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ABSTRACT

The mechanical response of metallic materials is controlled by multiple defor-

mation mechanisms that coexist across scales. Dislocation glide is one such

process that occurs after bypassing obstacles. In macroscopic well-annealed

single-phase metals, weak obstacles such as point defects, solid solution

strengthening atoms, short-range dislocation interactions, and grain boundaries

control dislocation glide by pinning the scarce dislocation density. This work

investigates the dislocation glide energy barrier in face-centered cubic (FCC)

metallic materials by considering a crystal plasticity model that computes the

yield strength as a function of temperature. The dislocation glide energy barrier

is parameterized by three different formulations that depend on two parame-

ters. A Monte Carlo analysis randomly determines all other coefficients within

uncertainty bounds identified from the literature, followed by fitting the two

energy barrier parameters to experimental data. We consider ten FCC materials

to demonstrate that the methodology characterizes robustly the dislocation glide

energy barrier used by crystal plasticity models. Furthermore, we discovered a

correlation between the glide barrier and the stacking fault energy that can be

used as a basis to infer the glide activation energy.

Handling Editor: Avinash Dongare.

Address correspondence to E-mail: f.ashraf@cranfield.ac.uk
E-mail Address: castellg@cranfield.ac.uk

https://doi.org/10.1007/s10853-021-06376-1

J Mater Sci (2021) 56:16491–16509

Computation & theory

http://orcid.org/0000-0001-7479-4374
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-021-06376-1&amp;domain=pdf
https://doi.org/10.1007/s10853-021-06376-1


GRAPHICAL ABSTRACT

Introduction

Strain hardening in single-phase metallic materials is

controlled by the production, migration, and annihi-

lation of defects [1]. Vacancies, interstitials or sub-

stitutional atoms, dislocations, and grain boundaries

contribute to hardening by creating barriers that need

to be overcome by dislocations. Point obstacles, such

as isolated solute atoms, interstitials, and vacancies,

correspond to weak obstacles; forest dislocations are

medium strengthening obstacles, while precipitates

are strong obstacles [2]. In engineering alloys, all

obstacles coexist and contribute to macroscopic

strength. However, strengthening in well-annealed

single-phase metals is controlled by weak obstacles.

Molecular dynamics calculations have recently

[3–5] been employed to estimate the dislocation glide

energy barrier in simple metallic systems. For

example, Esteban et al. [4] characterized the glide

energy barrier from Guinier–Preston zones using

molecular dynamics simulations. Similarly, Dong

et al. [6] simulated the strengthening associated with

the collaborative response of multiple obstacles in

metals. However, the small scale and high deforma-

tion rate of atomistic models make it difficult to

transfer quantitative data to coarser crystal plasticity

models. Furthermore, the combinatorial nature of

atomic configurations in alloys is still unresolved

with molecular dynamics, whose results are often

valid for a specific strengthening mechanism with a

certain atomic order.

Other efforts [7, 8] have quantified the glide energy

barrier by analyzing yield stress experimental data.

For example, Frost and Ashby [2] characterized the

dislocation glide barrier by studying the yield stress

dependence on temperature. Building on this idea,

Balasubramanian and Anand [9] proposed an elasto-

viscoplastic model to parameterize thermal and

athermal hardening using aluminum yield stress data

at different temperatures. These approaches relied on

constitutive models that do not distinguish

strengthening from point defects, dislocation, and

grain boundaries, which operate at different length

scales. A further limitation of these efforts is their

simultaneous estimation of multiple parameters,

which sums up the uncertainty from various mech-

anisms across different scales. Indeed, not all mech-

anisms become active upon a change in loading

conditions (e.g., monotonic, cyclic, etc.), so the results

are not fully transferable across scales, models, and

loading conditions.

This paper extends the work from Balasubrama-

nian and Anand [9] by parameterizing multiple

strengthening mechanisms independently, whose

uncertainty is estimated from modeling and experi-

mental data. These parameterizations inform Monte

Carlo simulations that fit a crystal plasticity physics-

based constitutive model to yield stress data at dif-

ferent temperatures. The approach results in a robust

methodology to parameterize the dislocation glide

barrier and can be used to inform crystal plasticity

models. Moreover, the analysis of multiple FCC

metals and alloys demonstrates a correlation between
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the glide barrier activation energy and the intrinsic

stacking fault energy (SFE).

