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ABSTRACT

Polycrystalline materials can have complex anisotropic properties depending on

their crystallographic texture and crystal structure. In this study, we use reso-

nant ultrasound spectroscopy (RUS) to nondestructively quantify the elastic

anisotropy in extruded aluminum alloy 1100-O, an inherently low-anisotropy

material. Further, we show that RUS can be used to indirectly provide a

description of the material’s texture, which in the present case is found to be

transversely isotropic. By determining the entire elastic tensor, we can identify

the level and orientation of the anisotropy originated during extrusion. The

relative anisotropy of the compressive (c11/c33) and shear (c44/c66) elastic con-

stants is 1.5% ± 0.5% and 5.7% ± 0.5%, respectively, where the elastic constants

(five independent elastic constants for transversely isotropic) are those associ-

ated with the extrusion axis that defines the symmetry of the texture. These

results indicate that the texture is expected to have transversely isotropic

symmetry. This finding is confirmed by two additional approaches. First, we

confirm elastic constants and the degree of elastic anisotropy by direct sound

velocity measurements using ultrasonic pulse echo. Second, neutron diffraction

(ND) data confirm the symmetry of the bulk texture consistent with extrusion-

induced anisotropy, and polycrystal elasticity simulations using the elastic self-

consistent model with input from ND textures and aluminum single-crystal

elastic constants render similar levels of polycrystal elastic anisotropy to those

measured by RUS. We demonstrate the ability of RUS to detect texture-induced

anisotropy in inherently low-anisotropy materials. Therefore, as many other

common materials have intrinsically higher elastic anisotropy, this technique

should be applicable for similar levels of texture, providing an efficient general

diagnostic and characterization tool.
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Introduction

Most polycrystalline materials show some degree of

anisotropy. In general, anisotropy may arise in these

materials from the crystal symmetry of the material

compounded with a distribution of crystallographic

orientations of the single-crystal grains in the aggre-

gate (i.e., texture), and/or by an inhomogeneous

distribution of secondary phases [1]. Defects gener-

ated by thermomechanical processes can also pro-

duce elastic anisotropy if they exhibit a preferential

alignment or orientation [2]. Anisotropic properties

have profound influence on many properties, such as

a material’s response to mechanical or magnetic

stimuli, and can be exploited to design materials with

directionally preferential properties [3–5].

Crystallographic texture can result from a variety

of common manufacturing and forming processes,

such as extruding, swaging, rolling and cold working

[6–12]. Texture can be characterized by several dis-

tinct methods, including X-ray diffraction (XRD),

electron backscatter diffraction (EBSD) and neutron

scattering [4, 13–18]. However, these methods are

either limited to characterizing texture on the surface

of the material, or require large user facilities with

competitive access.

Alternatively, acoustic characterization techniques

offer the possibility of probing the bulk of a material

as mechanical waves travel through it, as is the case

for the pulse-echo ultrasonic technique [19]. In par-

ticular, resonant ultrasound spectroscopy (RUS) is a

fast, high-resolution, nondestructive characterization

technique whereby the mechanical resonance fre-

quencies of a specimen can be measured and used to

determine the elastic properties of a material. RUS,

nonlinear RUS and pulse-echo characterization con-

stitute a powerful arsenal of nondestructive charac-

terization techniques [20, 21]. The mechanical

resonance frequencies of a material are set by the

sample’s geometry, mass, internal symmetry, and

elastic constants. Using these parameters, one can

obtain the complete elastic tensor by solving the

inverse problem [22]. This can be accomplished by

using a nonlinear iterative Levenberg–Marquardt

algorithm, which minimizes the deviation between

the measured and predicted values of resonance

frequencies based on the material’s elastic constants

[23–27]. Historically, there have been attempts to use

RUS to quantify the elastic anisotropy induced by

texture. However, the symmetry selection process

and the results obtained were not fully validated

against texture measurements from other methods

[28, 29]. Foster et al. [30] used RUS to determine the

elastic anisotropy of rolled Cu–Zn (brass) alloys in

combination with analytical expressions derived

from polycrystal models based on simple averaging

procedures to obtain a relatively compact represen-

tation of the sample’s texture in terms of principal

orientation distribution coefficients for comparison

with texture measurements by neutron diffraction

(ND). A related approach, but using new RUS and

ND measurements on Al polycrystalline samples and

more sophisticated modeling tools, is used in this

work. More recently, Lan et al. [28, 29] proposed a

new technique to directly measure the texture of a

material using acoustic waves and contrasted this

technique against resonant ultrasound spectroscopy

(RUS) and neutron diffraction. Similarly, the effect of

density of defects has been studied by multiple

ultrasonic and microstructural characterization

methods in aluminum and other material [20, 21].

The objective of the present work is to assess the

potential for RUS to identify the symmetry and ori-

entation of the anisotropy of a polycrystalline alu-

minum sample, as well as to quantify the degree of

anisotropy. The focus of the present work is placed

on indirectly quantifying the symmetry of the crystal

orientation distribution rather than providing a full

texture representation. Aluminum is an inherently

low-anisotropy material and was selected with the

intention of testing the lower limits of detection

possible using RUS. Application of the RUS method

on extruded aluminum samples clearly suggests that

the material texture is transversely isotropic.

Further, we validate RUS results with direct mea-

surements using ultrasonic pulse-echo technique, as

well as crystallographic texture measurements by

neutron diffraction combined with elastic self-con-

sistent (ELSC) micromechanical simulations that give

the polycrystal elastic constants as a function of the

known single-crystal elastic constants and the texture

of the sample. The ultrasonic pulse-echo technique

(PE) is another method that can be used to determine

the elastic properties of a material. In PE, the sound

velocity of the material is measured along different

orientations [31–33]. Because the sound velocity is

extracted directly from the time-of-flight, PE results

are not subject to fitting or convergence. For lower-

symmetry materials, however, PE cannot determine
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all of the elastic constants in a single measurement.

Independent measurements in different orientations

with respect to the anisotropy of the sample are

required [34, 35]. The consequent sample manipula-

tion may introduce variations in delicate samples, or

result in complications when characterizing haz-

ardous samples. These ultrasonic experiments are

performed in the anelastic limit, i.e., the response is

elastic (linear) and non-hysteretic. The level of losses

is minimal but measurable, allowing RUS and PE the

capability to extract changes in sound attenuation

(internal friction). As a result, the measurements are

nondestructive and samples are unchanged. PE

measurements are found to be in very good agree-

ment with RUS characterization. Finally, the ELSC

predictions of the material’s effective stiffness tensor,

which utilizes the materials’ bulk texture as mea-

sured by neutron diffraction, shows very good, but

not perfect, agreement with those measured by RUS,

thereby demonstrating that the RUS can be used to

extract key features in the elastic properties of

strongly textured materials.

