Skip to main content
Log in

Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the study, tungsten disulfide (WS2) nanoparticle-containing polymer-coated bioactive glass composite scaffolds were prepared for bone tissue engineering applications. Poly-ε-caprolactone (PCL) and poly(D,L-lactide-co-glycolide) (PLGA) were applied on the surface of the bioactive glass scaffolds fabricated by the polymer foam replication method. Results revealed that the presence of WS2 nanoparticles (0.1 to 2 wt%) embedded in polymer matrix improved the compression strength of the prepared scaffolds and their in vitro bioactivity in simulated body fluid. Composite scaffolds did not demonstrate a cytotoxic effect on pre-osteoblastic MC3T3-E1 cells after incubation for 72 h. SEM analysis showed that cells attached to the surface of the scaffolds and spread through the interconnected porous network. Gentamicin-loaded scaffolds demonstrated a controlled drug release behavior depending on the type of polymer applied on the coating layer. The presence of WS2 nanoparticles enhanced the drug release behavior of the scaffolds. It was concluded that bioactive glass-based composites fabricated in the study have the potential to be used for bone tissue engineering purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141. https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  2. Hench LL, Wilson J (1984) Surface active biomaterials. Science 226:630–636. https://doi.org/10.1126/science.6093253

    Article  CAS  Google Scholar 

  3. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    Article  CAS  Google Scholar 

  4. Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, Mosafer J, Hashemi SM, Mokhtarzadeh A, Maleki A, Hamblin MR (2020) Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater Sci Eng C 107:110267. https://doi.org/10.1016/j.msec.2019.110267

    Article  CAS  Google Scholar 

  5. Gerhard L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910. https://doi.org/10.3390/ma3073867

    Article  CAS  Google Scholar 

  6. Stanić V (2019) Chapter 8, Boron-containing bioactive glasses for bone regeneration. Biomed Ther Clin Appl Bioact Glasses 219–249. https://doi.org/10.1016/B978-0-08-102196-5.00008-2

  7. Liang W, Rahaman NM, Day D, Marion N, Riley G, Mao J (2008) Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 354:1690–1696. https://doi.org/10.1016/j.jnoncrysol.2007.10.003

    Article  CAS  Google Scholar 

  8. Ning J, Yao A, Wang D, Huang W, Fu H, Liu X, Jiang X, Zhang X (2007) Synthesis and in vitro bioactivity of a borate-based bioglass. Mater Lett 61:5223–5226. https://doi.org/10.1016/j.matlet.2007.04.089

    Article  CAS  Google Scholar 

  9. Balasubramanian P, Büttner T, Pacheco VM, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft tissue engineering. J Eur Ceram Soc 38(3):855–869. https://doi.org/10.1016/j.jeurceramsoc.2017.11.001

    Article  CAS  Google Scholar 

  10. Jia W-T, Zhang X, Luo S-H, Liu X, Huang W-H, Rahaman NM, Day D, Zhang C-Q, Xie Z-P, Wang J-Q (2009) Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater 6:812–819. https://doi.org/10.1016/j.actbio.2009.09.011

    Article  CAS  Google Scholar 

  11. Sergi R, Bellucci D, Cannillo V (2002) A review of bioactive glass/natural polymer composites: state of the art. Materials 13:5560. https://doi.org/10.3390/ma13235560

    Article  CAS  Google Scholar 

  12. Deliormanlı AM (2016) Fabrication and characterization of poly caprolactone coated silicate and borate based bioactive glass composite scaffolds. J Compos Mater 50(7):917–928. https://doi.org/10.1177/2F0021998315583320

    Article  Google Scholar 

  13. Porwal H, Grasso S, Cordero AL, Li C, Boccaccini A, Reece M (2014) Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites. J Mater Sci Mater Med 25:1403–1413. https://doi.org/10.1007/s10856-014-5172-x

    Article  CAS  Google Scholar 

  14. Türk M, Deliormanlı AM (2018) Graphene-containing PCL- coated Porous 13–93B3 bioactive glass scaffolds for bone regeneration. Mater Res Express. https://doi.org/10.1088/2053-1591/aab87b

    Article  Google Scholar 

  15. Ilyas K, Zahid S, Batool M, Chaudhry AA, Jamal A, Iqbal F, Nawaz MH, Goerke O, Gurlo A, Shah AT, Rehman I (2019) In-vitro investigation of graphene oxide reinforced bioactive glass ceramics composites. J Non-Cryst Solids 505:122–130. https://doi.org/10.1016/j.jnoncrysol.2018.10.047

    Article  CAS  Google Scholar 

  16. Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201. https://doi.org/10.1016/j.jare.2019.03.011

    Article  CAS  Google Scholar 

  17. Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR (2020) Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 14(12):1687–1714. https://doi.org/10.1002/term.3131