Mechanics of dislocation glide

Eyring [10] pioneer work recognized that inelastic

deformation conforms to the principles of transition

state theory and hypothesized that stochastic atomic

perturbations control dislocations glide. Gibbs [11]

further proposed that the probability of a dislocation

to overcome an obstacle can be computed as,

C ¼ m exp
�DG sð Þ
kBT

� �
ð1Þ

in which m is the attempt frequency, kB is the Boltz-

mann constant, T is the temperature, and DG is the

Gibbs free activation energy required by a dislocation

to glide, which depends upon the local shear stress

(s). Furthermore, the probability of gliding can be

related to the shear rate ( _ca) along slip system a fol-

lowing Orowan’s model [12],

_ca ¼ qablvm exp
�DG sð Þ
kBT

� �
ð2Þ

in which qa is the dislocation density on the primary

slip system a, b is the Burgers vector, and lv is the

average spacing between dislocation obstacles.

The mathematical nature of the Gibbs free activa-

tion energy is still a matter of debate, and different

formulations have been proposed. One common

approach quantifies DG by defining a dislocation–

obstacle interaction potential, whose first derivate

corresponds to the force (F) as a function of the dis-

tance traveled by the dislocation [11]. Several

approaches including Seeger [13], Fleischer [14], and

Mott and Nabarro [15] independently proposed dif-

ferent interaction potentials based on exponential,

local tetragonal distortion, and sinusoidal formula-

tions, respectively. These phenomenological interac-

tion potentials can be generalized as,

DG ¼ F0 1� s
so

� �p� �q

ð3Þ

in which F0 is the activation energy at 0 K, so is the

thermal stress, and p and q are profile parameters that

range between 0 to 1 and 1 to 2, respectively.

A second common approach [16] quantifies the

Gibbs free energy by subtracting the work carried out

by the stress field (sDV) to the Helmholtz free energy

(DF),

DG ¼ DF� sDV ð4Þ
in which DV corresponds to the thermodynamic

activation volume. More recently, Langer [17] argued

about the lack of physical understanding of the origin

of both these mathematical formulations and pro-

posed a thermodynamically consistent approach,

DG ¼ F�0 exp � s
s�0

� �
ð5Þ

in which F�0 is the pinning energy at zero stress and s�0
is the Taylor stress according to Langer.

Equation (1) represents the thermally activated

plastic deformation and assumes that the Gibbs

energy does not depend on the temperature. Hence,

parameters in Eqs. (3)–(5) should also be temperature

independent. As noted by Kocks et al. [18], the tem-

perature independence of parameters is a reasonable

assumption for glide resistance profiles without a

plateau, which is the case for most FCC metals and

alloys up to moderate temperatures.

Equations (3)–(5) are up to a certain degree

equivalent, with the exception that Eq. (3) requires

four parameters rather than two. A larger number of

parameters provides further flexibility for represent-

ing nonlinear responses but makes the estimation of

the parameters more challenging. Hence, we first

focus on determining the parameters for the hardest

case (Eq. (3)), which has been extensively employed

to model strain hardening in FCC single and poly-

crystals [9, 19, 20].

Following on, the combination of Eqs. (2) and (3)

leads to [19],

_ca ¼ qablvm exp � F0
kBT

1� saeff
so

l
l0

 !p( )q" #
ð6Þ

in which saeff is the effective shear stress, while l and

l0 correspond to the shear modulus at temperatures

T and 0 K. Furthermore, saeff depends on the local

resolved shear stress, ðsaÞ, the athermal stress ðSaÞ,
and the long-range intragranular back stress ðBaÞ,
saeff ¼ sa � Baj j � Sah i ð7Þ

We estimate the strength of dislocation pinning by

point obstacles [21] (vacancies, impurities) by con-

sidering the deformation up to plastic yield. Indeed,

other mechanisms (e.g., cross-slip or long-range back
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stresses) are less likely to be dominant at the onset of

plastic yield in well-annealed materials. Even when

many mechanisms are not active, the yield stress still

carries a significant variability that should be taken

into consideration. Thus, we reorganized Eq. (6) in

terms of the yield stress as follows,

ray ¼ Sa þ so
l
l0

� �
1� � kBT

F0
ln

_cay
qablvm

� �� �1
q

" #1
p

2
4

3
5� Cf

ð8Þ

Here _cay is the strain rate at yield stress and Cf is a

factor that projects the mean shear stress into normal

stress [22]. This parameter has a value that typically

ranges from the Taylor factor (3.06) as an upper

bound and to the Sachs factor (2.238) as a lower

bound. This range represents an independent and

approximate estimate of the conversion factor and

accounts for some crystallographic variability.