Elastic response of a solid, anisotropy
and relationship to wave velocities

The effective elastic response of a solid, as described

by Hooke’s law in Eq. 1, linearly relates the Cauchy

stress, rij, to the elastic strain, ekl, by the elastic stiff-

ness tensor cijkl. In the most general anisotropic case,

the stiffness tensor has 21 independent constants due

to the symmetries associated with stresses and strains

and the uniqueness of strain potential energy. Alter-

natively, Hooke’s law can be written in matrix form

using Voigt notation in Eq. 2:

rij ¼ cijklekl

cijkl ¼ cjikl ¼ cijlk ¼ cjilk ¼ cklij
ð1Þ

r11

r22

r33

r23

r13

r12

2
6666664

3
7777775
¼

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

sym c55 c56

c66

2
6666664

3
7777775

e11

e22

e33

2e23

2e13

2e12

2
6666664

3
7777775

ð2Þ

For polycrystalline materials with no texture, each

grain is randomly oriented such that the bulk elastic

properties are equal in all directions. In this isotropic

case, the stiffness tensor only has two independent

constants, i.e., two degrees of freedom (DoF), and

reduces to Eq. 3 where c12 = c11–2c44. For materials

with cubic symmetry, the stiffness tensor has three

independent elastic constants, whereby c12 is inde-

pendent of c44 and c11.

Cij ¼

c11 c12 c12 0 0 0
c11 c12 0 0 0

c11 0 0 0
c44 0 0

sym c44 0
c44

2
6666664

3
7777775

ð3Þ

The effective values of c11 and c44 for a polycrys-

talline material depend on the single-crystalline

counterparts. There are different approximations to

calculate this relationship, the most common of

which are the Voigt [36, 37] and Reuss [36, 37] aver-

ages obtained by assuming homogenous strain or

stress, respectively, which, respectively, provide the

upper and lower bounds for the polycrystal’s elastic

constants estimates. Alternatively, the Hashin and

Shtrikman method which is based on a variational

approach can also provide bounds [38, 39]. Finally,

the elastic self-consistent (ELSC) model, originally

proposed by Hershey [40] for aforementioned case of

polycrystalline aggregates of randomly oriented sin-

gle crystals with cubic symmetry, can provide a

unique estimate of the homogenized elastic response

of the medium [40]. These models can be generalized

to aggregates of arbitrary single-crystal symmetry

and non-uniform texture, in which case the poly-

crystal elastic constants will depend of the single-

crystal anisotropy and the orientation distribution of

the grains. The recent advances obtained in mathe-

matical methods used to extract the crystallographic

texture from ultrasonic response, even for hexagonal

symmetries, make determining the elastic anisotropy

even more relevant [41].

A measure of intrinsic anisotropy in cubic materi-

als is given by Zener’s elastic anisotropy factor, A, in

Eq. 4 [42]. Almost all crystalline materials have

A = 1; when those materials form polycrystalline

aggregates, texture means that their physical prop-

erties are orientation-dependent. Aluminum has a

cubic crystal structure with a relatively small Zener

factor of A = 1.22 [43]. Aluminum is notably less

anisotropic than most other cubic metals, such as

copper (A = 3.21) [44] and 304 stainless steel (SS)

(A = 3.77) [45], for example.
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A ¼ 2c44

c11 � c12
ð4Þ

For isotropic materials (A = 1), the Young’s mod-

ulus E (stiffness under uniaxial tension), bulk mod-

ulus B (resistance to volumetric changes), shear

modulus l (stiffness under shear deformation) and

Poisson ratio m (ratio of transversal strain to axial

strain), also referred to as the engineering constants,

are given by the relations in Eqs. 5, 6, 7, and 8.

E ¼ c2
11 þ c11c12 � 2c2

12

c11 þ c12
ð5Þ

B ¼ c11 þ 2c12

3
ð6Þ

l ¼ c44 ð7Þ

m ¼ c12

c11 þ c12
ð8Þ

If a manufacturing or forming process produces

texture with axial anisotropy, as is the case for

extrusion, the material will have transversely iso-

tropic symmetry [46–50]. In the transversely isotropic

case, the stiffness tensor has five independent con-

stants (i.e., the same number than in a hexagonal

symmetry), as shown in Eq. 9 and the orientation has

been chosen such that the ‘‘z’’ axis is parallel to the

texture axis (parallel to the rod’s extrusion direction).

As a result of the transversely isotropic texture, the

values of E, B, l and m depend on orientation. The

engineering constants for a transversely isotropic

solid parallel (||) and perpendicular (\) to the axis

of symmetry are given in Eqs. 10, 11, 12 and 13

[51–53].

cij ¼

c11 c12 c13 0 0 0
c11 c13 0 0 0

c33 0 0 0
c44 0 0

sym c44 0
1

2
c11 � c12ð Þ

2
66666664

3
77777775

ð9Þ

E? ¼ c2
11c33 þ 2c2

13c12 � 2c2
13c11 � c2

12c33

c11c33 � c2
13

Ek ¼
c11c33 þ c12c33 � 2c2

13

c11 þ c12

ð10Þ

B ¼ 2c11 þ c33 þ 2 2c13 þ c12ð Þ
9

ð11Þ

l23 ¼ l13 ¼ c44

l12 ¼ c66 ¼ 1

2
c11 � c12ð Þ

ð12Þ

m? ¼ c12c33 � c2
13

c11c33 � c2
13

mjj? ¼ c11c13 � c12c13

c2
11 � c2

12

m?jj ¼
c11c13 � c12c13

c11c33 � c2
13

ð13Þ

The relationships between the phase velocities of

ultrasonic plane waves and the elastic constants of a

material can be determined as shown in detail in the

Appendix. For isotropic materials (two independent

elastic constants), c44 = qvT
2 and c11 = qvL

2, where q is

the density, vT is the transverse wave velocity, and vL
is the longitudinal wave velocity. For materials with

lower symmetries, such as the transversely isotropic

case (five independent elastic constants), determining

the relationships between sound velocities and elastic

constants is far more complicated, as shown in the

Appendix.

Experimental and modeling methods

Sample preparation

All of the textured samples were machined from the

same extruded rod of the commercial aluminum

alloy (AA) 1100. AA-1100, also known as commer-

cially pure aluminum, is composed of[ 99% alu-

minum with silicon and iron as its primary

impurities. The AA-1100 rod was provided in the

annealed condition with no cold working (type O

temper) in accordance with ASTM B221-14 standards.

