Skip to main content
Log in

Interlaminar mechanical properties of nano- and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Delamination damages limit the application potential of Fiber metal laminates, hence improving the interlaminar mechanical properties has always been a research focus and challenge in this field. The toughening effect of two fillers, i.e., nano-aramid fibers (ANFs) and short-aramid fibers (ASFs), which are used at the interface of glass fiber-aluminum laminates, have been investigated. Chemical pretreatments of aluminum alloy surface were conducted to ensure the better adherence between the fiber composites and metal sheets. Results revealed that Mode-I and Mode-II fracture toughness of the laminates could be simultaneously improved when using the two fillers at the interface of glass fiber-aluminum laminates. Attributed to the better dispersion of ANFs in epoxy matrix, the toughening performance of ANFs is better than that of ASFs in this case. The mechanism of interlaminar toughening was revealed with electron microscopic observation of fracture morphology. Meanwhile, the finite element analysis based on bilinear cohesive zone model was adopted to predict the increased interlaminar tensile and shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Beumler T (2004) Flying GLARE: A contribution to aircraft certification issues in strength properties in non-damaged and fatigue damaged GLARE structures

  2. Vogelesang L, Vlot A (2000) Development of fiber metal laminates for advanced aerospace structures. J Mater Process Technol 103(1):1–5. https://doi.org/10.1016/S0924-0136(00)00411-8

    Article  Google Scholar 

  3. Vermeeren CAJR (2003) An historic overview of the development of fiber metal laminates. Appl Compos Mater 10(45):189–205. https://doi.org/10.1023/A:1025533701806

    Article  CAS  Google Scholar 

  4. Sinke J (2006) Development of fiber metal laminates: concurrent multi-scale modeling and testing. J Mater Sci 41(20):6777–6788. https://doi.org/10.1007/S10853-006-0206-5

    Article  CAS  Google Scholar 

  5. Morinière FD, Alderliesten RC, Benedictus R (2012) Development of fiber-metal laminates for improved impact performance. Eur Phys J Spec Top 206(1):79–88. https://doi.org/10.1140/EPJST/E2012-01589-Y

    Article  Google Scholar 

  6. Hao X, Nie H, Ye Z, Luo Y, Zheng L, Liang W (2019) Mechanical properties of a novel fiber metal laminate based on a carbon fiber reinforced Zn–Al alloy composite. Mater Sci Eng A. 740–741:218–225. https://doi.org/10.1016/j.msea.2018.10.050

    Article  CAS  Google Scholar 

  7. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  8. Sadighi M, Alderliesten RC, Benedictus R (2012) Impact resistance of fiber-metal laminates: a review. Int J Impact Eng 49:77–90. https://doi.org/10.1016/J.IJIMPENG.2012.05.006

    Article  Google Scholar 

  9. Botelho EC, Silva RA, Pardini LC, Rezende MC (2006) A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res Ibero Am J Mater 9(3):247–256. https://doi.org/10.1590/S151614392006000300002

    Article  CAS  Google Scholar 

  10. Asundi A, Choi AYN (1997) Fiber metal laminates: An advanced material for future aircraft. J Mater Process Technol 63:384–394. https://doi.org/10.1016/S0924-0136(96)02652-0

    Article  Google Scholar 

  11. Sinmazçelik T, Avcu E, Bora MÖ, Coban O (2011) A review: Fiber metal laminates, background, bonding types and applied test methods. Mater Des 32(7):3671–3685. https://doi.org/10.1016/J.MATDES.2011.03.011

    Article  Google Scholar 

  12. Cantwell WJ (2000) The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene. Compos Sci Technol 60(7):1085–1094. https://doi.org/10.1016/S0266-3538(00)00002-6

    Article  Google Scholar 

  13. Lawcock GD, Ye L, Mai YW, Sun CT (1997) Effects of fiber/matrix adhesion on carbon-fiber-reinforced metal laminates – ii. impact behaviour. Compos Sci Technol 57(12):1621–1628. https://doi.org/10.1016/S0266-3538(97)00094-8