The athermal stress in Eq. (8) follows [19],

Sa ¼ aLE
lb

2dstruc
þ lb

ffiffiffiffiffiffiffiffiffiffiffi
Aiiqa

p
ð9Þ

in which the first term conveys the stress required to

bow-out dislocations and dislocation interaction

stress. Here, aLE corresponds to the line-energy scal-

ing factor, while Aii is the interaction coefficient. In

well-annealed metals, the contribution from latent

hardening on the stress at the onset of plastic defor-

mation (i.e., at 0.2% �p) is negligible [23]. Dislocation

production on secondary slip systems promotes dis-

location substructures and limits the dislocation free

path of the dominant slip. Hence, the dislocation

substructure length scale dstruc in Eq. (9) follows a

similitude relation [24] as,

dstruc ¼ Kstruc

lb
s

ð10Þ

where Kstruc is the similitude coefficient. At yielding,

macroscopic annealed materials have sparse dislo-

cations, and the contribution of the first term is neg-

ligible. (We assume crystals over 1 lm in size to

neglect dislocation starvation hardening [25].)

Instead, strengthening comes from self-hardening

interactions.

The dislocation density at yield follows the initial

density after annealing (qo
a) and the density increase

upon loading up to yield (Dqy
a),

qa ¼ qao þ Dqay ð11Þ

Hansen [26] demonstrated that the increase in

dislocation density depends on grain size, which is

due to differences in the dislocations’ mean free

paths. Hence, Dqy
a can be computed as,

Dqay ¼
KmDca

bdm
ð12Þ

where the dislocations’ production scaling parameter

ðKmÞ has a value that ranges between 1 and 4 [26–29].

For well-annealed materials, the mean free path (dm)

can be estimated as half the grain size [30], which

corresponds to the average distance a dislocation can

travel before encountering a grain boundary. Since

the mean free path affects the calculation of the dis-

location density and strengthening, Eq. (12) intro-

duces a dependence on the grain size and accounts

for Hall–Petch effects.

Finally, the jump frequency follows,

m ¼ kBT

h
ð13Þ

which comes from Eyring’s reaction rate theory [31]

and corresponds to the atomic attempt frequency

between 1010 and 1012 s-1. The obstacle spacing has a

significant role in bypassing the energy barrier dur-

ing thermal activation because a single event can

create a cascade of unpinning events [32].

By combining Eqs. (9)–(13) with Eq. (8), we obtain

ray Tð Þ ¼
"
lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aii

�
qao þ

KmDca

bdm

�s
þ
�
so

l
l0

�

"
1�

�
� kBT

F0
ln

�
_cay�

qao þ
KmDca

bdm

�
blv

kBT
h

�)1
q
#1

p
#

�
2CfKstruc

2Kstruc � aLEð Þ
ð14Þ

which relates the yield stress with the temperature

and strain rate. Hence, we can employ this equation

to fit experimental data using minimum-square

regression to estimate F0 and so. For completeness, we

apply the same approach but considering Eqs. (4)

and (5) to obtain,
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ray Tð Þ ¼
"
lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aii qao þ

KmDca

bdm

� �s

þ DF
lvbd

þ kBT

lvbd
ln

_cay

qao þ
KmDca

bdm

� �
blv

kBT
h

!0
@

9=
;

8<
:

3
5

2
4

3
5

�
2CfKstruc

2Kstruc � aLEð Þ
ð15Þ

in which we estimated the activation volume by ðlvbd)
where d represents the length of thermal activation,

and

ray
	
TÞ ¼



lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aii qao þ

Kmca

bdm

� �s

�
"
s�0 � ln

(
� kBT

F�0
ln

�
_cay�

qao þ
Kmca

bdm

�
blv

kBT
h

!)##

�
2CfKstruc

2Kstruc � aLEð Þ
ð16Þ

Independent estimation of parameters
and their uncertainty

A robust quantification of the glide energy barrier

requires the estimation of the uncertainty of all the

pre-assumed parameters in Eq. (14). We regard these

parameters into two categories related to their

uncertainties: the first parameters are atomistic fun-

damental quantities with low uncertainty such as kB
and b. The second category corresponds to high-

uncertainty parameters that result from mesoscale

stochastic processes such as dislocation jump fre-

quency and dislocation–dislocation interactions. For

these latter parameters, we identify the value ranges

that have been reported in the literature.

The shear modulus (l) is a material parameter with

relatively low uncertainty, which we accounted for

by considering the Reuss and Voigt [33] models as

lower and upper bounds, respectively. Overall, the

uncertainty of elastic constants has a minor sec-

ondary effect as demonstrated in Appendix A using

the elastic constants reported for various metals [34].

