar 

  39. Choi JS, Lee H-K, An SJ (2015) Synthesis of a graphene v oxide/sodium silicate nanocomposite using sodium silicate solution. RSC Adv 5:38742–38747

    Article  CAS  Google Scholar 

  40. Yangjeh H, Gohari MS (2019) Synthesis of magnetically recoverable visible-light-induced photocatalysts by combination of Fe3O4/ZnO with BiOI and polyaniline. Progr Nat Sci Mater Int 29(2):145–155.

  41. Georgios P, Wolfgang SM (2010) X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes. Solid State Phenom 162:163–177

    Article  CAS  Google Scholar 

  42. Muniandy SS, Mohd Kaus NH, Jiang ZT, Altarawneh M, Lee HL (2017) Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv 7(76):48083–48094.

  43. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4:559–566

    Article  CAS  Google Scholar 

  44. Amano F, Nogami K, Tanaka M, Ohtani B (2010) Correlation between surface area and photocatalytic activity for Acetaldehyde Decomposition over Bismuth Tungstate particles with a Hierarchical structure. Langmuir 26(10):7174–7180

    Article  CAS  Google Scholar 

  45. Gnanasekaran L, Hemamalini R, Rajendran S, Qin J, Yola ML, Atar N, Gracia F (2019) Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants. J Mol Liq 287:110967.

  46. Pierpaoli M, Favoni O, Fava G, Ruello ML (2018) A novel method for the combined photocatalytic activity determination and Bandgap estimationn. Methods Protoc 1:22

    Article  CAS  Google Scholar 

  47. Dagher S, Soliman A, Ziout A, Tit N, Alnaqbi AH, Khashan S, Alnaimat F, Qudeiri JA (2018) Photocatalytic removal of methylene blue using titania- and silica-coated magnetic nanoparticles. Mater Res Express 5:065518.

  48. Zhou S, Du Z, Li X, Zhang Y, He Y, Zhang Y (2019) Degradation of methylene blue by natural manganese oxides: kinetics and transformation products. R Soc Open Sci 6:190351.

  49. Wang X, Han S, Zhang Q, Zhang N, Zhao D (2018) Photocatalytic oxidation degradation mechanism study of methylene blue dye waste water with GR/iTO2. MATEC Web of Conferences 238:03006

    Article  CAS  Google Scholar 

  50. El-Zomrawy AA (2013) Kinetic studies of photoelectrocatalytic degradation of Ponceau 6R dye with ammonium persulfate. J Saudi Chem Soc 17:397–402

    Article  CAS  Google Scholar 

  51. López-Vásquez AF, Cobo-Angel MI, Convers-Sánchez JD (2019) Effect of photocatalytic pretreatment of potato starch for bioethanol production using Saccharomyces cerevisiae during simultaneous saccharification-fermentation (SSF). DYNA 86(208):251–256

    Article  Google Scholar 

  52. Lewicka K, Siemion P, Kurcok P (2015) Chemical modifications of starch: microwave effect. Int J Polym Sci 2015:110

    Article  Google Scholar 

  53. Van Hung N, Nguyet BTM, Nghi NH, Khieu DQ (2021) Photocatalytic degradation of Methylene Blue by using ZnO/Longan seed activated carbon under visible-light region. J Inorg Organomet Polym Mater 31:446–459

    Article  Google Scholar 

  54. Xu L, Zheng R, Liu S, Song J, Chen J, Dong B, Song H (2012) NiO@ZnO heterostructured nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg Chem 51:7733–7740

    Article  CAS  Google Scholar 

  55. Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol A 163:419–424

    Article  CAS  Google Scholar 

  56. Mohamed MM, Bayoumy WA, Goher ME, Abdo MH, Mansour El-Ashkar TY (2017) Optimization of-Fe2O3@Fe3O4 incorporated N-TiO2 as super effective photocatalysts under visible light irradiation. Appl Surface Sci 412:668–682.

  57. Govindhan P, Pragathiswaran C, Chinnadurai M (2018) A magnetic Fe3O4 decorated TiO2 nanoparticles application for photocatalytic degradation of methylene blue (MB) under direct sunlight irradiation. J Mater Sci Mater Electron 29:6458

Download references

Acknowledgements

M. Chandrika would like to acknowledge the Department of Science and Technology for providing funding through the DST-FIST Level-1 scheme to the Department of Physics, KLEF; File No: SR/FST/PS-1/2018/35. A. V. Ravindra acknowledges the financial support provided by Yunnan Province Post-Doctoral Training Fund-2018 and Kunming University of Science and Technology for the Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ravindra.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrika, M., Ravindra, A.V., Wang, S.Y. et al. Potato starch-assisted green synthesis of nanoferrite and ferrite–semiconductor nanocomposites for effective visible light photocatalytic degradation of methylene blue. J Mater Sci 57, 2610–2626 (2022). https://doi.org/10.1007/s10853-021-06701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06701-8

Navigation