Skip to main content
Log in

Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy (XPS) is among the most powerful techniques to analyse structures of nitrogen-doped carbon materials. However, reported assignments of (1) graphitic nitrogen (N)/substitutional N, quaternary N (Q–N), or tertiary amine (T–N) and (2) pyrrolic N/secondary amine or T–N are questionable. Most reports assign peaks at ca. 401 eV as Q–N or graphitic N, whereas raw materials in most of those works contain neither counter anion nor halogen. Besides, the peak at ca. 400 eV has been assigned as pyrrolic N, but the presence of N–H is generally not confirmed. In this work, it was clarified that one of the reasons for the prevailing ambiguous assignments is the presence of N in heptagonal and pentagonal rings. The peaks at 400.1–401.2 eV were determined to be T–N, but not Q–N by analyzing graphitized polyimide (with the oxygen content of 0.01 at% or lower and the hydrogen content of 0 at%) using Raman spectroscopy, XPS, X-ray diffraction, total neutron scattering, elemental analysis, and molecular dynamics simulation. Besides, it was revealed that the peak at 400.1 eV originated from T–N on 5-membered rings or 7- and 5-membered rings, but not pyrrolic N because graphite including no hydrogen was used for analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bianco A, Chen Y, Frackowiak E, Holzinger M, Koratkar N, Meunier V et al (2020) Carbon science perspective in 2020: current research and future challenges. Carbon 161:373–391

    Article  CAS  Google Scholar 

  2. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365

    Article  CAS  Google Scholar 

  3. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  4. Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629

    Article  CAS  Google Scholar 

  5. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  6. Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T et al (2017) Carbon materials with controlled edge structures. Carbon 122:694–701

    Article  CAS  Google Scholar 

  7. Artyushkova K (2020) Misconceptions in interpretation of nitrogen chemistry from X-ray photoelectron spectra. J Vac Sci Technol A 38:031002

    Article  CAS  Google Scholar 

  8. Figueras M, Villar-Garcia IJ, Viñes F, Sousa C, Peña O’Shea VA, Illas F et al (2019) Correcting flaws in the assignment of nitrogen chemical environments in N-doped graphene. J Phys Chem C 123:11319–11327

    Article  CAS  Google Scholar 

  9. Costa R, Morales-García A, Figueras M, Illas F (2021) Assigning XPS features in B, N-doped graphene: input from ab initio quantum chemical calculations. Phys Chem Chem Phys 23:1558–1665

    Article  CAS  Google Scholar 

  10. Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74

    Article  CAS  Google Scholar 

  11. Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189

    Article  CAS  Google Scholar 

  12. Yamada Y, Sato S (2020) Analysis of defective structures of carbon materials. Shokubai 62:47–53

    CAS  Google Scholar 

  13. Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S (2021) Carbonization mechanisms of polyimide: methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58–80

    Article  CAS  Google Scholar 

  14. Jansen RJJ, Bekkum HV (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027

    Article  CAS  Google Scholar 

  15. Inagaki M, Toyoda M, Soneda Y, Morishita T (2018) Nitrogen-doped carbon materials. Carbon 132:104–140

    Article  CAS  Google Scholar 

  16. Konno H, Nakahashi T, Inagaki M (1997) State analysis of nitrogen in carbon film derived from polyimide kapton. Carbon 35:669–674

    Article  CAS  Google Scholar 

  17. Yoon SJ, Kim S, Kim DK, Yu DM, Hempelmann R, Hong YT et al (2020) Nitrogen-doping through two-step pyrolysis of polyacrylonitrile on graphite felts for vanadium redox flow batteries. Energy Fuels 34:5052–5059

    Article  CAS  Google Scholar 

  18. Furuyado M, Zaini MAA, Aikawa M, Amano Y, Machida M (2010) Adsorption of Cd(II) on activated carbon fiber prepared from polyacrylonitrile (PAN). J Environ Chem 20:379–384

    Article  CAS  Google Scholar 

  19. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R et al (2013) Renewable and metal-free carbon nanofiber catalysts for carbon dioxide reduction. Nat Commun 4:1–8

    Google Scholar 

  20. Koch RJ, Weser M, Zhao W, Viñes F, Gotterbarm K, Kozlov SM, Höfert O, Ostler M, Papp C, Gebhardt J, Steinrück HP, Görling A, Seyller T (2012) Growth and electronic structure of nitrogen-doped graphene on Ni(111). Phys Rev B 86:075401

    Article  Google Scholar 

  21. Bertoti I, Mohai M, Laszlo K (2015) Surface modification of graphene and graphite by nitrogen plasma: determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy. Carbon 84:185–196