Since it is difficult and time-consuming to quantify

dislocation densities with experiments, their estima-

tions carry a large uncertainty. Hence, we assume a

range for the initial dislocation densities based on

experimental reports for various metals. Mavlyutov

et al. [35] studied the effect of annealing temperature

on dislocation densities in ultrafine-grained alu-

minum and found values between 4 9 1012 and

1.5 9 1012 m-2 for annealing at room temperature

and 423 K, respectively. Similarly, Williamson and

Smallman [36] estimated dislocation densities

between 1011 and 1012 m-2 for different annealed

FCC metals. Here, we assume an initial dislocation

density (qo
a) along primary slip system between

1 9 108–1 9 1011 m-2, and Dqy
a (contribution from

yielding) is calculated using Eq. (12) subject to the

grain size of material. Typically, Dqy
a ranges between

5 9 1012 and 1 9 1010 m-2 for grain sizes between 1

and 250 lm [35]. In this analysis, the lower bound of

dislocation density will remain 1 9 108 m-2; how-

ever, the upper bound will be modified for every

material subject to its grain size.

The self-interaction coefficient (Aii) in Eq. (9) has

been extensively estimated through experiments and

dislocation dynamics simulations. The results

obtained by multiple authors [37–41] reported a

range between 0.1 and 0.3 for various materials and

even for hydrogen pre-charged samples [42]. Fur-

thermore, Fivel et al. [38] reported that interaction

coefficients do not show significant change with the

dislocation density and stress. As a result, we con-

sider an average interaction coefficient between 0.1

and 0.3.

The line tension coefficient (aLE) in Eq. (9) is related

to the stress required to bow out and multiplicate

dislocations. Szajewski et al. [43] investigated dislo-

cation bow-out using molecular dynamics and

quantified line tension coefficient in the range of 0.5

to 0.85. Tabata et al. [44] studied the effect of flow

stress on dislocation behavior in aluminum [111]

single crystal, assuming that the bow-out is pinned

with forest dislocation in dislocation walls and used

the line-energy coefficient as 1. Therefore, we assume

that the line tension value should be in a range

between 0.5 and 1.5. Furthermore, regarding the

similitude coefficient (Kstruc) in Eq. (10), Sauzay and

Kubin [24] showed that FCC metals follow the

similitude relation under cyclic and monotonic

loading. They demonstrated that the similitude

coefficient under monotonic loading varies between 5

and 10, which corresponds to the range employed in

this study.

J Mater Sci (2021) 56:16491–16509 16495



Kocks et al. [18] bounded the profile parameters p

and q in Eq. (3) between 0–1 and 1–2, respectively.

Their calculations for DG considered various values

and concluded that p ¼ 3=4 and q ¼ 4=3 represent an

adequate but not unique solution. Instead, Fleischer

[14] derived p ¼ 1=2 and q ¼ 2 for a dislocation

interacting with local obstacles creating a tetragonal

distortion, while Mott and Nabarro [15] proposed a

sinusoidal interaction potential between dislocation

and a particle in precipitate-hardened material and

derived values of p ¼ 2=3 and q ¼ 3=2. More recently,

Dong [45] used molecular dynamics to derive a

polynomial expression for a dislocation-point obsta-

cle interaction mechanism that resulted in p ¼ 2=3

and q ¼ 3=2. Hence, we initially assume p ¼ 2=3 and

q ¼ 3=2, but we will later consider other values in the

range proposed by Kocks [18].

Finally, Sobie et al. [32] studied the role of obstacle

spacing on glide activation energy and proposed a

spacing in the order of tens of nm. Thus, we assume

an equivalent range for our analysis between 1 and

50 nm. Table 1 summarizes the ranges of all the

parameters in Eq. (14) that were considered in the

Monte Carlo analysis for evaluating F0 and so. The

references support that these parameters are unlikely

to have values outside these ranges, but current

epistemic uncertainty prevents us from making more

precise estimations.

Quantification of glide activation
from yield stress data

Monte Carlo simulations

To estimate the glide energy barrier parameters (F0
and so) and their uncertainty, we implement a Monte

Carlo approach that fits Eqs. (14), (15) and (16) to

yield stress as a function of temperature. The

schematic of the process is shown in Fig. 1f or

Eqs. (14). The analysis considers the ranges of

parameters in Table 1 for the materials summarized

in Table 2. The tabulated yield stress as a function of

homologous temperature is shown in Fig. 2. These

figures present a quasi-linear dependence of the yield

stress with homologous temperature up to a value of

0.2, at which point a plateau becomes apparent.

The plateau in the yield stress has been attributed

[46–49] to dynamic strain aging (DSA) and is caused

by the interference of impurities and solute atoms

(e.g., carbon) with the mobility of dislocations [50].

Because the model does not have any special provi-

sion for modeling the interference of diffusing of

point obstacles, we limit our analysis yielding at

homologous temperatures below 0.2. Nevertheless,

the analysis can still be used in models without the

explicit provision of DSA, and Appendix B presents

the estimates of F0 and so using yield data over full

range of temperature. In this case, glide activation

parameters are engineering approximations that

could be dependent on the deformation rate.

