Skip to main content
Log in

Ag-functionalized Bi2W(Mo)O6/PVDF membrane for photocatalytic water treatment

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Costly and time-consuming recovery of photocatalysts from treated water is one of the main challenges for the photocatalysis process. In this regard, an Ag-functionalized Bi2W(Mo)O6 photocatalyst was successfully synthesized via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method, immobilized on a polyvinylidene fluoride (PVDF) membrane and subsequently used for photocatalytic water treatment. The flower-like Ag-decorated Bi2W(Mo)O6 photocatalyst revealed a significant enhancement (62%) in the photocatalytic degradation efficiency compared to the unmodified pure Bi2WO6 (19%) due to the synergic contribution of the flower-like morphology with higher surface area, decrease in band gap by Mo doping and Ag-induced surface plasmon resonance (SPR) effects. In order to immobilize the photocatalyst, the Ag-decorated Bi2W(Mo)O6 nanoparticles were distributed uniformly on the surface of the PVDF membrane. The results illustrate that the as-prepared Ag-loaded Bi2W(Mo)O6/PVDF composite membrane effectively degrades the organic molecules (51%) without any additional process for the photocatalyst separation, confirming its potential as a beneficial environmental-friendly material for water treatment applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Saravanakumar K, Muthuraj V, Vadivel S (2016) Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv 6:61357–61366. https://doi.org/10.1039/C6RA10444D

    Article  CAS  Google Scholar 

  2. Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development and application. Environ. Sci.: Water Res. Technol 2:17–42. https://doi.org/10.1039/C5EW00159E

    Article  CAS  Google Scholar 

  3. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 4:22–26. https://doi.org/10.4236/ns.2012.41004

    Article  CAS  Google Scholar 

  4. Shen J, Xue J, Chen Z, Ni J, Tang B, He G, Chen H (2018) One-step hydrothermal synthesis of peony-like Ag/Bi2WO6 as efficient visible light-driven photocatalyst toward organic pollutants degradation. J Mater Sci 53:4848–4860. https://doi.org/10.1007/s10853-017-1885-9

    Article  CAS  Google Scholar 

  5. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026. https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  6. Salimi R, Sabbagh Alvani AA, Naseri N, Du SF, Poelman D (2018) Visible-enhanced Photocatalytic Performance of CuWO4/WO3 Hetero-structure: Incorporation of Plasmonic Ag Nanostructures. New J Chem 42:11109–11116. https://doi.org/10.1039/C8NJ01656A

    Article  CAS  Google Scholar 

  7. Boxi SS, Paria S (2015) Visible light induced enhanced photocatalytic degradation of organic pollutants in aqueous media using Ag doped hollow TiO2 nanospheres. RSC Adv 5:37657–37668. https://doi.org/10.1039/C5RA03421C

    Article  CAS  Google Scholar 

  8. Sameie H, Sabbagh Alvani AA, Naseri N, Rosei F, Mul G, Mei BT (2018) Photocatalytic Activity of ZnV2O6/Reduced Graphene Oxide Nanocomposite: From Theory to Experiment. J Electrochem Soc 165:H353–H359. https://doi.org/10.1149/2.0601807jes

    Article  CAS  Google Scholar 

  9. Luo H, Zhao B, Zhang M, Liu Y, Han R, Liu L (2019) Novel Co-doped Fe3O4/Bi2WO6 core-shell Magnetic Photocatalysts with enhanced photocatalytic degradation of contaminants. New J Chem 43:15335–15341. https://doi.org/10.1039/C9NJ03918J

    Article  CAS  Google Scholar 

  10. Djurišić AB, Leung YH, Ching Ng AM (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1:400–410. https://doi.org/10.1039/C4MH00031E

    Article  Google Scholar 

  11. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603–2636. https://doi.org/10.1039/C5CS00838G

    Article  CAS  Google Scholar 

  12. Waehayee A, Watthaisong P, Wannapaiboon S, Chanlek N, Nakajima H, Wittayakun J, Suthirakun S, Siritanon T (2020) Effects of different exchanging ions on the band structure and photocatalytic activity of defect pyrochlore oxide: A case study in KNbTeO6. Catal Sci Technol 10:978–992. https://doi.org/10.1039/C9CY01782H

    Article  CAS  Google Scholar 

  13. Dong F, Li Q, Zhou Y, Sun Y, Zhang H, Wu Z (2014) In situ decoration of plasmonic Ag nanocrystals on the surface of (BiO)2CO3 hierarchical microspheres for enhanced visible light photocatalysis. Dalton Trans 43:9468–9480. https://doi.org/10.1039/C4DT00427B