The AA-1100-O rod is assumed to have transversely

isotropic texture as a result of the extrusion process

during manufacturing [6–8]. An illustration of the

transversely isotropic AA-1100-O rod is shown in

Fig. 1b from whence rectangular parallelepiped res-

onators (RPRs) were machined with sides a, b, or c

parallel to the rod axis. RPRs are advantageous for

RUS experiments in comparison with other geome-

tries (cylinders, cubes or spheres) because they have

no degenerate resonance modes when the dimen-

sions are correctly chosen [22, 27]. The flat parallel

faces in principal directions also make RPRs suit-

able for pulse-echo experiments. Several RPRs were
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machined from this rod with dimensions shown in

Fig. 1b, where a = 8.4 mm, b = 9.2 mm and

c = 13.5 mm with a precision of 0.0006 mm. To sim-

plify distinguishing the texture orientation of the

samples machined, we define bz as the direction par-

allel to the axis of extrusion. All samples were

machined by electrical discharge machining (EDM)

using skim cut settings in order to minimize surface

roughness and damage caused by machining [54–56].

The AA-1100-O RPRs were then heat-treated at 615 K

for 1 h in accordance with ASM standards in order to

anneal defects present in the sample [57]. The AA-

1100-O RPRs have a density of

2.6899 ± 0.0034 g cm-3, calculated from measuring

geometrical volume and mass using a high-precision

micrometer and scale. Thus, these samples are 99.26%

dense, assuming a theoretical density of 2.71 g cm-3.

Resonant ultrasound spectroscopy

The RUS system was constructed at Los Alamos

National Laboratory, the general description of which

is described elsewhere [24, 58]. In Fig. 1a, c, we can

observe the experimental setup used. The RUS sys-

tem interfaces with the computer via a field-pro-

grammable gate array-based Red Pitaya detector

system, which is programmed to generate the exci-

tation signal to one transducer as well as record the

response signal from the other transducer. The RUS

software was developed at Los Alamos National

Laboratory and is freely available online [58].

The driving and detecting transducers are identical

and are composed of an aluminum housing filled

with epoxy, a coaxial SMA connector on the one end,

and a 5-mm-diameter lead zirconate titanate (PZT)

piezoelectric transducer glued to the flat portion of an

alumina hemisphere as described elsewhere and

shown in Fig. 1a, c [59–61]. The alumina hemispher-

ical cap not only provides electrical insulation for the

piezoelectrics when measuring metallic samples, but

also protects the piezoelectrics from physical damage

while simultaneously guaranteeing excellent point

contact with the sample. This allows the sample to

resonate freely without having to balance it precari-

ously by its corners. It also allows to reproduce the

position of the sample with respect to the transduc-

ers. The resonance frequencies of the specimens are

independent of the positioning or orientation of the

sample between the driving and detecting transduc-

ers; in practice, however, some resonances may have

undetectably low amplitudes which depend on

positioning (e.g., if the detecting transducer is in

contact with the sample which coincides with the

node of a particular resonance). We found that plac-

ing the sample vertically between the transducers

(i.e., parallel to the c dimension) allowed the

Figure 1 a, c RUS

experimental setup with

sample. b Illustration of 1100

rod with bz-axis chosen parallel

to the extrusion-induced axis

of texture and orientations of

RPR samples machined from

the rod relative to the texture

axis.
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detection of at least 30 of the first 35 resonances. This

sample arrangement was used for all the samples in

order to reduce the small variations associated with

measuring resonances in different positions on the

sample. This arrangement, combined with the opti-

mized sample geometry, yields easily detectable/

distinguishable resonances with large contributions

from shear, dilatational and compressive elastic

constants. In turn, the extracted resonance frequen-

cies result in an overdetermined problem for the

extraction of all the elastic constants from the mea-

sured resonance frequencies. The quality factors (Q-

values, the frequency-to-bandwidth ratio, defined by

the resonance frequency divided by its full-width at

half-maximum) of the resonances vary, but most

resonances were measured with Q-values exceeding

20,000 as shown in Fig. 2.

The RUS inverse problem fitting procedure was

executed using 12-order polynomials for all fits,

although no significant differences were obtained

using 14-order polynomials (deviations smaller than

0.02%). The results obtained in the RUS fits are

insensitive to the initial input elastic constant values.

We used more than 30 of the first 35 resonance fre-

quencies in the fitting procedure for each sample [24].

The fits assume a particular symmetry, set by the

degrees of freedom and orientation selected in the fit

[22, 24]. The ability to extract the elastic constants of a

polycrystalline material requires matching the sym-

metry of the fit with that of the sample. Extruded

aluminum has transversely isotropic texture, which

results in hexagonal symmetry (in the single-crystal

sense). In order to distinguish physical orientations of

the sample a, b and c (as described in the previous

section and illustrated in Fig. 1b with the fit orienta-

tions involved in the RUS algorithm, we define the

orientation of a hexagonal axis of symmetry in the fit

to be h. The fit should only be successful if its ori-

entation matches the physical orientation of the

sample’s anisotropy (i.e., h||bz for transverse iso-

tropy). Similarly, as shown later in the paper, the

symmetry and orientation can be determined by

solving the inverse problem with a lower symmetry.

Ultrasonic pulse-echo

The conventional pulse-echo time-of-flight technique

was used to determine the speed of compressive and

shear ultrasonic waves along all principal axes of the

samples in order to directly obtain elastic constants

for validation purposes [34, 35]. The experimental

setup consisted of an arbitrary function generator

and digitizing oscilloscope connected to an ultrasonic

transducer, fused silica buffer rod and sample as

described elsewhere [62, 63]. The electrical signal

applied to the transducer was a tone burst with a

Tukey envelope applied to mitigate spurious high-

frequency effects [62, 64]. For improved accuracy in

the determined time-of-flight, measurements were

performed over a range of frequencies, typi-

cally * 10 MHz and * 20 MHz for shear and com-

pressive modes, respectively. Measurement over a

range of frequencies enables a frequency-dependent

correction to be applied to account for the medium

used to couple the buffer rod to the sample as pre-

viously described [62]. The accuracy of measured

time-of-flight (s) and physical dimensions (d) and

thus the sound speeds (v = 2d/s) were of order 10–4–

10–3.

Because the same samples were used for the RUS

and the PE experiments, and the transducer must be

adhered to a flat surface in the PE experiments, PE

experiments could only be performed for h = 0� and

h = 90� relative to bz (see Appendix). With this ori-

entation constraint and using Eq. 21, the PE experi-

ments were used to determine c11, c33, c44 and c66,

while c13 could not be measured since its only con-

tribution to the sound velocity comes from the sin22h
component of Eq. 20 (see the Appendix). In order to

measure c13 in rectangular parallelepiped samples

machined from this textured rod, the faces of the

Figure 2 Measured RUS spectrum for an AA-1100-O RPR with a

magnified view of the resonance at 274.3 kHz and the Lorentzian

fit overlaid.
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sample need to be oriented, for example, at 45� with

respect to bz.