For each Monte Carlo calculation, we employ a set

of parameters randomly chosen within the ranges in

Table 1, while F0 and so were bounded between

0–5 eV and 1–500 MPa, respectively. Each parameter

was chosen assuming a flat distribution within the

bounds of their intrinsic epistemic uncertainty. Fur-

thermore, the fitting skill is taken into account and

only those results with R-square above 0.8 are con-

sidered in the analysis.

Results

Figure 3 to Fig. 4 present the outcomes from the

Monte Carlo analysis for different FCC metals and

alloys. The results of F0 and so are further summa-

rized in Table 3, which presents the mean and 95%

Table 1 Summary of different

scaling-level parameters Parameters Values

Initial dislocation density (qo) [35, 36] 1 9 108–1 9 1011 m-2

Average interaction coefficient (AiiÞ [37–41] 0.1–0.3

Line energy (aLE) [43, 44] 0.5–1.5

Similitude coefficient (Kstruc) [24] 5–10

Km[26–29] 1–4

Profile parameters [6, 14, 15, 18, 45] p 0–1

q 1–2

Mean separation distance between obstacles (lv) [32] 1 9 10–9–50 9 10–9 m
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confidence interval values computed from Monte

Carlo distributions. A total of 10,000 calculations per

material was sufficient to converge the results for F0
and so as demonstrated in Appendix C. Among all

materials, F0 results in values between 1 and 3 eV

indicating, as expected, weak point obstacles [2].

Notably, so resulted in a wide range between 15 and

350 MPa among all materials. Moreover, the average

normalized variability for F0 and so is 65% and 96%,

respectively, which demonstrates that the former has

lower intrinsic uncertainty than the latter.

To further explore the significance of the results,

we compare F0 and so with the intrinsic SFE, which

often carries two-digit uncertainty. Although the

parameters may correlate better with the energy that

a leading partial dislocation must overcome (i.e.,

unstable SFE), the uncertainty of these magnitudes is

even higher. The results in Figure 5 demonstrate that

there is no apparent correlation between so and the

Table 2 Summary of materials and their properties used in Monte Carlo analysis. The SFE values are approximations that carry significant

uncertainty (e.g., 25% [57])

Materials Annealing

temp. [K]

Mean grain dia.

(d) [lm]

Purity

%

Strain rate

s-1

Melting point

[K]

Stress (ry)@ 293 K �2

[MPa]

SFE

[mJm-2]

Aluminum [51] 573 27 99.975 6� 10�4 933.5 30 166 [58]

Copper [47] 623 15 99.999 6� 10�4 1358.2 72 46 [59]

Silver [52] 1073 40 99.97 6� 10�4 1234.9 48 17 [60]

Nickel [46] 866 45 99.85 5:1� 10�4 1728.2 83 120 [61]

Stainless steel 304

[53]

1344 90 N/A 3:3� 10�4 1672–1694 222 18 [62]

Stainless steel 316

[54]

1423 65 N/A 1� 10�4 1663–1713 255 78 [62]

Cupro—Nickel

[55]

866 35 N/A 5:1� 10�4 1444.2 149 92 [63]

Al 2024-T4 [56] – 50 N/A 3� 10�3 928.16 345 110 [64]

Figure 1 Schematic of Monte Carlo approach to estimate F0 and so.
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SFE. On the contrary, the activation energy presents

an inverse proportionality with the SFE that can be

parameterized as:

F ¼ Fi� a � SFE ð17Þ

with Fi = 2.6 (�0:3), a = 0.0067(�0:0031). The relation

between the SFE and F0 was indeed alluded by Kocks

for FCC metals [20] and can be used to obtain a first-

order estimation of F0 when limited experimental

data are available. The value of Eq. (17) is further

underpinned by the lower intrinsic uncertainty of F0,

which suggests that limited experimental data should

be used to estimate so before refining the estimations

of F0.

Effects of solute concentration
and crystallographic orientation

Continuing with the analysis of thermal stress, we

recall the work from Wille et al. [65], who studied the

effect of solute concentration on activation energy

parameters in Cu–Mn single crystal oriented for

single slip. Their analysis used an empirical relation

for the activation volume to quantify the sensitivity of

activation energy and thermal stress to solute

Figure 2 Normalized yield stress vs temperature for

a polycrystalline metals [46, 47, 51, 52] for aluminum, copper,

and silver, yield data corresponds to 0.5% strain but is 0.2% for

nickel and b polycrystalline alloys [53–56]. The yield stress was

reported at 0.2% strain for all alloys. The normalization factor

corresponds to the yield stress at room temperature. We consider

each of the strain values as reported in experimental data in our

analysis with Eq. (14).

