Skip to main content
Log in

Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The dynamic recrystallization behavior of as-cast 4Cr5MoSiV1 steel was studied by hot compression tests conducted at various temperatures (900–1150 °C) and strain rates (0.01–10 s−1). Flow stress curves and microstructural observation were employed to experimentally identify the various flow mechanisms during deformation. A revised Sellars’ constitutive equation was adopted to construct the thermal activation energy map, which considered the effects of deformation temperature and strain rate on the material variables. The Johnson–Mehl–Avrami-Kolmogorov (JMAK) type equation \(X_{D} = 1 - \exp [ - k(\frac{{\varepsilon - \varepsilon_{c} }}{{\varepsilon_{p} }})^{m} ],(\varepsilon \ge \varepsilon_{c} )\) was applied to characterize the evolution of dynamic recrystallization (DRX) volume fraction. The nucleation of DRX was performed by the bulging, sub-grain swallowing. The presence of dendrite segregation would affect the DRX to a large extent that the segregated alloying elements and carbide precipitates inhibited the migration of boundaries. The thermal activation energy varied from 4310 to 470 kJ/mol and the thermal activation energy increased sharply at temperature below 1000 °C due to the dendrite segregation. By further analysis of the true stress–strain curves, the material constant \(m\) in JMAK type equation was determined to be 1.29366, indicating the DRX was difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Mao M, Guo H, Wang F, Sun X (2019) Effect of cooling rate on the solidification microstructure and characteristics of primary carbides in H13 steel. ISIJ Int 59:848–857. https://doi.org/10.2355/isijinternational.isijint-2018-524

    Article  CAS  Google Scholar 

  2. Kheirandish S, Noorian A (2008) Effect of Niobium on microstructure of cast AISI H13 hot work tool steel. J Iron Steel Res 15:61–66. https://doi.org/10.1016/S1006-706X(08)60145-4

    Article  CAS  Google Scholar 

  3. Wang M, Ma D, Liu Z, Zhou J, Chi H, Dai J (2014) Effect of Nb on segregation, primary carbides and toughness of H13 steel. Acta Metall Sin 50:285–293. https://doi.org/10.3724/SP.J.1037.2013.00490

    Article  CAS  Google Scholar 

  4. Zhang J, Huang J, Wang H, Lu L, Cui H (2014) Microstructures and mechanical properties of spray formed H13 tool steel. Acta Metall Sin 50:787–794. https://doi.org/10.3724/SP.J.1037.2013.00820

    Article  CAS  Google Scholar 

  5. Zhang B, Yang F, Qin Q, Lu T, Sun H, Lin S, Chen C, Guo Z (2020) Characterisation of powder metallurgy H13 steels prepared from water atomised powders. Powder Metall 63:9–18. https://doi.org/10.1080/00325899.2019.1692169

    Article  CAS  Google Scholar 

  6. Pei Y, Ma D, Liu B, Chen Z, Zhou R, Zhou J (2012) Effect of forging ratio on microstructure and mechanical property of H13 steel. Iron Steel 47:81–86. https://doi.org/10.1007/s11783-011-0280-z

    Article  CAS  Google Scholar 

  7. Wang J, Xu Z, Lu X (2020) Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 Steel. J Mater Eng and Perform 29:1849–1859. https://doi.org/10.1007/s11665-020-04686-0

    Article  CAS  Google Scholar 

  8. Perez M, Belzunce FJ (2015) The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel. Mater Sci Eng A 624:32–40. https://doi.org/10.1016/j.msea.2014.11.051

    Article  CAS  Google Scholar 

  9. Han Y, Li C, Ren J, Qiu C, Zhang Y, Wang J (2019) Dendrite segregation changes in high temperature homogenization process of as-cast H13 steel. ISIJ Int 59:1893–1900. https://doi.org/10.2355/isijinternational.ISIJINT-2019-148

    Article  CAS  Google Scholar 

  10. Zhou J, Ma D, Liu B, Kang A, Li X (2012) Research of band segregation evolution of H13 steel. J Iron Steel Res 24:47–52. https://doi.org/10.1007/s11783-011-0280-z