    Article  CAS  Google Scholar 

  18. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004

    Article  CAS  Google Scholar 

  19. Yang X, Li J, Hou C, Zhang Q, Li Y, Wang H (2020) Skeleton-structure WS2@CNT thin-film hybrid electrodes for high-performance quasi-solid-state flexible supercapacitors. Front Chem 8:442. https://doi.org/10.3389/fchem.2020.00442

    Article  CAS  Google Scholar 

  20. Lin TW, Sadhasivam T, Wang AY, Chen TY, Lin JY, Shao LD (2018) Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors. Chem Electro Chem 5:1024–1031. https://doi.org/10.1002/celc.201800043

    Article  CAS  Google Scholar 

  21. Choudhary N, Li C, Chung H-S, Moore J, Thomas J, Jung Y (2016) High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10:10726–10735. https://doi.org/10.1021/acsnano.6b06111

    Article  CAS  Google Scholar 

  22. Zhang X, Wang J, Xu H, Tan H, Ye X (2019) Preparation and tribological properties of WS2 hexagonal nanoplates and nanoflowers. Nanomaterials 9(6):840. https://doi.org/10.3390/nano9060840

    Article  CAS  Google Scholar 

  23. Hu KH, Wang J, Schraube S, Xu YF, Hu XG, Stengler R (2009) Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials. Wear 266:1198–1207. https://doi.org/10.1016/j.wear.2009.03.036

    Article  CAS  Google Scholar 

  24. Lalwani G, Henslee AM, Farshid B, Lin L, Kasper FK, Qin YX, Mikos AG, Sitharaman B (2013) Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. Biomacromol 14:900–909. https://doi.org/10.1021/bm301995s

    Article  CAS  Google Scholar 

  25. Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc Natl Acad Sci USA 103:523–528. https://doi.org/10.1073/pnas.0505640103

    Article  CAS  Google Scholar 

  26. Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Tenne R, Wagner DH (2011) The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhes Sci Technol 25:1603–1617. https://doi.org/10.1163/016942410X524138

    Article  CAS  Google Scholar 

  27. Reddy CS, Zak A, Zussman E (2011) WS2 nanotubes embedded in PMMA nanofibers as energy absorptive material. J Mater Chem 21:16086–16093. https://doi.org/10.1039/C1JM12700D

    Article  CAS  Google Scholar 

  28. Lalwani G, Henslee AM, Farshid B, Parmar P, Lin L, Qin Y-X, Kasper FK, Mikos AG, Sitharaman B (2013) Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. Acta Biomater 9:8365–8373. https://doi.org/10.1016/j.actbio.2013.05.018

    Article  CAS  Google Scholar 

  29. Loffredo F, Tammaro L, Di Luccio T, Borriello C, Villani F, Vito SD, Ramachandran K, Kornfield JA (2021) Effect of tungsten disulfide nanotubes on crystallization of polylactide under uniaxial deformation and annealing. Funct Compos Mater 2:3. https://doi.org/10.1186/s42252-021-00016-2

    Article  Google Scholar 

  30. Redlich M, Gorodnev A, Feldman Y, Kaplan-Ashiri I, Tenne R, Fleischer N, Genut M, Feuerstein N (2008) Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires. J Mater Res 23:2909–2915. https://doi.org/10.1557/JMR.2008.0350

    Article  CAS  Google Scholar 

  31. Samorodnitzky-Naveh GR, Redlich M, Rapoport L, Feldman Y, Tenne R (2009) Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel-titanium alloys. Nanomedicine 4:943–950. https://doi.org/10.2217/nnm.09.68

    Article  CAS  Google Scholar 

  32. Kong N, Ding L, Zeng X, Wang J, Li W, Shi S, Gan ST, Zhu X, Tao W, Ji X (2019) Comprehensive insights into intracellular fate of WS2 nanosheets for enhanced photothermal therapeutic outcomes via exocytosis inhibition. Nanophotonics. https://doi.org/10.1515/nanoph-2019-0343

    Article  Google Scholar 

  33. Chen H, Liu T, Su Z, Shang L, Wei G (2018) 2D Transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz 3:74–89. https://doi.org/10.1039/C7NH00158D

    Article  CAS  Google Scholar 

  34. Teo WZ, Chng ELK, Sofer Z, Pumera M (2014) Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS 2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem Eur J 20:9627–9632. https://doi.org/10.1002/chem.201402680

    Article  CAS  Google Scholar 

  35. Chen Y-W, Shie M-Y, Hsiao C-H, Liang Y-C, Wang B, Chen I-WP (2020) Synthesis of high-quality monolayer tungsten disulfide with chlorophylls and its application for enhancing bone regeneration. 2D Mater Appl 4:34. https://doi.org/10.1038/s41699-020-00168-y

    Article  CAS  Google Scholar 

  36. Appel JH, Li DO, Podlevsky JD, Debnath A, Green AA, Wang QH, Chae J (2016) Low cytotoxicity and genotoxicity of two-dimensional MoS2 and WS2. ACS Biomater Sci Eng 2:361–367. https://doi.org/10.1021/acsbiomaterials.5b00467