Figure 3 a Glide activation energy and b thermal slip resistance of aluminum, nickel, copper, and silver.
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concentration. To validate our approach, we consider

the shear stress data at different temperatures from

Wille et al. [65] (as shown in Appendix D) to compute

the activation energy parameters. Figure 6 presents

the effect of solute concentration on glide activation

and thermal stress of Cu–Mn alloy with a 95% con-

fidence interval. Our results agree with the trends

from Wille et al. [65] and demonstrate that an

increase in solute concentration increases primarily

the thermal stress rather than the activation energy.

We highlight that our analysis does not require the

empirical relation proposed by Wille et al. [65], but

fully relies on physics-based mechanisms parame-

terized independently.

Further validation proceeds from an analysis of a

single crystal oriented for single slip, which does not

promote cross-slip at low plastic strain amplitude.

Hence, to ascertain that the estimated activation

energies relate indeed to the gliding process rather

than cross-slip, we consider aluminum, nickel, and

copper single crystals [66–68]. Figure 7 compares the

activation energy for these single crystals (SC) and

polycrystals (PC); the overlapping of activation

energies between single- and polycrystals supports

our methodology. These results also highlight the

variability conveyed by polycrystals. A second con-

sideration is that the thermal stresses in polycrys-

talline analysis seem consistently higher than that in

single crystals. One source for such effect is their

difference in the level of impurities as shown before.

(These materials are effectively not pure when con-

sidering the thermal stress.)

Another aspect that requires consideration is the

effect of grain size on yield stress [69], which may

Table 3 Mean values and

95% confidence interval of F0
and so computed for pure

metals and alloys

Material Activation energy ‘eV’ Thermal slip resistance ‘MPa’

Aluminum 1.3 ± 0.3 17.6 ± 6.4

Nickel 2.2 ± 0.36 43.8 ± 9.4

Copper 2.7 ± 0.21 26.1 ± 12.8

Silver 2.9 ± 0.13 29.6 ± 9.1

Stainless steel 304 2.4 ± 0.1 172 ± 27

Stainless steel 316 1.9 ± 0.07 292 ± 43

Cupro-Nickel 2.1 ± 0.09 107 ± 17

Al 2024-T4 1.97 ± 0.08 197 ± 26

Stainless steel 310 s 2.06 ± 0.08 303 ± 49

Cu- 7.6%Mn 1.86 ± 0.04 62.9 ± 1.8

Aluminum single crystal 1.38 ± 0.28 4.75 ± 0.35

Nickel single crystal 1.93 ± 0.15 26.2 ± 1.6

Copper single crystal 2.39 ± 0.4 4.7 ± 1.2

Figure 4 a Glide activation energy and b thermal slip resistance of SS 304, SS316, Cupro-Nickel, and Al 2024-T4.

J Mater Sci (2021) 56:16491–16509 16499



affect the estimation of the glide parameters. Figure 8

presents the effect of different grain sizes on activa-

tion energy parameters. The overlapping of results in

Fig. 8 shows that glide activation energy and thermal

stress are not significantly influenced by the grain

size. This further validates the incorporation of the

grain size effect in Eq. (14).

Considerations for different activation
energy formulations

We now estimate the activation energy parameters

with a similar analysis but considering different p

and q values for Eq. (3). Figure 9 demonstrates that

the choice of p and q can influence the values for F0
and so. Moreover, the average quality of the least-

square fitting represented by the R coefficient in

Table 4 saturates for p[ 2/3 and q\ 3/2. Hence, we

support Kocks [20] recommendation that p and q

should be fixed between 2/3–1 and 1–3/2, respec-

tively, and only F0 and so should be adjusted to match

experimental data. This strategy is likely to work due

to the linear nature of the yield stress data below 0.2

homologous temperature, which suggests that the

use of four parameters overdetermines the problem.

Next, we perform a similar analysis considering

the parameterization of Gibbs energy in Eqs. (4) and

(5) The results in Fig. 10a show that the Helmholtz

free energy is almost independent of the SFE, while

the thermal activation length scale correlates with the

SFE. Similar to the results for Eq. (3) in Fig. 5,

Figure 5 Correlation between

glide activation and stacking

fault energy of different FCC

metals and alloys. The

experimental data for SS 310 s

alloy are given in Appendix D.

Figure 6 Activation energy and thermal stress of Cu–Mn alloy

with different solute concentrations. Error bars correspond to a

95% confidence interval.
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Fig. 10b demonstrates that the pinning energy cor-

relates with the SFE, but not the thermal stresses.