    Article  CAS  Google Scholar 

  22. Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94

    Article  CAS  Google Scholar 

  23. Yamada Y, Miyauchi M, Kim J, Takai KH, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378

    Article  CAS  Google Scholar 

  24. Yamada Y, Matsuo S, Abe K, Kubo S, Sato S (2016) Selective doping of nitrogen into carbon materials without catalysts. J Mater Sci 51:8900–8915. https://doi.org/10.1007/s10853-016-0142-y

    Article  CAS  Google Scholar 

  25. Yamada Y, Tanaka H, Kubo S, Sato S, Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy (submitted for publication)

  26. Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198. https://doi.org/10.1007/s10853-013-7630-0

    Article  CAS  Google Scholar 

  27. Bellafont NP, Mañeru DR, Illas F (2014) Identifying atomic sites in N-doped pristine and defective graphene from ab initio core level binding energies. Carbon 76:155–164

    Article  CAS  Google Scholar 

  28. Gohda S, Yamada Y, Murata M, Saito M, Kanazawa S, Ono H et al (2020) Bottom-up synthesis of highly soluble carbon materials. J Mater Sci 55:11808–11828. https://doi.org/10.1007/s10853-020-04813-1

    Article  CAS  Google Scholar 

  29. Gohda S, Saito M, Yamada Y, Kanazawa S, Ono H, Sato S (2021) Carbonization of phloroglucinol promoted by heteropoly acids. J Mater Sci 56:2944–2960. https://doi.org/10.1007/s10853-020-05393-w

    Article  CAS  Google Scholar 

  30. Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S et al (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326

    Article  CAS  Google Scholar 

  31. Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084

    Article  CAS  Google Scholar 

  32. Fujimoto A, Yamada Y, Koinuma M, Sato S (2016) Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal Chem 88:6110–6114

    Article  CAS  Google Scholar 

  33. Kim J, Han JW, Yamada Y (2021) Heptagons in the basal plane of graphene nanoflakes analyzed by simulated X-ray photoelectron spectroscopy. ACS Omega 6:2389–2395

    Article  CAS  Google Scholar 

  34. Kim J, Yamada Y, Kawai M, Tanabe T, Sato S (2015) Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. J Mater Sci 50:6739–6747. https://doi.org/10.1007/s10853-015-9229-0

    Article  CAS  Google Scholar 

  35. Diana N, Yamada Y, Gohda S, Ono H, Kubo S, Sato S (2021) Carbon materials with high pentagon density. J Mater Sci 56:2912–2943

    Article  CAS  Google Scholar 

  36. Kim J, Lee N, Nodo M, Min YH, Noh SH, Kim N et al (2018) Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega 3:17789–17796

    Article  CAS  Google Scholar 

  37. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739

    Article  CAS  Google Scholar 

  38. Kowalik M, Ashraf C, Damirchi B, Akbarian D, Rajabpour S, Duin ACTV (2019) Atomistic scale analysis of the carbonization process for C/H/O/N based polymers with the ReaxFF reactive force field. J Phys Chem B 123:5357–5367

    Article  CAS  Google Scholar 

  39. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford, CT

  40. ReaxFF 2016, SCM, Theoretical chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

  41. Huang PY, Vargas CSR, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392

    Article  CAS  Google Scholar 

  42. Kudin KN, Ozbas B, Schniepp HC, Prudhomme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  43. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930

    Article  CAS  Google Scholar 

  44. Hatori H, Yamada Y, Shiraishi M, Yoshihara M, Kimura T (1996) The mechanism of polyimide pyrolysis in the early stage. Carbon 34:201–208

    Article  CAS  Google Scholar 

  45. Herraiz M, Dubois M, Batisse N, Hajjar-Garreau S, Simon L (2018) Large-scale synthesis of fluorinated graphene by rapid thermal exfoliation of highly fluorinated graphite. Dalton Trans 47:4596–4606

    Article  CAS  Google Scholar 

  46. Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M, Sato S, Hata K, Peter E, Ciston J, Song C, Kim K, Regan W, Gannett W, Zettl Z (2014) Subnanometer vacancy defects introduced on graphene by oxygen gas. J Am Chem Soc 136:2232–2235

    Article  CAS  Google Scholar 

  47. Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with and without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP21K04773. The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal No. 2018BF2104).

Funding

This study was funded by JSPS KAKENHI (Grant Number JP21K04773). Yasuhiro Yamada has received research grants from JSPS (Grant Number JP21K04773).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5414 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Yamada, Y., Nishikawa, Y. et al. Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?. J Mater Sci 56, 15798–15811 (2021). https://doi.org/10.1007/s10853-021-06283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06283-5

Navigation