    Article  CAS  Google Scholar 

  11. Grange RA (1971) Effect of microstructural banding in steel. Metall Mater Trans B 2:417–426. https://doi.org/10.1007/BF02663328

    Article  CAS  Google Scholar 

  12. Berger CM, Finn J (1995) The effect of annealed microstructure on the impact toughness of premium H13 die steel, Transactions of the 18th international die casting congress and exposition, pp 357–359

  13. Li C, Zhang Q, Wang P (2017) Influence of forging ratio on heredity rules of grain structure for die steel H13. Forg Stamp Tech 42:9–12

    Google Scholar 

  14. Wang Y, Liu C, Jiang F, Zheng YX, Duan LZ (2015) Influence of forging process on the structure and impact property of electro remelted H13 steel. Hebei Metall 6:5–7

    Google Scholar 

  15. Zhou J, Ma D, Pei Y, Li Z, Liu B, Feng S (2013) Influence of Forging ratio on microstructure and impact property of H13 hot work die steel by electrosmelting. Mater Mech Eng 37:73–78

    Google Scholar 

  16. Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Des 111:548–574. https://doi.org/10.1016/j.matdes.2016.09.012

    Article  CAS  Google Scholar 

  17. Li C, Tan Y, Zhao F (2020) Dynamic recrystallization behaviour of H13-mod steel. J Iron Steel Res Int 27:1073–1086. https://doi.org/10.1007/s42243-020-00462-5

    Article  CAS  Google Scholar 

  18. Zhang J, Huang J, Cui H, Zhang J (2014) High-temperature thermal deformation and microstructure evolution of spray formed H13 tool steel. Hot Working Tech 43:1–5

    Google Scholar 

  19. Zhao Z, Sun M, Sun J (2017) study on hot deformation behavior and hot processing map of H13 steel containing rare earth. Mater Rev 31:149–155

    Google Scholar 

  20. Esteban-Manzanares G, Santos-Güemes R, Papadimitriou I, Martínezc E, LLorca J (2020) Influence of the stress state on the cross-slip free energy barrier in Al: an atomistic investigation. Acta Mater 184:109–119. https://doi.org/10.1016/j.actamat.2019.10.055

    Article  CAS  Google Scholar 

  21. Shi C, Mao W, Chen X (2013) Evolution of activation energy during hot deformation of AA7150 aluminum alloy. Mater Sci Eng A 517:83–91. https://doi.org/10.1016/j.msea.2013.01.080

    Article  CAS  Google Scholar 

  22. Wang S, Hou L, Luo J, Zhang J, Zhuang L (2015) Characterization of hot workability in AA 7050 aluminum alloy using activation energy and 3-D processing map. J Mater Process Tech 225:110–121. https://doi.org/10.1016/j.jmatprotec.2015.05.018

    Article  CAS  Google Scholar 

  23. Irani M, Lim S, Joun M (2019) Experimental and numerical study on the temperature sensitivity of the dynamic recrystallization activation energy and strain rate exponent in the JMAK model. J Mater Res Technol 8:1616–1627. https://doi.org/10.1016/j.jmrt.2018.11.007

    Article  Google Scholar 

  24. Quan G, Mao A, Luo G, Liang J, Wu D, Zhou J (2013) Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress-strain data. Mater Des 52:98–107. https://doi.org/10.1016/j.matdes.2013.05.030

    Article  CAS  Google Scholar 

  25. Peng X, Su W, Xiao D, Xu G (2018) Investigation on hot workability of homogenized Al-Zn-Mg-Cu alloy based on activation energy and processing map. JOM 70:993–999. https://doi.org/10.1007/s11837-017-2708-9

    Article  CAS  Google Scholar 

  26. Yue C, Zhang L, Liao S, Pei J, Gao H, Jia Y, Lian X (2009) Research on the dynamic recrystallization behavior of GCr15 steel. Mater Sci Eng A 499:177–181. https://doi.org/10.1016/j.msea.2007.11.123

    Article  CAS  Google Scholar 

  27. Jin X, Xu W, Shan D, Liu C, Zhang Q (2017) Deformation behavior microstructure evolution and hot workability of Mg-3.7Gd-2.9Y-0.7Zn-0.7Zr alloy. Met Mater Int 23:434–443. https://doi.org/10.1007/s12540-017-6352-2