Discussion

This study characterized the dislocation glide energy

barrier in FCC metals and alloys by combining phy-

sics-based crystal plasticity models and parameter

uncertainty. We considered three formulations for

the Gibbs free energy as a function of the effective

stress, which was computed using parameters that

were estimated independently. The analysis used

least-square fitting of experimental data to determine

only two parameters at a time rather than multiple

coefficients [9, 65]. As a result, we mitigated the

spurious cancelation of error among parameters and

we were able to estimate the uncertainty of the acti-

vation energy parameterization.

The comparison among Gibbs free energy formu-

lations showed that Kocks approach (Eqs. (14)) pro-

vides the best results when fitting the yield stress

dependence on temperature, even when parameters

p and q were fixed. Equations (15) and (16) represent

fixed linear and exponential dependence of yield

stress on temperature, respectively, which limits their

applicability in fitting all materials in Figure 5 and

Table 5 further compares the fitting quality from

using Eqs. (14), (15) and (16) by presenting the

average R-square coefficient from all materials and

Figure 7 Activation energy and thermal stress of a aluminum,

b nickel, and c copper single (SC) and polycrystals (PC).

Experimental data of polycrystals [47] are shown in Fig. 2, and

data for single crystals [66–68] are given in Appendix D. The

dimensions correspond to the grain size for polycrystals and crystal

size for single crystals.
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simulations. The results demonstrate a better fitting

with Eq. (14) as compared to other formulations.

Hence, our analysis supports the quantification of

Gibbs free energy using Kocks formulation (Eqs. (14)

with profile parameters p and q fixed in the ranges

between 2/3–1 and 1–3/2, respectively.

Table 4 Effect of p and q on average R-square computed from fitting results of Fig. 9

p = 1/2 and q = 2 p = 4/7 and q = 7/4 p = 2/3 and q = 3/2 p = 3/4 and q = 4/3 p = 4/5 and q = 5/4

Al 0.83 0.86 0.93 0.96 0.97

Ni 0.83 0.90 0.96 0.96 0.96

Cu 0.88 0.89 0.89 0.91 0.91

Ag 0.83 0.85 0.91 0.97 0.98

Total Average 0.84 0.87 0.93 0.95 0.95

Figure 8 Effect of grain size on glide activation energy and thermal stress in a copper b silver. The upper bound of the dislocation density

range is different for each case subject to the grain size.

Figure 9 Effect of different p and q values on a glide activation energy and b thermal slip resistance of different FCC metals.
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Multiscale crystal plasticity models are usually cali-

bratedwithout sufficientdata toquantifyall parameters

independently. In practical terms, a spurious increase

F0 can be counteractedby reducing so tomatch the same

experimental data. This makes it difficult to estimate

both parameters independently and affects the model

prediction (e.g., when used for temperatures and

deformation rates outside the calibration database).

However, the relation found between the activation

energyand the intrinsic SFE inEq. (17) canbeemployed

as a first-order estimation of F0. This estimation is

independent of so; which can be subsequently quanti-

fiedbyfitting the response to the available experimental

data. This methodology provides an independent and

robust estimationof theglide activationparameters and

mitigates spurious errors.

Our analysis has focused on yield stress at low tem-

peraturesdue to the lackof a specialprovisionofDSA in

the crystal plasticity model. F0 and so can still be calcu-

lated using the entire temperature range as shown in

Appendix B, but we regard this calculation as an engi-

neering approximation that obscures the fact that so
should change due to DSA. Indeed, our work has

shown that so depends strongly on the solute concen-

tration. Hence, small temporary changes in solute con-

centrations around dislocations due to DSA should

affect the effective so. This analysis further suggests that

DSAcanbemodeledby introducingadependence for so
on the effective solute content around dislocations,

which would depend on the deformation rate, tem-

perature, and diffusivity of species.

Finally, our approach relied on experimental data

readily available in the literature to predict the glide

activation energy in monolithic FCC metals with

weak point obstacles. Future efforts can further

explore the extension of the analysis to metals with

medium- and high-strength obstacles. These

approaches should add additional strengthening

mechanisms to the athermal stress as well as recon-

sider the dependences of the parameters involved.

Conclusions

A physics-based predictive approach is presented to

estimate the dislocation glide energy barrier in metals

while considering parameter uncertainties indepen-

dently. We explored the roles of weak point obstacles,

dislocation strengthening, and grain size to predict

the dependence of yield stress on the temperature in

annealed metallic materials.

We employed Monte Carlo simulations to fit the

formulations to experimental data and quantify glide

activation parameters and their intrinsic epistemic

uncertainty. Our calculations identified the effect of

impurities on solid solution strengthening and found

a correlation between the glide activation energy and

the SFE.