Neutron diffraction

Aluminum is an inherently low-anisotropy material

(A = 1.22). As such, the degree of texture required

(measured in multiple of random density (MRD)) in

order to result in measurable changes in its elastic

properties is expected to be large. Bulk extrusion-

produced texture was measured using time-of-flight

neutron diffraction on the high-pressure preferred

orientation time-of-flight diffractometer (HIPPO)

[65, 66] at the pulsed spallation neutron source at the

Los Alamos Neutron Science Center (LANSCE) of

Los Alamos National Laboratory [67]. HIPPO utilizes

1200 3He detector tubes arranged on 45 detector

panels on five rings with nominal diffraction angles

of 40�, 60�, 90�, 120� and 140�, covering 22.4% of the

4p steradians around the sample [68]. The RPRs were

mounted on cadmium-wrapped sample holders as

described elsewhere [65]. The mounted samples were

loaded on the HIPPO sample changer robot [69], and

neutron diffraction data were collected at rotation

angles of 0�, 67.5� and 90� for 10 min per rotation,

covering 51.7% of the 4p steradians [68]. The mea-

sured diffraction patterns were analyzed using the

Materials Analysis Using Diffraction (MAUD) soft-

ware [70] via simultaneous Rietveld refinement [71]

of 132 neutron time-of-flight diffraction patterns fol-

lowing procedures described elsewhere [72]. An E-

WIMV representation of 7.5� resolution was used to

represent the orientation distribution function (ODF)

in MAUD. No specific texture symmetry was

assumed in the refinement. Lastly, in order to gen-

erate input for ELSC calculations of polycrystal

elastic constants, the ODF was integrated in small,

regularly spaced (every 10�) volumes of orientation

space u1; cosU;u2ð Þ, where u1;U;u2ð Þ are the Euler

angles (Bunge convention), resulting in a set of 23,328

discrete orientations centered inside each volume,

determining a 72918x18 partition of u1; cosU;u2 in

the intervals ½0; 2p�, ½0; 1� and ½0; p=2�, respectively,

with associated weights corresponding to the ODF

integrals inside each volume.

Elastic self-consistent model

Self-consistent (SC) homogenization methods are

used to estimate the mechanical response behavior of

polycrystals, based on the knowledge of the proper-

ties, morphology and orientation distribution of the

constituent single-crystal grains. The ELSC method

was proposed independently by Hershey [37] and

generalized by Hill [73]. Here, we use the most recent

ELSC numerical implementation by Tomé and

Lebensohn [74]. In the context of the SC theory, the

polycrystal is represented by a set of weighted crystal

orientations. The orientations represent grains, and

the weights represent volume fractions. The set of

orientations and weights are chosen to reproduce the

crystallographic texture of the material. In this

regard, the ELSC model utilizes the whole texture

information contained in the full ODF measured by

ND, instead of reduced representations, e.g., orien-

tation distribution coefficients used by Foster et al.

[30] for cubic materials, or texture coefficients for

lower-symmetry crystals (e.g., [75] for hexagonal

materials).

The ELSC model is a mean-field approximation

based on 1-point statistics, in which each grain is

treated as an ellipsoidal elastic inhomogeneity

embedded in an effective homogenized elastic med-

ium. The ellipsoidal shape represents the average

morphology of the grains. The inhomogeneity char-

acter derives from the difference in elastic properties

of each individual grain and the effective medium.

The inhomogeneity and the medium will generally

have fully anisotropic properties, deriving from the

intrinsic single-crystal anisotropy, crystallographic

texture and/or non-equiaxed morphology of the

grains. The effective medium represents the average

environment surrounding each grain. Using the

equivalent Eshelby’s inclusion method [76] to solve

each heterogeneity problem, the ELSC estimate for

the polycrystal’s elastic stiffness (in tensorial nota-

tion) is given by the expression:

cijkl ¼ c
g
ijpq A

g
pqkl

D E
ð14Þ

where cijkl and c
g
ijkl are the elastic stiffness tensors of

the polycrystal and each individual grain, the sym-

bol\ .[ indicates weighted average over the set of

grains representing the aggregate, and A
g
ijkl is the

localization tensor associated with each grain (g),

which relates the strain applied to the polycrystal and

the local strain in the grains, i.e., egij ¼ A
g
ijkl ekl and is

defined by:
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A
g
ijkl ¼ cg þ ~cð Þ�1

ijpq cþ ~cð Þpqkl ð15Þ

where ~cijkl is the interaction tensor that gives the local

deviations in stress in terms of the local deviations in

stresses, i.e., rgij � rij ¼ �~cijkl e
g
kl � ekl

� �
, and is given by:

~cijkl ¼ cijmn I � Sð Þmnpq S
�1
pqkl ð16Þ

where Sijkl is the Eshelby tensor [77], a function of cijkl
and the shape of the ellipsoid representing the mor-

phology of the grains [76]. Given these dependencies,

Eq. (14) is a fix-point equation that allows obtaining

cijkl iteratively.

Note that Eq. (14) involves two weighted averages

of the elastic moduli of each grain to give the poly-

crystal’s stiffness tensor. The first set of weights are

the (tensorial) factors given by the localization ten-

sors (Eq. 15), which depend on the relative stiffness

and interaction between each grain and the effective

medium representing the polycrystal. The second set

of weights are the normalized values of the ODF

integrals inside each of 23,328 volumes in orientation

space, which provide the dependence with the

polycrystal’s texture.

Results and discussion

In order to determine the errors associated with an

isotropic fit (2 DoF) of an RUS spectrum for an elas-

tically isotropic sample, a 99.95% pure polycrystalline

tungsten RPR was measured using RUS and the

elastic constants were determined using both iso-

tropic (2 DoF) and orthorhombic (9 DoF) fits.

Tungsten was chosen because its elastic properties

are inherently isotropic (A = 1.004 for single-crystal

tungsten) [78]. This guarantees isotropic elastic

properties irrespective of the polycrystal’s texture,

because the elastic contributions of each grain are

independently isotropic. RPRs of tungsten were

machined using skim EDM with dimensions of

8.4 ± 0.0012 mm 9 9.2 ± 0.0015 mm 9 13.5 ± 0.001

mm resulting in a density of 19.135 ± 0.006 g cm-3,

99.2% that of the 19.3 g�cm-3 nominal density [56].

