Skip to main content

Advertisement

Log in

Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the rapid development of wearable, flexible, and portable electronic devices, triboelectric nanogenerators (TENG) as a possible power source with the features of miniature and flexibility have attracted tremendous research interest. In this respect, we prepared a stretchable and shape-adaptive silicone rubber-based triboelectric nanogenerator, with MoS2/GO in the friction layer to capture electrons. It is found that a large number of micropores are generated in the silicone rubber matrix, providing more sites for charge generation. In addition, the rough surface led to a greater contact area for harvesting environmental mechanical energy more effectively. By optimizing the fabrication process, the TENG displays output voltage, current density, and average power density up to ∼200 V, ∼25 μA, and ∼1.3 mW, respectively in single-electrode mode. In addition, it has good flexibility and water resistance and can be worn on skin or cloth to harvest energy from different body motions. Therefore, the device in this work with enhanced power output, stability, and portability is suitable for practical application to power wearable electronic devices from manual activities.

Graphical abstract

A robust and novel textile-TENG for energy harvest was developed, which is constructed from the flexible conducting textile and MoS2/RGO doped super-soft silicone rubber. The resulting film possesses good triboelectric performance and has the ability to harvest energy from different human motions. We found that the obtained TENG shows portable, lightweight, and sustainable properties, indicating its promising potential for applications in flexible and miniaturized green electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  2. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615

    Article  CAS  Google Scholar 

  3. Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23

    Article  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  5. Sun W, Xiao L, Wu X (2019) Facile synthesis of NiO nanocubes for photocatalysts and supercapacitor electrodes. J Alloy Compd 772:465–471. https://doi.org/10.1016/j.jallcom.2018.09.185

    Article  CAS  Google Scholar 

  6. Sa L, Li Z, Zhao K, Hao M, Zhang Z, Li L, Zhang Y, Zhang W (2020) A facile hydrothemal synthesis of MoS2@Co3S4 composites based on metal organic framework compounds as a high-efficiency liquid-state solar cell counter electrode. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.154910

    Article  Google Scholar 

  7. Gao Q, Zhang J, Xie Z, Omisore O, Zhang J, Wang L, Li H (2018) Highly stretchable sensors for wearable biomedical applications. J Mater Sci 54(7):5187–5223. https://doi.org/10.1007/s10853-018-3171-x

    Article  CAS  Google Scholar 

  8. Li L, Liu S, Tao X, Song J (2019) Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure. J Mater Sci 54(10):7823–7833. https://doi.org/10.1007/s10853-019-03428-5

    Article  CAS  Google Scholar 

  9. Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334

    Article  CAS  Google Scholar 

  10. Liang Q, Zhang Q, Yan X, Liao X, Han L, Yi F, Ma M, Zhang Y (2017) Recyclable and green triboelectric nanogenerator. Adv Mater 29(5):1604961

    Article  Google Scholar 

  11. Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C (2019) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10(1):1–9

    Google Scholar 

  12. Seung W, Gupta MK, Lee KY, Shin K-S, Lee J-H, Kim TY, Kim S, Lin J, Kim JH, Kim S-W (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4):3501–3509

    Article  CAS  Google Scholar 

  13. Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9(1):1802906

    Article  Google Scholar 

  14. Zhu G, Lin Z-H, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13(2):847–853

    Article  CAS  Google Scholar 

  15. Lv P, Shi L, Fan C, Gao Y, Yang A, Wang X, Ding S, Rong M (2020) Hydrophobic Ionic liquid gel-based triboelectric nanogenerator: next generation of ultrastable, flexible, and transparent power sources for sustainable electronics. ACS Appl Mater Interfaces 12(13):15012–15022. https://doi.org/10.1021/acsami.9b19767

    Article  CAS  Google Scholar 

  16. Zou Y, Raveendran V, Chen J (2020) Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 77:105303. https://doi.org/10.1016/j.nanoen.2020.105303

    Article  CAS  Google Scholar 

  17. Choi G-J, Baek S-H, Lee S-S, Khan F, Kim JH, Park I-K (2019) Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers. J Alloy Compd 797:945–951. https://doi.org/10.1016/j.jallcom.2019.05.202

    Article  CAS  Google Scholar 

  18. Chen H, Xu Y, Zhang J, Wu W, Song G (2019) Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58:304–311

    Article  CAS  Google Scholar 

  19. Chen X, Song Y, Chen H, Zhang J, Zhang H (2017) An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J mater chem A 5(24):12361–12368