    Article  CAS  Google Scholar 

  14. Low J, Yu J, Li Q, Cheng B (2014) Enhanced visible-light photocatalytic activity of plasmonic Ag and graphene co-modified Bi2WO6 nanosheets. Phys Chem Chem Phys 16:1111–1120. https://doi.org/10.1039/C3CP53820F

    Article  CAS  Google Scholar 

  15. Li D, Yan P, Ma X, Xue J, Zhang Y, Liu M (2018) Hydrothermal synthesis of Bi2WO6 with a new tungsten source and enhanced photocatalytic activity of Bi2WO6 hybridized with C3N4. Photochem Photobiol Sci 17:1084–1090. https://doi.org/10.1039/C8PP00078F

    Article  Google Scholar 

  16. Zhou Y, Lv P, Meng X, Tang Y, Huang P, Chen X, Shen X, Zeng X (2017) CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules 22:859. https://doi.org/10.3390/molecules22050859

    Article  CAS  Google Scholar 

  17. Amano F, Nogami K, Ohtani B (2009) Visible Light-Responsive Bismuth Tungstate Photocatalysts: Effects of Hierarchical Architecture on Photocatalytic Activity. J Phys Chem C 113:1536–1542. https://doi.org/10.1021/jp808685m

    Article  CAS  Google Scholar 

  18. Wang C, Zhu Q, Gu C, Luo X, Yu C, Wu M (2016) Photocatalytic degradation of two different types of dyes by synthesized La/Bi2WO6. RSC Adv 6:85852–85859. https://doi.org/10.1039/C6RA17798K

    Article  CAS  Google Scholar 

  19. Bao J, Guo S, Gao J, Hu T, Yang L, Liu C, Peng J, Jiang C (2015) Synthesis of Ag2CO3/Bi2WO6 heterojunctions with enhanced photocatalytic activity and cycling stability. RSC Adv 5:97195–97204. https://doi.org/10.1039/C5RA18938A

    Article  CAS  Google Scholar 

  20. Luo H, Zhao B, Zhang M, Liu Y, Han R, Liua L (2019) Novel Co-doped Fe3O4/Bi2WO6 core-shell Magnetic Photocatalysts with enhanced photocatalytic degradation of contaminants. New J Chem 43:15335–15341. https://doi.org/10.1039/C9NJ03918J

    Article  CAS  Google Scholar 

  21. Huang HW, Liu K, Chen K, Zhang YL, Zhang YH, Wang SC (2014) Ce and F Comodification on the Crystal Structure and Enhanced Photocatalytic Activity of Bi2WO6 Photocatalyst under Visible Light Irradiation. J Phys Chem C 118:14379–14387. https://doi.org/10.1021/jp503025b

    Article  CAS  Google Scholar 

  22. Ma F, Yang Q, Wang Z, Liu Y, Xin J, Zhang J, Hao Y, Li L (2018) Enhanced visible-light photocatalytic activity and photostability of Ag3PO4/Bi2WO6 heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism. RSC Adv 8:15853–15862. https://doi.org/10.1039/C8RA01477A

    Article  CAS  Google Scholar 

  23. Ren J, Wang W, Sun S, Zhang L, Chang J (2009) Environmental Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B Environ 92:55. https://doi.org/10.1016/j.apcatb.2009.07.022

    Article  CAS  Google Scholar 

  24. Zhou YX, Lv PF, Zhang W, Meng XD, He H, Zeng XH, Shen XS (2018) Pristine Bi2WO6 and hybrid Au-Bi2WO6 hollow microspheres with excellent photocatalytic activities. Appl Surf Sci 457:925–932. https://doi.org/10.1016/j.apsusc.2018.07.024

    Article  CAS  Google Scholar 

  25. Wang D, Guo L, Zhen Y, Yue L, Xue G, Fu F (2014) AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J Mater Chem A 2:11716–11727. https://doi.org/10.1039/C4TA01444H

    Article  CAS  Google Scholar 

  26. Zhu X, Liu J, Zhao Z, Yan J, Xu Y, Song Y, Ji H, Xu H, Li H (2017) Hydrothermal synthesis of mpg-C3N4 and Bi2WO6 nest-like structure nanohybrids with enhanced visible light photocatalytic activities. RSC Adv 7:38682–38690. https://doi.org/10.1039/C7RA06681C

