Skip to main content

Advertisement

Log in

Orthorhombic C36: a sp2sp3 carbon with pressure-induced metallization and superconductivity

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Because of their particular characteristics, searching for potential sp2sp3 hybridized carbon allotropes has become the foundation of new functional materials in the future. Here, we design a novel carbon phase constructed by sp2–sp3 hybridized bonding networks with a 36-atom body-centered orthorhombic unit cell, termed oC36. oC36 shows thermodynamic stability comparable to most of the theoretically predicted sp3 carbons. The elastic and dynamical stability of oC36 is confirmed by the calculation results of elastic constants and phonon spectra. Analysis of electronic properties reveals that oC36 changes from semiconductivity to one-dimensional conductivity with external pressure exceeding approximately 4 GPa. The conductivity arises from the overlap of the valance and conduction bands owing to sp2 hybridized nonbonding carbon interactions as the lattice constant decreases. Electron–phonon coupling calculations indicate the superconductivity of oC36 under 25 GPa, and its λ and TC values are 0.50 and 10.7 K, respectively. Strikingly, the estimated hardness, tensile strength, and shear strength of oC36 reach remarkably high values of 69.5, 79.1, and 78.9 GPa, respectively, indicating its superhardness and ultra-incompressibility. Our research expands the scope of sp2–sp3 carbon allotropes and provides new ideas for the later theoretical design of carbon allotropes with switchable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kroto HW, Allaf AW, Balm SP (1991) C60: Buckminsterfullerene. Chem Rev 91:1213–1235

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  6. Kroto HW (1992) Carbon onions introduce new flavour to fullerene studies. Nature 359:670–671

    Article  Google Scholar 

  7. Dahl JE, Liu SG, Carlson RMK (2003) Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299:96–99

    Article  CAS  Google Scholar 

  8. Smith BW, Monthioux M, Luzzi DE (1998) Encapsulated C60 in carbon nanotubes. Nature 396:323–324

    Article  CAS  Google Scholar 

  9. Li JL, Peng QS, Bai GZ et al (2005) Carbon scrolls produced by high energy ball milling of graphite. Carbon 43:2830–2833

    Article  CAS  Google Scholar 

  10. Li Q, Ma Y, Oganov AR et al (2009) Superhard monoclinic polymorph of carbon. Phys Rev Lett 102:175506

    Article  CAS  Google Scholar 

  11. Umemoto K, Wentzcovitch RM, Saito S et al (2010) Body-centered tetragonal C4: A viable sp3 carbon allotrope. Phys Rev Lett 104:125504

    Article  CAS  Google Scholar 

  12. Amsler M, Flores-Livas JA, Lehtovaara L et al (2012) Crystal structure of cold compressed graphite. Phys Rev Lett 108:065501

    Article  CAS  Google Scholar 

  13. Wang J-T, Chen C, Kawazoe Y (2011) Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys Rev Lett 106:075501

    Article  CAS  Google Scholar 

  14. Ghattavi S, Nezamzadeh-Ejhieh A (2020) GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental design, bandgap study, and characterization of the catalyst. Int J Hydrogen Energ 45:24636–24656

    Article  CAS  Google Scholar 

  15. Pourshirband N, Nezamzadeh-Ejhieh A (2021) An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: focus on the scavenging agent and mechanism. J Mol Liq 335:116543

    Article  CAS  Google Scholar 

  16. Pourshirband N, Nezamzadeh-Ejhieh A, Mirsattari SN (2021) The CdS/g-C3N4 nano-photocatalyst: Brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim Acta A 248:119110

    Article  CAS  Google Scholar 

  17. Miller ED, Nesting DC, Badding JV (1997) Quenchable transparent phase of carbon. Chem Mater 9:18–22

    Article  CAS  Google Scholar 

  18. Bundy FP, Kasper JS (1967) Hexagonal diamond - a new form of carbon. J Chem Phys 46:3437–3446

    Article  CAS  Google Scholar 

  19. Mao WL, Mao H-K, Eng PJ et al (2003) Bonding changes in compressed superhard graphite. Science 302:425–427

    Article  CAS  Google Scholar 

  20. Hirai H, Kondo K-I (1991) Modified phases of diamond formed under shock compression and rapid quenching. Science 253:772–774

    Article  CAS  Google Scholar 

  21. Yamada K, Sawaoka AB (1994) Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism. Carbon 32:665–673

    Article  CAS  Google Scholar 

  22. Ribeiro FJ, Tangney P, Louie SG et al (2005) Structural and electronic properties of carbon in hybrid diamond-graphite structures. Phys Rev B 72:214109