The elastic constants determined by these two fit-

ting methodologies, shown in Fig. 3, are identical

(within error * 0.05%). These results show that a

root-mean-square (RMS) error of 0.1% or lower can

be achieved in RUS measurements if the sample

geometry and microstructure are representative of

the fit used, i.e., sharp 90� corners and flat faces for

RPRs, and a microstructure that is homogeneous with

a correctly modeled symmetry [24]. The slight devi-

ations in the 9-DoF elastic constants, as well as the

slightly smaller errors for the 9=DoF fit in compar-

ison with the 2-DoF fit, are attributed to the avail-

ability of more free parameters in the 9-DoF fit

minimization scheme. Given that the 9-DoF fit is in

such close agreement with the isotropic fit, this

demonstrates that the isotropic assumption is correct

for this material.

Figure 4 displays the results of fitting the RUS

spectrum obtained from an AA-1100-O RPR using an

isotropic fit (2 DoF) and a hexagonal symmetry (5

DoF) for different orientations. For 2-DoF, the RMS

error is 0.85%. This error is nearly ten times higher

than for the isotropic fit of the tungsten RPR. The

increase in the RMS for the 2-DoF fit of the AA-1100

is not due to lack of accuracy in the density or

geometry of these samples, as they are very similar to

those of the tungsten RPRs.
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Figure 3 Compressive and shear elastic constants of a 99.95%

pure tungsten RPR as determined by 2-DoF and 9-DoF fits using

RUS.
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The increase in RMS error indicates that the use of

the isotropic fit to analyze the RUS spectra of extru-

ded AA-1100-O is not correct. For these AA-1100

samples, the effects of extrusion-induced texture

cannot be ignored and are a significant deviation

from the assumption of the random polycrystalline

orientation distribution. We also find a 16% deviation

from the literature value for bulk modulus B [79].

Thus, we analyze the same spectrum with a 5-DoF fit

(see Fig. 4) for a sample machined with c||bz (see

Fig. 1b). The 5-DoF fit was then performed using

different symmetry orientations, i.e., with h||a,

h||b, and h||c. Only the latter (h||c, i.e., h||bz) fit

matches with the sample’s symmetry. The RMS error

decreases dramatically when the correct symmetry is

chosen (see Fig. 4a). It is remarkable that although the

RMS error of the 2-DoF fit is 0.85%, the differences in

the values obtained for B are as large as 16% (see

Fig. 4b). This highlights the importance of choosing

the correct symmetry. When fitting with the correct

symmetry, the values for B are consistent with the

values from the literature for polycrystalline alu-

minum [79]. The complete determination of the

elastic constants cij is shown in Table 1 for the 2- and

5-DoF fits performed in the different orientations. It

could also be argued that the lower RMS obtained

with 5-DoF fits is an artifact of a higher number of

fitting parameters used as compared to the 2-DoF fit.

However, the results for h||a and h||b indicate

otherwise.

There are cases when the true symmetry of the

material is unknown a priori. The elastic constants

can be extracted using a fitting procedure with an

even lower symmetry, such as an orthorhombic fit (9

DoF) for which c11, c22, c33, c23, c13, c12, c44, c55 and c66

are independent. If the material truly has transversely

isotropic texture, then the 9-DoF fit should yield

identical results (within errors) to the 5-DoF fit. RMS

error is expected to be slightly less for a 9-DoF fit

because there are more free parameters available in

the minimization scheme, analogously to the tung-

sten case. Figure 5 compares the results obtained

using 5-DoF and 9-DoF fits for the shear constants

(c44, c55 and c66) of an AA-1100-O sample with c||bz.

The determined value of c66 is identical to the 5-DoF

and 9-DoF fits, and the values of c44 and c55 are

within the error. More importantly, the results shown

in Fig. 5 confirm the assumption of transverse iso-

tropy for the extruded material, without the need of

determining the material’s symmetry or its orienta-

tion a priori. Note that the level of anisotropy in the

shear constants is clearly outside the error of deter-

mination around 6%.

RUS is capable of determining the degree of elastic

anisotropy for samples that were machined regard-

less of the orientations with respect to the rod. The

compressive, dilatational and shear elastic constants

for samples machined in different orientations are

shown in Fig. 6. Henceforth, all fits were performed

using a 5-DoF fit with h||bz. Although there are small

variations in the elastic constants from sample to

sample, this is likely due to handling and small dif-

ferences in machining quality. The RMS errors of the

fits are all low, about 0.1%. The general relationships

between the elastic constants are the same for each

sample: c11 [ c33, c13 [ c12, and c44[ c66. These sam-

ples have much larger anisotropy in the shear con-

stants than in the compressive constants. Note that

c12 is set by the values of the other constants (see

Eq. 9) since hexagonal symmetry is associated with

Figure 4 a Bulk modulus compared to literature value [78] and b

RMS error using different symmetry and orientation fits for an

AA-1100-O sample with c||bz.
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five independent constants, but both dilatational

constants are shown in Fig. 6 for comparison

purposes.

In order to obtain more statistical confidence in the

anisotropy inferred from the results shown above,

thirteen additional AA-1100-O samples were charac-

terized, which were machined in the same fashion

from the same rod and with identical thermal histo-

ries as described before. The RUS spectra were col-

lected for each of the RPRs and were used to perform

hexagonal (5 DoF) fits with h||bz for each of the

samples. The elastic constants for these samples are

displayed in Fig. 7, along with the anisotropy ratios

of the compressive and shear elastic constants. The

anisotropy in the shear elastic constants

(5.7% ± 0.5%) is consistently larger than the aniso-

tropy in dilatational elastic constants (2.4% ± 0.6%)

and larger than the anisotropy in compressive elastic

constants (1.5% ± 0.5%) as determined by RUS.

These findings are in close agreement with the PE

results performed on two samples (3 and 5) for val-

idation purposes, particularly the anisotropy ratios.

From Fig. 7a, it can be seen that the cij determined by

pulse echo are slightly lower than those determined

Table 1 Elastic constants and

RMS error for an AA-1100-O

sample machined c||bz as

determined by fits with h||a,

h||b and h||c (best fit). All

elastic constants/moduli are in

GPA

Fit Parameter 2-DoF 5-DoF Fit 5-DoF Fit 5-DoF Fit

(GPA) Fit Assuming h||a Assuming h||b Assuming h||c

c11 100.0 109.4 99.8 111

c33 100.0 114.7 107.6 109

c13 47.4 61.6 53.1 59.6

c44 26.3 27 27.1 27.4

c66 26.3 26.1 26.7 25.9

B 64.9 77 67.8 76.4

RMS error (%) 0.85 0.67 0.62 0.11

Figure 5 Comparison of 9-DoF fit vs. 5-DoF fit shear elastic

constants with c||h using RUS for an AA-1100 sample machined

with c||bz.