    Article  CAS  Google Scholar 

  27. Chen H, Zhang C, Pang Y, Shen Q, Yu Y, Su Y, Wang J, Zhang F, Yang H (2019) Oxygen vacancy regulation in Nb-doped Bi2WO6 for enhanced visible light photocatalytic activity. RSC Adv 9:22559–22566. https://doi.org/10.1039/C9RA02862E

    Article  CAS  Google Scholar 

  28. Kavinkumar V, Verma A, Masilamani S, Kumar S, Jothivenkatachalam K, Fu Y-P (2019) Investigation of the structural, optical and crystallographic properties of Bi2WO6/Ag plasmonic hybrids and their photocatalytic and electron transfer characteristics. Dalton Trans 48:10235–10250. https://doi.org/10.1039/C9DT01807G

    Article  CAS  Google Scholar 

  29. Zhou L, Yu M, Yang J, Wang Y, Yu C (2010) Nanosheet-Based Bi2MoxW1-xO6 Solid Solutions with Adjustable Band Gaps and Enhanced Visible-Light-Driven Photocatalytic Activities. J Phys Chem C 114:18812–18818. https://doi.org/10.1021/jp107061p

    Article  CAS  Google Scholar 

  30. Etogo A, Liu R, Ren J, Qi L, Zheng C, Ning J, Zhong Y, Hu Y (2016) Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation. J Mater Chem A 4:13242–13250. https://doi.org/10.1039/C6TA04923K

    Article  CAS  Google Scholar 

  31. Zhang L, Man Y, Zhu Y (2011) Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal 1:841–848. https://doi.org/10.1021/cs200155z

    Article  CAS  Google Scholar 

  32. Wu N (2018) Plasmonic Metal-Semiconductor Photocatalysts and Photoelectrochemical Cells: A Review. Nanoscale 10:2679–2696. https://doi.org/10.1039/C7NR08487K

    Article  CAS  Google Scholar 

  33. Zhou Y, Zhang Q, Lin Y, Antonova E, Bensch W, Patzke G (2013) One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: In situ growth monitoring and photocatalytic activity studies. Sci China Chem 56:435–442. https://doi.org/10.1007/s11426-013-4846-4

    Article  CAS  Google Scholar 

  34. Li JQ, Guo ZY, Zhu ZF (2014) Ag/Bi2WO6 plasmonic composites with enhanced visible photocatalytic activity. Ceram Int 40:6495–6501. https://doi.org/10.1016/j.ceramint.2013.11.102

    Article  CAS  Google Scholar 

  35. Qin F, Cui P, Hu L, Wang Z, Chen J, Xing X, Wang H, Yu R (2018) Construction of multi-shelled Bi2WO6 hollow microspheres with enhanced visible light photo-catalytic performance. Mater Res Bull 99:331–335. https://doi.org/10.1016/j.materresbull.2017.11.016

    Article  CAS  Google Scholar 

  36. Zheng H, Guo W, Li Sh, Yin R, Wu Q, Feng X, Ren N, Chang J (2017) Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: Unintentional bromide ion doping and photocatalytic activity. Catal Commun 88:68–72. https://doi.org/10.1016/j.catcom.2016.09.030

    Article  CAS  Google Scholar 

  37. Sanchez-Martinez D, Gomez-Solis C, Torres-Martinez LM (2015) CTAB-assisted ultrasonic synthesis, characterization and photocatalytic properties of WO3. Mater Res Bull 61:165–172. https://doi.org/10.1016/j.materresbull.2014.10.034

    Article  CAS  Google Scholar 

  38. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review Catal Today 281:144–164. https://doi.org/10.1016/j.cattod.2016.06.047

    Article  CAS  Google Scholar 

  39. Shi Y, Huang J, Zeng G, Cheng W, Hu J (2019) Photocatalytic membrane in water purification: is it stepping closer to be driven by visible light? J Memb Sci 584:364–392. https://doi.org/10.1016/j.memsci.2019.04.078

    Article  CAS  Google Scholar 

  40. Molinari R, Mungari M, Drioli E, di Paola A, Loddo V, Palmisano L, Schiavello M (2000) Study on a photocatalytic membrane reactor for water purification. Catal Today 55:71–78. https://doi.org/10.1016/S0920-5861(99)00227-8

    Article  CAS  Google Scholar 

  41. Yang S, Gu J-S, Yu H-Y, Zhou J, Li S-F, Wu X-M, Wang L (2011) Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Separ Purif Technol 83:157–165. https://doi.org/10.1016/j.seppur.2011.09.030

