Skip to main content
Log in

Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectric constant (εr) of the P(VDF-CTFE)-BTO nanocomposites significantly increases with increasing size of the nanofiller. Based on Lichtenecker’s mixing law, the εr of the BTO nanoparticles was calculated from the εr of the nanocomposites and the results indicate that the εr of the BTO nanoparticles increases with increasing size from 50–200 nm. The XRD and DSC results suggest that the crystals of P(VDF-CTFE) matrix are of α and γ phases, and the presence of BTO nanofiller favors the formation of the γ phase. Regarding the dielectric responses associated with the chain movement of a polar matrix, the smaller the nanofiller the stronger the influence on the mobility of polymer segments (i.e., glass transition), while the larger the nanofiller the higher the mobility of long polymer chains at high temperatures. Lichtenecker’s mixing law was also used to calculate the εr of the BTO nanoparticles from the εr of the nanocomposites at different temperatures. It is found that the applicability of a mixing law used in the polymer-ceramic nanocomposites is strongly related to the dielectric loss of the polymer matrix that is associated with the mobility of polymer chains for the polar polymers, especially at high temperatures. In addition, the dielectric strength (Eb) decreases significantly with increasing size of the nanofiller while the polarization under a same electric field does not change much, which experimentally suggests that smaller ceramic nanofiller is preferred to obtain a high Eb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hu HL, Zhang F, Luo SB, Chang WK, Yue JL, Wang CH (2020) Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano Energy 74(104844):1–20. https://doi.org/10.1016/j.nanoen.2020.104844

    Article  CAS  Google Scholar 

  2. Tan DQ (2020) Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv Funct Mater 30(18):1808567

    Article  CAS  Google Scholar 

  3. Fan BH, Zhou MY, Zhang C, He DL, Bai JB (2019) Polymer-based materials for achieving high energy density film capacitors. Prog Mater Sci 97(101143):1–26. https://doi.org/10.1016/j.progpolymsci.2019.06.003

    Article  CAS  Google Scholar 

  4. Zhang L, Cheng ZY (2011) Development of polymer-based 0–3 composites with high dielectric constant. J Adv Dielect 1:389–406. https://doi.org/10.1142/s2010135x11000574

    Article  Google Scholar 

  5. Luo H, Zhou XF, Ellingford C, Zhang Y, Chen S, Zhou KC, Zhang D, Bowen CR, Wan CY (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48(16):4424–4465. https://doi.org/10.1039/c9cs00043g

    Article  CAS  Google Scholar 

  6. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci 57(4):660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  7. Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365. https://doi.org/10.1002/adma.201301752

    Article  CAS  Google Scholar 

  8. Liu J, Shen ZH, Xu WH, Zhang Y, Qian XS, Jiang ZH, Zhang YH (2020) Interface-strengthened polymer nanocomposites with reduced dielectric relaxation exhibit high energy density at elevated temperatures utilizing a facile dual crosslinked network. Small 16(22):2000714. https://doi.org/10.1002/smll.202000714

    Article  CAS  Google Scholar 

  9. Xu WH, Yang G, Jin L, Liu J, Zhang YH, Zhang ZC, Jiang ZH (2018) High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications. ACS Appl Mater Inter 10(13):11233–11241. https://doi.org/10.1021/acsami.8b01129

    Article  CAS  Google Scholar 

  10. Hao YN, Wang XH, Bi K, Zhang JM, Huang YH, Wu LW, Zhao PY, Xu K, Lei M, Li LT (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56. https://doi.org/10.1016/j.nanoen.2016.11.008

    Article  CAS  Google Scholar 

  11. Huang XY, Sun B, Zhu YK, Li ST, Jiang PK (2019) High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog Mater Sci 100:187–225. https://doi.org/10.1016/j.pmatsci.2018.10.003

    Article  CAS  Google Scholar 

  12. Zhang X, Shen Y, Xu B, Zhang QH, Gu L, Jiang JY, Ma J, Lin YH, Nan CW (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28(10):2055–2061. https://doi.org/10.1002/adma.201503881

    Article  CAS  Google Scholar 

  13. Wen F, Lou HY, Ye JF, Bai WF, Wang LW, Li LL, Wu W, Xu Z, Wang GF, Zhang ZC, Zhang L (2019) Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets. Compos Sci Technol 182(107759):1–10. https://doi.org/10.1016/j.compscitech.2019.107759