    Article  CAS  Google Scholar 

  23. Zhao C-X, Niu C-Y, Qin Z-J et al (2016) H18 carbon: a new metallic phase with sp2-sp3 hybridized bonding network. Sci Rep 6:21879

    Article  CAS  Google Scholar 

  24. Zhang S, Wang Q, Chen X et al (2013) Stable three-dimensional metallic carbon with interlocking hexagons. P Nat Acad Sci USA 110:18809–18813

    Article  CAS  Google Scholar 

  25. Sung H-J, Kim S, Lee I-H et al (2017) Semimetallic carbon allotrope with a topological nodal line in mixed sp2-sp3 bonding networks. NPG Asia Mater 9:e361–e361

    Article  CAS  Google Scholar 

  26. Hu M, Ma M, Zhao Z et al (2016) Superhard sp2sp3 hybrid carbon allotropes with tunable electronic properties. AIP Adv 6:055020

    Article  CAS  Google Scholar 

  27. Sheng X-L, Yan Q-B, Ye F et al (2011) T-carbon: a novel carbon allotrope. Phys Rev Lett 106:155703

    Article  CAS  Google Scholar 

  28. Zhang J, Wang R, Zhu X et al (2017) Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat Commun 8:683

    Article  CAS  Google Scholar 

  29. Eremets MI, Struzhkin VV, Mao H-K et al (2001) Superconductivity in boron. Science 293:272–274

    Article  CAS  Google Scholar 

  30. Wang Y, Lv J, Zhu L et al (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183:2063–2070

    Article  CAS  Google Scholar 

  31. Clark SJ, Segall MD, Pickard CJ et al (2005) First principles methods using CASTEP. Z Krist - Cryst Mater 220:567–570

    Article  CAS  Google Scholar 

  32. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079

    Article  CAS  Google Scholar 

  33. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  Google Scholar 

  34. Pfrommer BG, Côté M, Louie SG et al (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  36. Hinuma Y, Pizzi G, Kumagai Y et al (2017) Band structure diagram paths based on crystallography. Comp Mater Sci 128:140–184

    Article  CAS  Google Scholar 

  37. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  Google Scholar 

  38. Baroni S, De Gironcoli S, Dal Corso A et al (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  CAS  Google Scholar 

  39. Occelli F, Loubeyre P, Letoullec R (2003) Properties of diamond under hydrostatic pressures up to 140 GPa. Nat Mater 2:151–154

    Article  CAS  Google Scholar 

  40. Zhao Z, Xu B, Zhou X-F et al (2011) Novel superhard carbon: C-centered orthorhombic C8. Phys Rev Lett 107:215502

    Article  CAS  Google Scholar 

  41. Zhou X-F, Qian G-R, Dong X et al (2010) Ab initio study of the formation of transparent carbon under pressure. Phys Rev B 82:134126

    Article  CAS  Google Scholar 

  42. Raeisi-Kheirabadi N, Nezamzadeh-Ejhieh A (2020) A Z-scheme g-C3N4/Ag3PO4 nanocomposite: its photocatalytic activity and capability for water splitting. Int J Hydrogen Energ 45:33381–33395

    Article  CAS  Google Scholar 

  43. Ghattavi S, Nezamzadeh-Ejhieh A (2020) A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos Part B - Eng 183:107712

    Article  CAS  Google Scholar 

  44. Allen PB, Dynes RC (1975) Transition temperature of strong-coupled superconductors reanalyzed. Phys Rev B 12:905–922

    Article  CAS  Google Scholar 

  45. Liu C, Song X, Li Q et al (2019) Smooth flow in diamond: atomistic ductility and electronic conductivity. Phys Rev Lett 123:195504

    Article  CAS  Google Scholar 

  46. Liu C, Song X, Li Q et al (2020) Superconductivity in compression-shear deformed diamond. Phys Rev Lett 124:147001

    Article  CAS  Google Scholar 

  47. Chen X-Q, Niu H, Li D et al (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19:1275–1281

    Article  CAS  Google Scholar 

  48. Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater 33:93–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2018YFA0703400). K. Luo also acknowledges the Project funded by China Postdoctoral Science Foundation (2017M620097).

Author information

Authors and Affiliations

Authors

Contributions

PY and KL designed the research, JC, XW, YG and QH performed the calculations, JC, XW, YG, BL and QH, PY and KL analyzed the results, JC, PY and KL wrote the manuscript. All authors contributed the discussions.

Corresponding authors

Correspondence to Pan Ying or Kun Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ying, P., Gao, Y. et al. Orthorhombic C36: a sp2sp3 carbon with pressure-induced metallization and superconductivity. J Mater Sci 56, 17665–17673 (2021). https://doi.org/10.1007/s10853-021-06455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06455-3

Navigation