    Article  CAS  Google Scholar 

  28. Zhang C, Zhang L, Xu Q, Xia Y, Shen W (2016) The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process. Mater Sci Eng A 678:33–43. https://doi.org/10.1016/j.msea.2016.09.056

    Article  CAS  Google Scholar 

  29. Xu Y, Tang D, Song Y, Pan X (2012) Dynamic recrystallization kinetics model of X70 pipeline steel. Mater Des 39:168–174. https://doi.org/10.1016/j.matdes.2012.02.034

    Article  CAS  Google Scholar 

  30. Liu J, Cui Z, Ruan L (2011) A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B. Mater Sci Eng A 529:300–310. https://doi.org/10.1016/j.msea.2011.09.032

    Article  CAS  Google Scholar 

  31. Jin S, Tao N, Marthinsen K, Li Y (2015) Deformation of an Al–7Mg alloy with extensive structural micro-segregations during dynamic plastic deformation. Mater Sci Eng A 628:160–167. https://doi.org/10.1016/j.msea.2015.01.057

    Article  CAS  Google Scholar 

  32. Wang J, Hodgson PD, Bikmukhametov L, Miller MK, Timokhina I (2017) Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels. Mater Des 141:8–56. https://doi.org/10.1016/j.matdes.2017.12.023

    Article  CAS  Google Scholar 

  33. Chen K, Yang Y, Shao G, Liu K (2011) Enhancing the homogenized diffusion of chromium in alloy steel ingot by forging. Steel Res Int 82:1325–1331. https://doi.org/10.1002/srin.201100128

    Article  CAS  Google Scholar 

  34. Zhang M, Li F, Wang S, Liu C (2010) Characterization of hot deformation behavior of a P/M nickel-base superalloy using processing map and activation energy. Mater Sci Eng A 527:6771–6779. https://doi.org/10.1016/j.msea.2010.07.039

    Article  CAS  Google Scholar 

  35. Hu H, Zhen L, Zhang B, Yang L, Chen J (2008) Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery. Mater Charact 59:1185–1189. https://doi.org/10.1016/j.matchar.2007.09.010

    Article  CAS  Google Scholar 

  36. Hussein AM, Rao SI, Uchic MD, Dimiduk DM, El-Awady JA (2015) Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals. Acta Mater 85:180–190. https://doi.org/10.1016/j.actamat.2014.10.067

    Article  CAS  Google Scholar 

  37. Alizadeh R, Mahmudi R, Ngan AHW, Langdon TG (2017) Microstructural evolution during hot shear deformation of an extruded fine-grained Mg–Gd–Y–Zr alloy. J Mater Sci 52(13):7843–7857. https://doi.org/10.1007/s10853-017-1031-8

    Article  CAS  Google Scholar 

  38. Samaee V, Sandfeld S, Idrissi H, Groten J, Pardoen T, Schwaiger R, Schryvers D (2020) Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars. Mater Sci Eng A 769:138295. https://doi.org/10.1016/j.msea.2019.138295

    Article  CAS  Google Scholar 

  39. Yan L, Shen J, Li Z, Li J, Yan X (2010) Microstructure evolution of Al-Zn-Mg-Cu-Zr alloy during hot deformation. Rare Met 29:426–432. https://doi.org/10.1007/s12598-010-0143-y

    Article  CAS  Google Scholar 

  40. He B, Hu B, Yen H, Cheng G, Wang Z, Luo H, Huang M (2017) High dislocation density–induced large ductility in deformed and partitioned steels. Science 357:1029–1032. https://doi.org/10.1126/science.aan0177

    Article  CAS  Google Scholar 

  41. Ma B, Li C, Song Y, Wang J, Sui F (2017) Deformation and recrystallization microtextures of an austenitic steel during asymmetrical hot rolling process. J Mater Sci 52(22):13212–13226. https://doi.org/10.1007/s10853-017-1172-9

    Article  CAS  Google Scholar 

  42. Zhou P, Ma Q (2017) Dynamic recrystallization behavior and processing map development of 25CrMo4 mirror plate steel during hot deformation. Acta Metall Sin (Engl Lett) 30:907–920. https://doi.org/10.1007/s40195-017-0613-4