Table 5 Comparison of average R-square between different

formulations computed from fitting results of Fig. 5 and Fig. 10

Formulations Equation (14) Equation (15) Equation (16)

R-square 0.86 0.79 0.65

Figure 10 Estimation of glide parameters for a Eq. (15) and

b Eq. (16).
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Ouranalysis suggests thatKocksparameterizationof the

Gibbs free energy can estimate nonlinear yield stress

responses, even if parameters p and q are fixed between

2/3–1 and 1–3/2, respectively. Although the activation

energy and thermal stress depend on p and q, the fitting

quality does not in this range. Furthermore, we proposed

the use of the relation between the glide activation energy

and theSFE toestimatemultiscalemodelparameterswhen

limited experimental data are available for calibration.
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Table 6 Shear modulus for different FCC metals and alloys

Materials Shear modulus b [10–10 m]

Reuss model Voigt model

l (300 K) [GPa] l0 (0 K) [GPa] l (300 K) [GPa] l0 (0 K) [GPa]

Aluminum 25.9 [34] 29.1 [34] 26.2 [33] 29.4 [33] 2.86 [18]

Nickel 78.2 [34] 84.7 [34] 94.2 [33] 101 [33] 2.49 [18]

Copper 41.7 [34] 43.5 [34] 54.6 [33] 59.3 [33] 2.56 [18]

Silver 25.4 [34] 28.4 [34] 33.5 [33] 37.5 [33] 2.89 [18]

Stainless steel 304 77.3 [70] 82.1 [70] – – 2.58 [2]

Stainless steel 316 75.1 [70] 81.0 [70] – – 2.58 [71]

Cupro-Nickel 57.0 [72] 60.6 [72] – – 2.56 [18]

AA 2024-T4 25.9 [73] 29.2 [73] – – 2.87 [18]

Figure 11 Effect of shear modulus range on a activation energy and b thermal stress. For the shear modulus range, the Reuss model is

used as a lower bound and Voigt model as an upper bound.
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licence, unless indicated otherwise in a credit line to

the material. If material is not included in the article’s

Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of

this licence, visit http://creativecommons.org/licen

ses/by/4.0/.

Appendix A: Effect of shear modulus range
on Fo and so

Table 6 presents the shear modulus and Burgers

vector for different metals and alloys used in the

current analysis. Figure 11 shows that glide activation

energy and thermal stresses for different FCC metals

are less sensitive to the uncertainty underlying shear

modulus.

Appendix B: Estimation of Fo and so using
yield data at entire range of temperature

In this section, Table 7 presents the results for F0 and

so computed by fitting Eq. (14) to the entire temper-

ature range. The plateau in yield stress due to DSA

reduces the quality of the fitting as demonstrated by

Table 7 Mean values and 95% confidence interval of activation

energy (F0) and thermal slip resistance (st0) computed using the

yield data at full range of temperature

Materials Fo (eV) so (MPa) R-square

Aluminum 1.88 ± 0.2 20.64 ± 2.4 0.87

Nickel 2.98 ± 0.3 43.34 ± 10.5 0.81

Copper 3.77 ± 0.15 16.4 ± 5.8 0.69

Silver 3.75 ± 0.4 28.8 ± 8.6 0.93

Figure 13 Shear stress data at

different temperatures for

a aluminum, nickel, and

copper single crystals [66–68],

b Cu–Mn with different solute

concentrations [65], c stainless

steel 310 s [74].

Figure 12 Empirical cumulative probability plots comparing the

Monte Carlo results of Fo and so for different FCC metals after

1 9 103, 1 9 104, and 1 9 105 iterations. The results demonstrate

that 1 9 104 and 1 9 105 are indistinguishable.
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the R coefficient. Moreover, Eq. (14) does not have a

provision for DSA, which means that we should

expect F0 and so to be dependent on the deformation

rate.

Appendix C: Iterative convergence analysis

This appendix evaluates the convergence of Fo and so
with different number of iterations of the Monte

Carlo analysis for different FCC metals. Figure 12

presents the empirical cumulative probability plots

for the Monte Carlo results of Fo and so after 1 9 103,

1 9 104, and 1 9 105 iterations. These results

demonstrate that 1 9 104 iterations are sufficient to

achieve convergence.

Appendix D: Experimental data used
in the analysis

Figure 13 shows the experimental data for alu-

minum, nickel, and Cu single crystals, Cu–Mn single

crystal, and stainless steel 310 s, respectively. The

data are used to calculate activation energy parame-

ters shown in Fig. 5, Fig. 6, and Fig. 7.
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