Figure 6 RUS determination of elastic constants of AA-1100-O

RPRs vs. physical orientation relative to texture axis, where all fits

were performed with h||bz.
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by the RUS technique. It is possible that this is due to

the interaction of the propagating wave with the

boundaries of the sample, which can guide and slow

the wave, resulting in lower values of cij. We also see

small variations in the elastic constants from sample

to sample as expected due to different aspects such as

sample inhomogeneity, handling and small differ-

ences in machining quality. The variation is relatively

bigger for the compression constants as the aniso-

tropy is smaller. The difference in density is one

order of magnitude smaller than the variations

observed in cij values from sample to sample, thus

not the origin of sample-to-sample variation found in

cij. We did observe a non-systematic change in elastic

constant obtained by RUS before and after sound

velocity measurements, of the same order of the

dispersion between samples. Nevertheless, the

degree of anisotropy remains practically unchanged.

The determination of the degree of elastic aniso-

tropy is paramount toward understanding the

mechanical properties of the material. In this partic-

ular case, with extruded AA-1100-O, anisotropy in

the shear elastic constants is nearly 6% (see Fig. 7a).

The engineering constants can be calculated from the

elastic constants by using Eqs. 10–13. For these sam-

ples, the Young’s moduli and Poisson ratios vary by

3% and 11%, respectively.

Another common measure of anisotropy was pro-

posed by Thomsen [80], given by these parameters:

e ¼ c11 � c33

2c33

c ¼ c66 � c44

2c44

d ¼ c13 þ c44ð Þ2� c33 � c44ð Þ2

2c33 c33 � c44ð Þ

ð17Þ

The first two anisotropy parameters (e and c) are

the normalized difference of the compressive and

shear elastic constants. The parameter d reflects the

near-vertical compression wave anisotropy and does

not include c11 (the horizontal velocity) [80]. For weak

anisotropy, d can be further reduced to dweak = (c13-

(c33-2c44))/c33, so d can also be seen as the off-diag-

onal or dilatational constants anisotropy factor.

Interestingly, when the d is plotted against e and c,

we find a clear correlation between them with

d = 0.036 ? 2.88e and d = - 0.01 ? 2.17 c in Fig. 7b.

This suggests that the differences in cij between

samples are not due to random variation or error in

their determination but in different levels of aniso-

tropy among the samples.

To further investigate the origin of the elastic ani-

sotropy, we performed neutron measurements to

determine the texture and calculated the elastic ani-

sotropy using self-consistent model using those

neutron textures.

Figure 8 shows the resulting pole figures and

illustrations of the samples machined with the

extrusion direction parallel to the c (Fig. 8a and b)

and a (Fig. 8c and d). As shown in the pole figures,

both samples have similar MRD values, indicating

that, other than the rotation, texture is identical for

the two samples. However, the plane of isotropy for

the sample shown in Fig. 8a is clearly the a-b plane,

while the plane of isotropy for the sample shown in

Fig. 8c is the b-c plane, both of which are consistent

with RUS and PE results. It is worth noting that there

are very small deviations from transverse isotropy;

e.g., the light blue ‘‘ring’’ in the top 111 pole figure is

not of constant density around the ring, and the

vertical band in the bottom 200 pole figure is not

vertical.

As mentioned in ‘‘Neutron diffraction’’ section, the

measured ODFs of samples c||bz and a||bz were

integrated in small regions of orientation space to

give a set of 23,328 orientations. These sets of indi-

vidual orientations representing the textures of sam-

ples c||bz and a||bz were used as input of ELSC

calculations. The other adopted input parameters

were the values of Al single-crystal elastic constants

cAl�SX
11 ¼ 107GPa, cAl�SX

12 ¼ 61GPa and cAl�SX
44 ¼

28GPa obtained by averaging five different mea-

surements at room temperature reported in [78], and

a grain’s ellipsoidal shape (1:1:5) along x, y and z,

consistent with the morphology of grains extruded in

bz: (Note that the reported results are fairly insensitive

to the actual ratio between the long axis and the short

axes of the ellipsoid.)

Figure 9 shows the ELSC predictions of nine

polycrystal’s elastic stiffness components:

c11; c22; c33;c12; c13; c23 and c44; c55; c66 for samples

c||bz and a||bz. Note that symmetry of cijkl was not

imposed but arose naturally from the symmetry of

the input textures. It is observed that: a) the predicted

polycrystal elastic constants are very close to trans-

versely isotropic symmetry (or ‘‘axial symmetry’’ or

‘‘hexagonal symmetry’’). For example, in the case of

c||bz sample, c11 ffi c22, c13 ffi c13, c44 ffi c55 and c12 ffi
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c11 � 2c66 within a tolerance better than 0.1%; b) the

difference between the c||bz and a||bz is essentially a

switch between the sample directions, z and x, with x

becoming the direction of the symmetry axis, and

consequently c11 6¼ c22 ffi c33, c23 6¼ c12 ffi c13, c44 6¼
c55 ffi c66 and c23 ffi c33 � 2c44. These results, obtained

from textures of samples cut from the same rod but

independently measured, show consistency between

the texture measurements and modeling

methodology.

Figure 10 shows the comparisons between the

polycrystal’s elastic constants measured with RUS

bFigure 7 a Elastic constants and anisotropy ratios of several AA-

1100 RPRs as determined by RUS and PE. Error bars are the same

size as the symbols, b Thomsen’s anisotropy parameter d as a

function of e and c.

Figure 8 a Neutron diffraction pole figures for an aluminum 1100 RPR whose extrusion direction is parallel to ‘‘c’’ (c||bz) as illustrated in

(b), and c neutron diffraction pole figures for an aluminum 1100 RPR whose extrusion direction is parallel to ‘‘a’’ (a||bz) as illustrated in (d).
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Figure 9 ELSC predictions of
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and predicted with ELSC with input from ND tex-

tures for samples c||bz and a||bz, respectively. Note

that ranges of all vertical axes are 4 GPa, for a fair

visual comparison of the results. It is observed that

the predicted anisotropy is qualitatively consistent

with the RUS measurements, e.g., in the case of

sample c||bz: c33\c11 ffi c22, c12\c13 ffi c23, and

c66\c44 ffi c55, although quantitative, the predictions

and measurement are off, in some of the worst cases,

by several percent. The quantitative differences

between calculation and experiments may be due to

systematic errors in the texture and intrinsic to the

RUS analysis, namely, the measured texture by neu-

trons is not perfectly transverse isotropic as assumed

(see Fig. 8), the single crystal elastic constants of AA-

1100-O are not the ones found in a single crystal

extracted from tables, and/or model shortcomings.