    Article  CAS  Google Scholar 

  42. Chen W, Ye T, Xu H, Chen T, Geng N, Gao X (2017) An ultrafiltration membrane with enhanced photocatalytic performance from grafted N-TiO2 /graphene oxide. RSC Adv 7:9880–9887. https://doi.org/10.1039/C6RA27666K

    Article  CAS  Google Scholar 

  43. Zhang H, Wan Y, Luo J, Darling SB (2021) Drawing on membrane photocatalysis for fouling mitigation. ACS Appl. Mater. Interfaces 2021, 13, 13:14844–14865. doi: https://doi.org/10.1021/acsami.1c01131

  44. Wu S-L, Liu F, Yang H-C, Darling SB (2020) Recent progress in molecular engineering to tailor organic-inorganic interfaces in composite membranes. Mol Syst Des Eng 5:433–444. https://doi.org/10.1039/C9ME00154A

    Article  CAS  Google Scholar 

  45. Zhang H, Mane AU, Yang X, Xia Z, Barry EF, Luo J, Wan Y, Elam JW, Darling SB (2020) Visible-Light-Activated Photocatalytic Films toward Self-Cleaning Membranes. Adv Funct Mater 30(34):2002847. https://doi.org/10.1002/adfm.202002847

    Article  CAS  Google Scholar 

  46. Alaoui OT, Nguyen QT, Schaetzel P, Mbareck C (2011) Dye and bacteria photodegradations with anatase-loaded microporous poly(vinylidene fluoride) membranes. Catal Sci Technol 1:1412–1422. https://doi.org/10.1039/C1CY00179E

    Article  CAS  Google Scholar 

  47. Zhang S, Wu L, Deng F, Zhao D, Zhang C, Zhang C (2016) Hydrophilic modification of PVDF porous membrane via a simple dip-coating method in plant tannin solution. RSC Adv 6:71287–71294. https://doi.org/10.1039/C6RA13634F

    Article  CAS  Google Scholar 

  48. Damodar RA, You S-J, Chou H-H (2009) Study the self-cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J Hazard Mater 172:1321–1328. https://doi.org/10.1016/j.jhazmat.2009.07.139

    Article  CAS  Google Scholar 

  49. Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90. https://doi.org/10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  50. Salimi R, Sameie H, Sabbagh Alvani AA, Sarabi AA, Moztarzadeh F, Tahriri M (2011) Sol–gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor. Luminescence 26:449–455. https://doi.org/10.1002/bio.1251

    Article  CAS  Google Scholar 

  51. Song X, Zheng Y, Ma R, Zhang Y, Yin H (2011) Photocatalytic activities of Mo doped Bi2WO6 three-dimensional hierarchical microspheres. J Hazard Mater 192:186–191. https://doi.org/10.1016/j.jhazmat.2011.05.001

    Article  CAS  Google Scholar 

  52. Sameie H, Sabbagh Alvani AA, Mei BT, Salimi R, Poelman D, Rosei F (2021) Mo-doped ZnV2O6/reduced graphene oxide photoanodes for solar hydrogen production. Electrochim Acta 382:138333. https://doi.org/10.1016/j.electacta.2021.138333

    Article  CAS  Google Scholar 

  53. Valenti M, Jonsson MP, Biskos G, Schmidt-Ott A, Smith WA (2016) Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J Mater Chem A 4:17891–17912. https://doi.org/10.1039/C6TA06405A

    Article  CAS  Google Scholar 

  54. Salimi R, Alvani AAS, Mei BT, Du SF, Mul G (2019) Ag-Functionalized CuWO4/WO3 nanocomposites for solar water splitting. New J Chem 43:2196–2203. https://doi.org/10.1039/C8NJ05625K

    Article  CAS  Google Scholar 

  55. Hu Z, Mi Y, Ji Y, Wang R, Zhou W, Qiu X, Liu X, Fang Z, Wu X (2019) Multiplasmon modes for enhancing photocatalytic activity of Au/Ag/Cu2O core-shell nanorods. Nanoscale 11:16445–16454. https://doi.org/10.1039/C9NR03943K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Color & Polymer Research Center (CPRC) for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sabbagh Alvani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavi Milani, H., Sabbagh Alvani, A.A., Salimi, R. et al. Ag-functionalized Bi2W(Mo)O6/PVDF membrane for photocatalytic water treatment. J Mater Sci 56, 16339–16350 (2021). https://doi.org/10.1007/s10853-021-06343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06343-w

Navigation