    Article  CAS  Google Scholar 

  20. Lee Y, Kim J, Jang B, Kim S, Sharma BK, Kim J-H, Ahn J-H (2019) Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62:259–267

    Article  CAS  Google Scholar 

  21. Li X, Jiang C, Zhao F, Lan L, Yao Y, Yu Y, Ping J, Ying Y (2019) Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 61:78–85

    Article  CAS  Google Scholar 

  22. Lim G-H, Kwak SS, Kwon N, Kim T, Kim H, Kim SM, Kim S-W, Lim B (2017) Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42:300–306

    Article  CAS  Google Scholar 

  23. Wang J, Wang H, Thakor NV, Lee C (2019) Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 13(3):3589–3599

    Article  CAS  Google Scholar 

  24. Zhang X-S, Han M, Kim B, Bao J-F, Brugger J, Zhang H (2018) All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47:410–426

    Article  CAS  Google Scholar 

  25. Lee Y, Kim S, Kim D, Lee C, Park H, Lee J-H (2020) Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145328

    Article  Google Scholar 

  26. Karmakar S, Sarkar R, Tiwary CS, Kumbhakar P (2020) Synthesis of bilayer MoS2 nanosheets by green chemistry approach and its application in triboelectric and catalytic energy harvesting. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.155690

    Article  Google Scholar 

  27. Cheng X, Meng B, Chen X, Han M, Chen H, Su Z, Shi M, Zhang H (2016) Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 12(2):229–236

    Article  CAS  Google Scholar 

  28. Tang W, Jiang T, Fan FR, Yu AF, Zhang C, Cao X, Wang ZL (2015) Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater 25(24):3718–3725

    Article  CAS  Google Scholar 

  29. Zhang X-S, Han M-D, Wang R-X, Meng B, Zhu F-Y, Sun X-M, Hu W, Wang W, Li Z-H, Zhang H-X (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131

    Article  CAS  Google Scholar 

  30. Somkuwar VU, Pragya A, Kumar B (2020) Structurally engineered textile-based triboelectric nanogenerator for energy harvesting application. J Mater Sci 55(12):5177–5189. https://doi.org/10.1007/s10853-020-04359-2

    Article  CAS  Google Scholar 

  31. Fang H, Li Q, He W, Li J, Xue Q, Xu C, Zhang L, Ren T, Dong G, Chan HLW (2015) A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 7(41):17306–17311

    Article  CAS  Google Scholar 

  32. Zhu G, Chen J, Zhang T, Jing Q, Wang ZL (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426

    Article  Google Scholar 

  33. Choi H-J, Lee JH, Jun J, Kim TY, Kim S-W, Lee H (2016) High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces. Nano Energy 27:595–601

    Article  CAS  Google Scholar 

  34. Shin S-H, Kwon YH, Kim Y-H, Jung J-Y, Lee MH, Nah J (2015) Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4):4621–4627

    Article  CAS  Google Scholar 

  35. Zhao L, Zheng Q, Ouyang H, Li H, Yan L, Shi B, Li Z (2016) A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28:172–178

    Article  CAS  Google Scholar 

  36. Tang Y, Zhou H, Sun X, Feng T, Zhao X, Wang Z, Liang E, Mao Y (2019) Cotton-based naturally wearable power source for self-powered personal electronics. J Mater Sci 55(6):2462–2470. https://doi.org/10.1007/s10853-019-04095-2

    Article  CAS  Google Scholar 

  37. Chen S-N, Chen C-H, Lin Z-H, Tsao Y-H, Liu C-P (2018) On enhancing capability of tribocharge transfer of ZnO nanorod arrays by Sb doping for anomalous output performance improvement of triboelectric nanogenerators. Nano Energy 45:311–318. https://doi.org/10.1016/j.nanoen.2018.01.013

    Article  CAS  Google Scholar 

  38. Dudem B, Bharat LK, Patnam H, Mule AR, Yu JS (2018) Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO 3 composite films: a self-powered utility system for portable electronics. J Mater Chem A 6(33):16101–16110

    Article  CAS  Google Scholar 

  39. Lin ZH, Cheng G, Yang Y, Zhou YS, Lee S, Wang ZL (2014) Triboelectric nanogenerator as an active UV photodetector. Adv Funct Mater 24 (19):2810–2816 %@ 1616–2301X

  40. He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL (2017) A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Func Mater 27(4):1604378

    Article  Google Scholar 

  41. Kwak SS, Kim H, Seung W, Kim J, Hinchet R, Kim S-W (2017) Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 11(11):10733–10741