    Article  CAS  Google Scholar 

  14. Lv XG, Luo H, Chen S, Han XH, Ma C, Zhou XF, Liu WW, Wu Z, Zhou KC, Zhang D (2018) BaTiO3 platelets and poly(vinylidene fluoride-trifluoroethylene-chloro-fluoroethylene) hybrid composites for energy storage application. Mech Syst Signal Process 108:48–57. https://doi.org/10.1016/j.ymssp.2018.02.011

    Article  Google Scholar 

  15. Shen ZH, Wang JJ, Lin YH, Nan CW, Chen LQ, Shen Y (2017) High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv Mater 30(2):1704380. https://doi.org/10.1002/adma.201704380

    Article  CAS  Google Scholar 

  16. Cai ZM, Wang XH, Luo BC, Hong W, Wu LW, Li LT (2017) Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: the effect of nanoparticle distribution. Compos Sci Technol 145:105–113. https://doi.org/10.1016/j.compscitech.2017.03.039

    Article  CAS  Google Scholar 

  17. Wada S, Yasuno H, Hoshina T, Nam SM, Kakemoto H, Tsurumi T (2003) Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn J Appl Phys 42:6188–6195. https://doi.org/10.1143/jjap.42.6188

    Article  CAS  Google Scholar 

  18. Tsurumi T, Hoshina T, Takizawa K, Kakemoto H (2008) Size effect of barium titanate and MLCCs in the next generation. In: 17th IEEE ISAF Conf Proc, NM, USA, pp 1–2. doi:https://doi.org/10.1109/isaf.2008.4693883

  19. Lu X, Zou XW, Shen JL, Zhang L, Jin L, Cheng ZY (2020) High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix. Nano Energy 70(104551):1–11. https://doi.org/10.1016/j.nanoen.2020.104551

    Article  CAS  Google Scholar 

  20. Lu X, Zhang L, Tong Y, Cheng ZY (2019) BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos Part B-Eng 168:34–43. https://doi.org/10.1016/j.compositesb.2018.12.059

    Article  CAS  Google Scholar 

  21. Lu X, Zou XW, Shen JL, Jin L, Yan FX, Zhao G, Zhang L, Cheng ZY (2019) Characterizations of P(VDF-HFP)-BaTiO3 nanocomposite films fabricated by a spin-coating process. Ceram Int 45(14):17758–17766. https://doi.org/10.1016/j.ceramint.2019.05.346

    Article  CAS  Google Scholar 

  22. Martins P, Costa CM, Benelmekki M, Botelhob G, Lanceros-Méndez S (2012) On the origin of the electroactive poly(vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm 14(8):2807–2811. https://doi.org/10.1039/c2ce06654h

    Article  CAS  Google Scholar 

  23. Martins P, Caparros C, Gonçalves R, Martins PM, Benelmekki M, Botelho G, Lanceros-Méndez S (2012) Role of nanoparticle surface charge on the nucleation of the electroactive β-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J Phys Chem C 116(29):15790–15794. https://doi.org/10.1021/jp3038768

    Article  CAS  Google Scholar 

  24. Sencadas V, Martins P, Pitães A, Benelmekki M, Ribelles JLG, Lanceros- Méndez S (2011) Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). Langmuir 27(11):7241–7249. https://doi.org/10.1021/la2008864

    Article  CAS  Google Scholar 

  25. Chen YX, Lu HW, Shen ZW, Li ZL, Shen QD (2017) Cooling rate controlled microstructure evolution through flash DSC and enhanced energy density in P(VDF-CTFE) for capacitor application. J Polym Sci Pol Phys 55(16):1245–1253. https://doi.org/10.1002/polb.24382

    Article  CAS  Google Scholar 

  26. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications. Prog Polym Sci 39(4):683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  27. Xie Y, Kimura T, Shu Y, Hashimoto T, Tokano Y, Sasaki A, Sato T (2011) Particle size control, sinterability and piezoelectric properties of BaTiO3 prepared by a novel composite-hydroxide-mediated approach. Mater Sci Appl 2:758–764. https://doi.org/10.4236/msa.2011.27104