Elucidation of the ultimate causes of quantitative

disagreement between experiments and predictions

is currently the subject of investigation, including the
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Figure 10 a Elastic constants

for a polycrystalline sample

c||bz measured with RUS and

predicted with ELSC with

input from ND textures. b

Elastic constants for a

polycrystalline sample a||bz
measured with RUS and

predicted with ELSC with

input from ND textures.
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study of materials with higher intrinsic single-crystal

anisotropy.

As mentioned before, aluminum has a relatively

low Zener anisotropy factor of A = 1.22, meaning that

its elastic properties are less sensitive to anisotropic

changes due to texture than, say copper (A = 3.21), or

304 stainless steel (A = 3.77) [44] and many other

common materials with larger A factors, for which

the degree of anisotropy due to texture will be much

larger. Indeed, using the same texture measured for

AA-1100, we calculated the polycrystal elastic con-

stants that would result from Cu and SS samples with

identical texture, as shown in Fig. 11, using a nor-

malization based on the corresponding isotropic

elastic constants in the case of random texture, for

each material. Clearly, the same texture has larger

effect on the elastic anisotropy as the A increases. The

changes in compression constants are smaller than

those found in shear. We find an overall decrease in

the average of the compression constant with higher

A. For shear, the anisotropy is larger and there is a

decrease in c66 clearly seen for Cu and SS.

Summary and conclusions

In this study, we use resonant ultrasound spec-

troscopy (RUS) to nondestructively determine the

entire elastic tensor in extruded AA-1100-O (com-

mercially pure aluminum in its annealed state with

no cold working), which has transversely isotropic

symmetry (five independent elastic constants) due to

the texture induced by the extrusion process. The

relative anisotropy of the compressive (c11 vs. c33)

and shear (c44 vs. c66) elastic constants is 1.5% ± 0.5%

and 5.7% ± 0.5%, respectively, where c33 and c66 are

the elastic constants associated with the axis of

symmetry of the texture. Because aluminum is an

inherently low-anisotropy material whose Zener

anisotropy factor is 1.22, other common alloys (steels,

nickel-based superalloys, copper-based alloys, etc.)

are expected to have larger anisotropic properties

given the same texture.

The necessity of accounting for the anisotropy

resulting from the extrusion process has been

demonstrated by comparing the RUS results from

AA-1100-O samples fit using the isotropic assump-

tion (2 DoF), the transverse isotropic (5 DoF) and

orthotropic (9 DoF) fits. The error associated with

describing extruded aluminum with an isotropic fit is

supported by the extremely low-error, high-accuracy

RUS results of the isotropic fit in 99.95% pure tung-

sten, which has a Zener anisotropy factor of unity

and is therefore isotropic regardless of texture. The

ability for RUS to determine the orientation of the

texture axis has also been demonstrated by analyzing

the results with a lower symmetry (9 DoF) and

changing the orientation of the fit with respect of

extrusion orientation (5 DoF). The elastic constants

and the degree of elastic anisotropy as determined

Figure 11 Normalized elastic

constants (vs. randomly

distributed elastic constant) of

AA-1100, Cu and SS using the

same experimental texture.
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using RUS have been confirmed by direct sound

velocity measurements using the ultrasonic pulse-

echo technique. The elastic constants were then used

to calculate the engineering constants, whereby the

Young’s moduli and Poisson ratios parallel vs. per-

pendicular to the extrusion direction in these samples

differ by 3% and 11%, respectively. Using the

experimental texture obtained by neutron diffraction,

elastic self-consistent micromechanical simulations

show good agreement in the level of anisotropy and

small disagreement in the absolute values that we

assign to material changes produced by handling the

soft-annealed AA-1000 samples. Using the same

texture and calculation method, we show that the

texture will have much larger effect for materials

with larger Zener parameter, resulting even in low-

ering of the elastic constants.
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Appendix

The relationship between the phase velocities of

ultrasonic plane waves and the elastic constants of

the material can be determined by solving the

eigenvalue problem associated with the Christoffel

equation in Eq. 18, where q is the density, v is the

elastic wave phase velocity, dij is the Kronecker delta,

Cij = cijklnjnl is the Christoffel tensor, and nj are the

directional cosines of the elastic wave propagation

direction for a given reference axis [81–83]. For iso-

tropic materials (two independent elastic constants,

see Eq. 3 where c12 = c11–2c44), the Christoffel tensor

reduces to the relations in Eq. 19:

Cij � qv2dij
�� �� ¼ 0

Cij ¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

�������

�������
ð18Þ

C11 ¼ c11n
2
1 þ c44n

2
2 þ c44n

2
3

C22 ¼ c44n
2
1 þ c11n

2
2 þ c44n

2
3

C33 ¼ c44n
2
1 þ c44n

2
2 þ c11n

2
3

C12 ¼ n1n2 c12 þ c44ð Þ
C23 ¼ n2n3 c12 þ c44ð Þ
C13 ¼ n1n3 c12 þ c44ð Þ

ð19Þ

Since changing the orientation in which the elastic

wave velocity measurement is performed in an iso-

tropic material yields identical results, we arbitrarily

assign the z-axis as the direction of elastic wave

propagation, i.e., nx = ny = 0 and nz = 1. It follows

that:

c44 � qv2 0 0
0 c44 � qv2 0
0 0 c11 � qv2

2
4

3
5

ux
uy
uz

2
4

3
5 ¼

0
0
0

2
4

3
5

ð20Þ

and
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c44 � qv2
� �2

c11 � qv2
� �

¼ 0 ð21Þ
where ui is the polarization vector which represents

the atomic displacement directions. The roots of the

above relationship are the eigenvalues of the

Christoffel tensor which relate the transverse (vS) and

longitudinal (vL) phase velocities to the elastic con-

stants of an isotropic solid, as shown in Eq. 22:

c44 ¼ qv2
T

c11 ¼ qv2
L

ð22Þ

Note that because there is no orientation depen-

dence in isotropic materials, the entire elastic tensor

can be determined from a single pulse-echo experi-

ment. For transversely isotropic materials (five inde-

pendent elastic constants, see Eq. 9), however, the

Christoffel tensor is described by the relations in

Eq. 23. In this analysis, the plane of isotropy has been

assigned to the x–y plane, and the ‘‘z’’ direction is

parallel to the textured axis.