    Article  CAS  Google Scholar 

  42. Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL (2017) Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 3(7):1700694

    Article  Google Scholar 

  43. Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):1700015

    Article  Google Scholar 

  44. Zhao Y, Duan J, He B, Tang Q (2019) Self-powered flexible monoelectrodes from graphene/reduced graphene oxide composite films to harvest rain energy. J Alloy Compd 776:31–35. https://doi.org/10.1016/j.jallcom.2018.09.098

    Article  CAS  Google Scholar 

  45. Wang Y, Zhang X, Guo X, Li D, Cui B, Wu K, Yun J, Mao J, Xi L, Zuo Y (2018) Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J Mater Sci 53(18):13081–13089. https://doi.org/10.1007/s10853-018-2540-9

    Article  CAS  Google Scholar 

  46. Yang X, Sun H, Zan P, Zhao L, Lian J (2016) Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J Mater Chemi A 4(48):18857–18867. https://doi.org/10.1039/c6ta07898b

    Article  CAS  Google Scholar 

  47. Kim M-O, Pyo S, Song G, Kim W, Oh Y, Park C, Park C, Kim J (2018) Humidity-resistant, fabric-based, wearable triboelectric energy harvester by treatment of hydrophobic self-assembled monolayers. Adv Mater Technol 3(7):1800048. https://doi.org/10.1002/admt.201800048

    Article  CAS  Google Scholar 

  48. Wu C, Kim TW, Park JH, An H, Shao J, Chen X, Wang ZL (2017) Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers. ACS Nano 11(8):8356–8363. https://doi.org/10.1021/acsnano.7b03657

    Article  CAS  Google Scholar 

  49. Sahatiya P, Kannan S, Badhulika S (2018) Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: energy harvesting from handwriting and human touch. Appl Mater Today 13:91–99. https://doi.org/10.1016/j.apmt.2018.08.009

    Article  Google Scholar 

  50. Zheng Q, Fang L, Guo H, Yang K, Cai Z, Meador MAB, Gong S (2018) Highly porous polymer aerogel film-based triboelectric nanogenerators. Adv Funct Mater. https://doi.org/10.1002/adfm.201706365

    Article  Google Scholar 

  51. Bai Z, Xu Y, Zhang Z, Zhu J, Gao C, Zhang Y, Jia H, Guo J (2020) Highly flexible, porous electroactive biocomposite as attractive tribopositive material for advancing high-performance triboelectric nanogenerator. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104884

    Article  Google Scholar 

  52. Gollas B, Albering JH, Schmut K, Pointner V, Herber R, Etzkorn J (2008) Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering. Intermetallics 16(8):962–968. https://doi.org/10.1016/j.intermet.2008.04.014

    Article  CAS  Google Scholar 

  53. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Ag-ZnO catalysts for UV-photodegradation of methylene blue. Appl Catal B 63(3–4):305–312. https://doi.org/10.1016/j.apcatb.2005.10.018

    Article  CAS  Google Scholar 

  54. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48(4):1096–1104. https://doi.org/10.1016/j.polymer.2006.12.023

    Article  CAS  Google Scholar 

  55. Hu H, Zhao L, Liu J, Liu Y, Cheng J, Luo J, Liang Y, Tao Y, Wang X, Zhao J (2012) Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 53(15):3378–3385. https://doi.org/10.1016/j.polymer.2012.05.039

    Article  CAS  Google Scholar 

  56. Kumar V, Lee J-Y, Lee D-J (2017) Synergistic effects of hybrid carbon nanomaterials in room-temperature-vulcanized silicone rubber. Polym Int 66(3):450–458. https://doi.org/10.1002/pi.5283

    Article  CAS  Google Scholar 

  57. Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30(43):e1804944. https://doi.org/10.1002/adma.201804944

    Article  CAS  Google Scholar 

  58. Wang J, He J, Ma L, Yao Y, Zhu X, Peng L, Liu X, Li K, Qu M (2021) A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem Eng J. https://doi.org/10.1016/j.cej.2021.130200

    Article  Google Scholar 

  59. Zhou Q, Lee K, Kim KN, Park JG, Pan J, Bae J, Baik JM, Kim T (2019) High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy 57:903–910. https://doi.org/10.1016/j.nanoen.2018.12.091

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 62004014, 51701021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijia Yang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2030 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, G., Wei, Y., Sun, C. et al. Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting. J Mater Sci 57, 2813–2824 (2022). https://doi.org/10.1007/s10853-021-06696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06696-2

Navigation