    Article  CAS  Google Scholar 

  43. Mirzadeh H, Najafizadeh A (2012) Modeling and prediction of hot deformation flow curves[J]. Metall Mater Trans A 43:108–123. https://doi.org/10.1007/s11661-011-0836-3

    Article  CAS  Google Scholar 

  44. Wang S, Zhang M, Wu H, Yang B (2016) Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel. Mater Charact 118:92–101. https://doi.org/10.1016/j.matchar.2016.05.015

    Article  CAS  Google Scholar 

  45. Chen K, Yang Y, Shao G, Liu K (2011) Effect of recrystallization grain boundary on homogenizeddiffusion of chromium in alloy steel ingot. Trans Mater Heat Treat. 32:79–83. https://doi.org/10.13289/j.issn.1009-6264.2011.05.016

    Article  Google Scholar 

  46. Sun B, Fazeli F, Scott C, Brodusch N, Gauvin R, Yue S (2018) The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels. Acta Mater 148:249–262. https://doi.org/10.1016/j.actamat.2018.02.005

    Article  CAS  Google Scholar 

  47. Hong S, Kang K, Park CG (2002) Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels. Scripta Mater 46:163–168

    Article  CAS  Google Scholar 

  48. Sha Q, Sun Z (2009) Grain growth behavior of coarse-grained austenite in a Nb-V-Ti microalloyed steel. Mater Sci Eng A 523:77–84. https://doi.org/10.1016/j.msea.2009.05.037

    Article  CAS  Google Scholar 

  49. Xia Y, Liu Y, Mao Y, Quan G, Zhou J (2012) Determination of critical parameters for dynamic recrystallization in Ti–6Al–2Zr–1Mo–1V alloy. T Nonferr Metal Soc 22:668–672. https://doi.org/10.1016/S1003-6326(12)61783-X

    Article  CAS  Google Scholar 

  50. Yin F, Hua L, Mao H, Han X (2013) Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments. Mater Des 43:393–401. https://doi.org/10.1016/j.matdes.2012.07.009

    Article  CAS  Google Scholar 

  51. Huang X, Zhang H, Han Y, Wu W, Chen J (2010) Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater Sci Eng A 527:485–490. https://doi.org/10.1016/j.msea.2009.09.042

    Article  CAS  Google Scholar 

  52. Honeycombe RWK (1984) The plastic deformation of metals, 2nd edn. Edward Arnold Ltd., Maryland

    Google Scholar 

  53. Radhakrishnan B, Sarma GB, Zacharia T (1998) Modeling the kinetics and microstructural evolution during static recrystallization-Monte Carlo simulation of recrystallization. Acta Mater 46:4415–4433. https://doi.org/10.1016/S1359-6454(98)00077-9

    Article  CAS  Google Scholar 

  54. Avrami M (1940) Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  55. Gu S, Zhang L, Zhang C, Shen W (2016) Constitutive modeling for flow stress behavior of Nimonic 80a superalloy during hot deformation process. High Temp Mater Proc 35:327–336. https://doi.org/10.1515/htmp-2014-0204

    Article  CAS  Google Scholar 

  56. Wang M, Li Y, Wen W, Zhou J, Chiba A (2013) Quantitative analysis of work hardening and dynamic softening behavior of low carbon alloy steel based on the flow stress. Mater Des 45:384–392. https://doi.org/10.1016/j.matdes.2012.08.041

    Article  CAS  Google Scholar 

  57. Kim KW, Park JK (2015) A study of the dynamic recrystallization kinetics of V-microalloyed medium carbon steel. J Mater Sci 50(18):6142–6153. https://doi.org/10.1007/s10853-015-9171-1

    Article  CAS  Google Scholar 

  58. Cao Y, Di H, Misra RDK, Yi X, Zhang J, Ma T (2014) On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model. Mater Sci Eng A 593:111–119. https://doi.org/10.1016/j.msea.2013.11.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research Project of China (2016YFB0300402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Li, C., Ren, J. et al. Dynamic recrystallization behavior during hot deformation of as-cast 4Cr5MoSiV1 steel. J Mater Sci 56, 8762–8777 (2021). https://doi.org/10.1007/s10853-021-05792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05792-7

Navigation