    Article  CAS  Google Scholar 

  37. Liu X, Duan G, Li W, Zhou Z, Zhou R (2017) Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2). RSC Adv 7:37873–37880. https://doi.org/10.1039/C7RA06442J

    Article  CAS  Google Scholar 

  38. Pardo M, Shuster-Meiseles T, Levin-Zaidman S, Rudich A, Rudich Y (2014) Low cytotoxicity of inorganic nanotubes and fullerene-like nanostructures in human bronchial epithelial cells: relation to inflammatory gene induction and antioxidant response. Environ Sci Technol 48:3457–3466. https://doi.org/10.1021/es500065z

    Article  CAS  Google Scholar 

  39. Türk M, Deliormanlı AM (2017) Electrically conductive borate based bioactive glass scaffolds for bone tissue engineering applications. J Biomater Appl 32(1):28–39. https://doi.org/10.1177/2F0885328217709608

    Article  Google Scholar 

  40. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure change in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734. https://doi.org/10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  41. Du C, Ma H, Ruo M, ZhangYu ZX, Zeng Y (2006) An experimental study on the biomechanical properties of the cancellous bones of distal femur. Biomed Mater Eng 16:215–222. https://pubmed.ncbi.nlm.nih.gov/16518020/

  42. Simić DM, Stojanović DB, Dimić M, Mišković K, Marjanović M, Burzić Z, Uskoković PS, Zak A, Tenne R (2019) Impact resistant hybrid composites reinforced with inorganic nanoparticles and nanotubes of WS2. Compos B Eng 176(107222):107222. https://doi.org/10.1016/j.compositesb.2019.107222

    Article  CAS  Google Scholar 

  43. Lynn GJ (2015) Dissolution of borate glasses and precipitation of phosphate compounds. Doctoral Dissertations. 2382. https://scholarsmine.mst.edu/doctoral_dissertations/2382

  44. Pawlik J, Łukowicz K, Cholewa-Kowalska K, Osyczka AM (2019) New insights into the PLGA and PCL blending: physico-mechanical properties and cell response. Mater Res Express 6:085344. https://doi.org/10.1088/2053-1591/ab2823

    Article  CAS  Google Scholar 

  45. Zhang L, Liu X, Li G, Wang P, Yang Y (2018) Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res Part A 9999:1–10. https://doi.org/10.1002/jbm.a.36537

    Article  CAS  Google Scholar 

  46. Gadaleta SJ, Paschalis EP, Betts F, Mendelsohn R, Boskey AL (1996) Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlations between X-ray diffraction and infrared data. Calcif Tissue Int 58:9–16. https://doi.org/10.1007/BF02509540

    Article  CAS  Google Scholar 

  47. Fu Q, Rahaman MN, Fu H, Liu X (2010) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 95(1):164–171. https://doi.org/10.1002/jbm.a.32824 (PMID: 20544804)

    Article  CAS  Google Scholar 

  48. Garcia-Hevia L, Roehrer I, Mazzocchi T, Menciassi A, Ricotti L (2020) Cytotoxicity of pristine and functionalized tungsten disulfide particles in the urinary system. J Nanopart Res 22:273. https://doi.org/10.1007/s11051-020-05007-1

    Article  CAS  Google Scholar 

  49. Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav A-H, Aframian DJ (2015) Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 21(5–6):1013–1023. https://doi.org/10.1089/ten.tea.2014.0163

    Article  CAS  Google Scholar 

  50. Chang R, Palumbo A, Tourlomousis F, Yang EH (2017) Transition metal dichalcogenides as cell culture platforms. Tech Connect Briefs 1:99–102

    Google Scholar 

  51. Srikanth M, Heath M, Shang-You Y, Asmatulu R (2015) Effects of morphology, concentration and contact duration of carbon-based nanoparticles on cytotoxicity of L929 cells. V014T11A027. https://doi.org/10.1115/IMECE2015-52296

  52. Milosevic M, Stojanovic DB, Simic V, Grkovic M, Bjelovic M, Uskokovic PS, Kojic M (2020) Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep 10:11126. https://doi.org/10.1038/s41598-020-68117-9

    Article  CAS  Google Scholar 

  53. Rai A, Senapati S, Saraf SK, Maiti P (2016) Biodegradable poly(e-caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of MRSA infection. J Mater Chem B 4:5151–5160. https://doi.org/10.1039/C6TB01623E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this research was provided by the Scientific and Technical Research Council of Turkey (TUBITAK), Grant No: 119M935.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin M. Deliormanlı.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ensoylu, M., Deliormanlı, A.M. & Atmaca, H. Tungsten disulfide nanoparticle-containing PCL and PLGA-coated bioactive glass composite scaffolds for bone tissue engineering applications. J Mater Sci 56, 18650–18667 (2021). https://doi.org/10.1007/s10853-021-06494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06494-w

Navigation