    Article  CAS  Google Scholar 

  28. Arlt G, Hennings D, de With G (1985) Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 58(4):1619–1625. https://doi.org/10.1063/1.336051

    Article  CAS  Google Scholar 

  29. Nawi NIM, Bilad MR, Nordin NAHM, Mavukkandy MO, Putra ZA, Wirzal MDH, Jaafar J (2018) Khan AL (2018) Exploiting the interplay between liquid-liquid demixing and crystallization of the PVDF membrane for membrane distillation. Int J Polym Sci 1525014:1–10. https://doi.org/10.1155/2018/1525014

    Article  CAS  Google Scholar 

  30. Liu J, Lu XL, Wu CR (2013) Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3:389–405. https://doi.org/10.3390/membranes3040389

    Article  CAS  Google Scholar 

  31. Nakagawa K, Ishida Y (1973) Annealing effects in poly(viny1idene fluoride) as revealed by specific volume measurements, differential scanning calorimetry, and electron microscopy. J Polym Sci 11:2153–2171. https://doi.org/10.1002/pol.1973.180111107

    Article  CAS  Google Scholar 

  32. Lu X, Deng W, Wei JD, Wan YH, Zhang JJ, Zhang L, Jin L, Cheng ZY (2021) Crystallization behaviors and related dielectric properties of semicrystalline matrix in polymer-ceramic nanocomposites. Compos Part B-Eng 224(109195):1–8. https://doi.org/10.1016/j.compositesb.2021.109195

    Article  Google Scholar 

  33. Huang YF, Xu JZ, Soulestin T, Dos Santos FD, Li RP, Fukuto M, Lei J, Zhong GJ, Li ZM, Li Y, Zhu L (2018) Can relaxor ferroelectric behavior be realized for poly(vinylidene fluoride-co-chlorotrifluoroethylene) [P(VDF-CTFE)] random copolymers by inclusion of CTFE units in PVDF crystals? Macromolecules 51(14):5460–5472. https://doi.org/10.1021/acs.macromol.8b01155

    Article  CAS  Google Scholar 

  34. Yang X, Li ZM, Odum L, Cheng ZY (2006) Influence of crystallization condition on structure of P(VDF-CTFE) copolymers. MRS OPL 889(703):1–6. https://doi.org/10.1557/proc-0889-w07-03

    Article  Google Scholar 

  35. Lu X, Shen JL, Zhang L, Xu Z, Cheng ZY (2019) Dielectric property and ac conductivity of P(VDF-CTFE)-PLZST polymer-ceramic composite films. Ceram Int 45(7):8979–8987. https://doi.org/10.1016/j.ceramint.2019.01.230

    Article  CAS  Google Scholar 

  36. Lu X, Tong Y, Cheng ZY (2019) Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films. J Alloys Compd 770:327–334. https://doi.org/10.1016/j.jallcom.2018.08.185

    Article  CAS  Google Scholar 

  37. Hoshina T (2013) Size effect of barium titanate: fine particles and ceramics. J Ceram Soc Jpn 121(1410):156–161. https://doi.org/10.2109/jcersj2.121.156

    Article  CAS  Google Scholar 

  38. Lu X, Tong Y, Talebinezhad H, Liu JC, Cai YC, Wang L, Cheng ZY (2017) Effects of SiO2 coating on the dielectric and ferroelectric properties of BaTiO3-SiO2 composites. In: Joint IEEE ISAF-IWATMD-PFM Conf Proc. GA, USA, pp 56–58. doi:https://doi.org/10.1109/isaf.2017.8000211

  39. Zhang L, Bass P, Cheng ZY (2015) Physical aspects of 0–3 dielectric composites. J Adv Dielectr 5(1550012):1–8. https://doi.org/10.1142/s2010135x15500125

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a fund for the sci-tech programs of selected overseas professionals in Shaanxi Province (No. 34), a key laboratory research project of Education Department of Shaanxi Province (No. 20JS096), and a USDA Sun Grant (No. 3TF372-9500098543).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Lu or Z.-Y. Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Deng, W., Wei, J. et al. Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56, 19983–19995 (2021). https://doi.org/10.1007/s10853-021-06555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06555-0

Navigation