    Article  CAS  Google Scholar 

  14. Park SY, Choi WJ, Choi HS, Kwon H (2010) Effects of surface pre-treatment and void content on glare laminate process characteristics. J Mater Process Technol 210(8):1008–1016. https://doi.org/10.1016/j.jmatprotec.2010.01.017

    Article  CAS  Google Scholar 

  15. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced Composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/S10924-006-0042-3

    Article  Google Scholar 

  16. Harris AF, Beevers A (1999) The effects of grit-blasting on surface properties for adhesion. Int J Adhes Adhes 19(6):445–452. https://doi.org/10.1016/s0143-7496(98)00061-x

    Article  CAS  Google Scholar 

  17. Kumar DA, Naidu AL (2018) A study on different chemical treatments for natural fiber reinforced composites. Int J Mech Prod Eng Res Dev. 8(5):143–152. https://doi.org/10.24247/IJMPERDOCT201818

    Article  Google Scholar 

  18. Liang CS, Lv ZF, Bo Y, Xu SA (2015) Effect of modified polypropylene on the interfacialbonding of polymer–aluminum laminated films. Mater Des 81(9):141–148. https://doi.org/10.1016/j.matdes.2015.05.021

    Article  CAS  Google Scholar 

  19. Karthi N, Kumaresan K, Sathish S et al (2020) An overview: natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater Today: Proc 27:2828–2834. https://doi.org/10.1016/J.MATPR.2020.01.011

    Article  CAS  Google Scholar 

  20. Ning H, Weng S, Hu N et al (2017) Mode-II interlaminar fracture toughness of GFRP/Al laminates improved by surface modified VGCF interleaves. Sci Eng Fac 114:365–372. https://doi.org/10.1016/j.compositesb.2017.02.022

    Article  CAS  Google Scholar 

  21. Jin K, Wang H, Tao J et al (2019) Interface strengthening mechanisms of Ti/CFRP fibermetal laminate after adding MWCNTs to resin matrix. Compos Part B Eng 171:254–263. https://doi.org/10.1016/j.compositesb.2019.05.005

    Article  CAS  Google Scholar 

  22. Ning H, Li Y, Li J et al (2015) Toughening effect of CB-epoxy interleaf on the interlaminar mechanical properties of CFRP laminates. Compos Part A Appl Sci Manuf 68:226–234. https://doi.org/10.1016/j.compositesa.2014.09.030

    Article  CAS  Google Scholar 

  23. Sun Z, Hu X, Chen H (2014) Effects of aramid-fiber toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fiber face sheet and aluminium substrate. Int J Adhes Adhes 48:288–294. https://doi.org/10.1016/J.IJADHADH.2013.09.023

    Article  CAS  Google Scholar 

  24. Tung SO, Thompson LT, Laramie S et al. (2015) Nanoporous aramid nanofiber separators for non-aqueous redox flow batteries. In: 228th ECS Meeting (October 11–15, 2015) (3): 244–244 doi https://doi.org/10.1016/J.COMPOSITESB.2015.03.010

  25. Liu Z, Lyu J, Fang D et al (2019) Nanofiberous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 13(5):5703–5711. https://doi.org/10.1021/acsnano.9b01094

    Article  CAS  Google Scholar 

  26. Xu L, Zhao X, Xu C et al (2018) Water-Rich biomimetic composites with abiotic self-organizing nanofiber network. Adv Mater 30(1):6. https://doi.org/10.1002/adma.201703343

    Article  CAS  Google Scholar 

  27. Yang M, Cao K, Sui L et al (2011) Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 5(9):6945–6954. https://doi.org/10.1021/nn2014003

    Article  CAS  Google Scholar 

  28. Cao K, Siepermann CP, Yang M et al (2013) Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv Funct Mater 23(16):2072–2080. https://doi.org/10.1002/adfm.201202466

    Article  CAS  Google Scholar 

  29. Nasser J, Lin J, Steinke K et al (2019) Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos sci Technol 174:125–133. https://doi.org/10.1016/J.COMPSCITECH.2019.02.025