C11 ¼ c11n
2
1 þ c66n

2
2 þ c44n

2
3

C22 ¼ c66n
2
1 þ c11n

2
2 þ c44n

2
3

C33 ¼ c44n
2
1 þ c44n

2
2 þ c33n

2
3

C12 ¼ n1n2 c12 þ c66ð Þ
C23 ¼ n2n3 c13 þ c44ð Þ
C13 ¼ n1n3 c13 þ c44ð Þ

ð23Þ

Under these symmetry conditions, the direction of

wave propagation is now relevant. Following the

same methodology as before, we now consider a

plane wave propagating in the x–y plane in a direc-

tion h with respect to the z-axis. Therefore, n1 = sinh,

n2 = cosh, n3 = 0, and the Christoffel equation

becomes Eq. 24. Similarly, for a plane wave propa-

gating in the x–z plane in a direction h with respect to

the z-axis, n1 = sinh, n2 = 0, n3 = cosh, and the

Christoffel equation becomes Eq. 25.

c11 sin
2 hþ c66 cos

2 h� qv2 c12 þ c66ð Þ sin h cos h 0

c12 þ c66ð Þ sin h cos h c66 sin
2 hþ c11 cos

2 h� qv2 0

0 0 c44 � qv2

2
64

3
75

ux

uy

uz

2
64

3
75 ¼

0

0

0

2
64

3
75

ð24Þ

The ultrasonic phase velocities relate to the elastic

constants of a transversely isotropic material by

Eq. 26, where vT,q, vT and vL are the quasi-transverse,

pure transverse and longitudinal velocities, and h is

the angle between the propagation direction and the

z-axis of symmetry (i.e., h = 0� for waves propagating

along the z-axis).

vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 sin

2 hþ c33 cos2 hþ c44 þ
ffiffiffiffiffi
M

p

2q

s

vT;q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 sin

2 hþ c33 cos2 hþ c44 �
ffiffiffiffiffi
M

p

2q

s

vT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66 sin

2 hþ c44 cos2 h
q

s

M ¼ c11 � c44ð Þ sin2 hþ c33 � c44ð Þ cos2 h
� �2

þ c13 þ c44ð Þ2
sin2 2h

: ð26Þ

The relationship between sound velocities and

sample orientations for c13 is given in Eq. 27 for an

experiment performed at 45� from the texture axis.

Samples were not machined in such off-angle orien-

tations in this work; therefore, pulse echo was unable

to obtain information related to the values of c13 for

the AA-1100 samples in this study.

c11 sin
2 hþ c44 cos

2 h� qv2 0 c13 þ c44ð Þ sin h cos h
0 c66 sin

2 hþ c44 cos
2 h� qv2 0

c13 þ c44ð Þ sin h cos h 0 c44 sin
2 hþ c33 cos

2 h� qv2

2
64

3
75

ux

uy

uz

2
64

3
75 ¼

0

0

0

2
64

3
75 ð25Þ
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c11 ¼qv2
L

��
h¼90�

c33 ¼qv2
L

��
h¼0�

c12 ¼ c11 �2c66

c13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q2v4

L

��
h¼45�

�2qv2
L

��
h¼45�

c11 þ c33 þ2c44ð Þþ c11 þ c44ð Þ c33 þ c44ð Þ
q

� c44

c44 ¼qv2
T

��
h¼0�

c66 ¼qv2
T

��
h¼90�

ð27Þ

The uncertainties associated with the pulse-echo

experiments are calculated by the propagation of

errors as described by the relationship shown in

Eq. 28, where dcij is the uncertainty of the elastic

constant, dq is the uncertainty of density, and dv is

the uncertainty of the measured sound velocity.

dcij ¼ cij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dq
q

� 	2

þ2
dv
v

� 	2
s

: ð28Þ
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Elasticitätsconstanten isotroper Körper. Ann Phys

274(12):573–587

[37] Reuss A (1929) Berechnung der Fließgrenze von Mis-

chkristallen auf Grund der Plastizitätsbedingung für Eink-
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Mécanique. https://doi.org/10.5802/crmeca.18

[75] Woo CH (1985) Polycrystalline effects on irradiation creep

and growth in textured zirconium. J Nucl Mater

131(2–3):105–117. https://doi.org/10.1016/0022-3115(85)9

0449-0

[76] Mura T (1987) Micromechanics of defects in solids.

Springer, Dordrecht

[77] Eshelby JD (1957) The determination of the elastic field of

an ellipsoidal inclusion, and related problems proceedings of

the royal society of London Series a-mathematical and

physical sciences 241(1226):376–396

[78] Simmons G, Wang H (1971) Single crystal elastic constants

and calculated aggregate properties. MIT Press, Cambridge,

Massachusetts

[79] Raju S, Sivasubramanian K, Mohandas E (2002) The high

temperature bulk modulus of aluminium: an assessment

using experimental enthalpy and thermal expansion data.

Solid State Commun 122(12):671–676. https://doi.org/10.1

016/S0038-1098(01)00517-8

[80] Thomsen L (1986) Weak elastic-anisotropy. Geophysics

51(10):1954–1966. https://doi.org/10.1190/1.1442051

[81] Paterson DAP, Ijomah W, Windmill JFC (2018) Elastic

constant determination of unidirectional composite via

ultrasonic bulk wave through transmission measurements: a

review. Prog Mater Sci 97:1–37. https://doi.org/10.1016/j.

pmatsci.2018.04.001

[82] Neighbours JR (1954) An approximation method for the

determination of the elastic constants of single crystals.

J Acoust Soc Am 26(5):865–869. https://doi.org/10.1121/1.

1907431

[83] Neighbours JR, Smith CS (1950) An approximation method

for the determination of the elastic constants of cubic single

crystals. J Appl Phys 21(12):1338–1339. https://doi.org/10.

1063/1.1699601

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

J Mater Sci (2021) 56:10053–10073 10073

https://doi.org/10.1016/0022-5096(65)90023-2
https://doi.org/10.1016/0022-5096(65)90023-2
https://doi.org/10.5802/crmeca.18
https://doi.org/10.1016/0022-3115(85)90449-0
https://doi.org/10.1016/0022-3115(85)90449-0
https://doi.org/10.1016/S0038-1098(01)00517-8
https://doi.org/10.1016/S0038-1098(01)00517-8
https://doi.org/10.1190/1.1442051
https://doi.org/10.1016/j.pmatsci.2018.04.001
https://doi.org/10.1016/j.pmatsci.2018.04.001
https://doi.org/10.1121/1.1907431
https://doi.org/10.1121/1.1907431
https://doi.org/10.1063/1.1699601
https://doi.org/10.1063/1.1699601

	Determining elastic anisotropy of textured polycrystals using resonant ultrasound spectroscopy
	Abstract
	Introduction
	Elastic response of a solid, anisotropy and relationship to wave velocities
	Experimental and modeling methods
	Sample preparation
	Resonant ultrasound spectroscopy
	Ultrasonic pulse-echo
	Neutron diffraction
	Elastic self-consistent model

	Results and discussion
	Summary and conclusions
	Acknowledgements
	Appendix
	References