    Article  CAS  Google Scholar 

  30. Nasser J, Steinke K, Zhang L, Sodano HA (2020) Enhanced interfacial strength of hierarchical fiberglass composites through an aramid nanofiber interphase. Compos Sci Technol 192:108–109. https://doi.org/10.1016/J.COMPSCITECH.2020.108109

    Article  Google Scholar 

  31. Yang B, Wang L, Zhang M, Luo J, Ding X (2019) Timesaving, high-efficiency approaches to fabricate aramid nanofibers (anfs). ACS Nano 13(7):7886–7897. https://doi.org/10.1021/acsnano.9b02258

    Article  CAS  Google Scholar 

  32. Lin J, Bang SH, Malakooti MH et al (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interfaces 9(12):11167–11175. https://doi.org/10.1021/acsami.7b01488

    Article  CAS  Google Scholar 

  33. Zhang B, Wang W, Tian M et al (2020) Preparation of aramid nanofiber and its application in polymer reinforcement: A review. Eur Polym J 139:10. https://doi.org/10.1016/j.eurpolymj.2020.109996

    Article  CAS  Google Scholar 

  34. Zhu J, Cao W, Yue M, Hou Y, Yang M (2015) Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9(3):2489–2501. https://doi.org/10.1021/nn504927e

    Article  CAS  Google Scholar 

  35. Wu X, Ning H, Liu Y et al (2020) Synergistic delamination toughening of glass fiber-aluminum laminates by surface treatment and graphene oxide interleaf. Nanoscale Res Lett 15(1):14. https://doi.org/10.1186/s11671-020-03306-z

    Article  CAS  Google Scholar 

  36. Sun Z, Shi S, Hu X, Guo X, Chen J, Chen H (2015) Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology. Compos Part B Eng 77:38–45. https://doi.org/10.1016/j.compositesb.2015.03.010

    Article  CAS  Google Scholar 

  37. JIS K (1993) 7086: Testing methods for interlaminar fracture toughness of carbon fiber reinforced plastics. pp. 28

  38. Nasser J, Zhang L, Sodano H (2020) Aramid nanofiber interlayer for improved interlaminar properties of carbon fiber/epoxy composites. Compos B Eng 197:11. https://doi.org/10.1016/j.compositesb.2020.108130

    Article  CAS  Google Scholar 

  39. Patterson BA, Malakooti MH, Lin J, Okorom A, Sodano HA (2018) Aramid nanofibers for multiscale fiber reinforcement of polymer composites. Compos Sci Technol 161:92–99. https://doi.org/10.1016/j.compscitech.2018.04.005

    Article  CAS  Google Scholar 

  40. Mohammadi R, Najafabadi MA, Saghafi H, Zarouchas D (2020) Fracture and fatigue behavior of carbon/epoxy laminates modified by nanofibers. Compos Part A Appl Sci Manuf 137:11. https://doi.org/10.1016/j.compositesa.2020.106015

    Article  CAS  Google Scholar 

  41. Farmand-Ashtiani E, Cugnoni J, Botsis J (2015) Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite. Int J Solids Struct 55:58–65. https://doi.org/10.1016/j.ijsolstr.2014.03.031

    Article  CAS  Google Scholar 

  42. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137. https://doi.org/10.1007/s10704-005-4729-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese National Natural Science Fund (Grant No.: U1864208, 11902053, and 11902056), National Science and Technology Major Project (2017-VII-0011-0106), Science and Technology Planning Project of Tianjin (20ZYJDJC00030), the Key Program of Research and Development of Hebei Province (202030507040009), the Key Project of the Natural Science Foundation of CQ CSTC (cstc2017jcyjBX0063), and the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province (A2020202002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youkun Gong, Huiming Ning, Feng Liu or Ning Hu.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Wu, X., Gong, Y. et al. Interlaminar mechanical properties of nano- and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. J Mater Sci 56, 12198–12211 (2021). https://doi.org/10.1007/s10853-021-06003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06003-z

Navigation