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ABSTRACT

Central cracking in cross-wedge-rolled workpieces results in high wastage and

economic loss. Recent cross-wedge rolling tests on two batches of steel showed

that one batch formed central cracks, while the other was crack-free. The batches

were both nominally of the same chemical composition and thermomechanical

treatment history. In addition, both batches had passed all the standard quality

assessments set for conventional forging processes. It was suspected that the

different cracking behaviours were due to differences in microstructure between

the two as-received steel billets, and the material in cross-wedge rolling (CWR)

was more sensitive to the initial microstructure compared with other forging

processes due to its specific loading condition including ostensibly compression

and large plastic strain. Nevertheless, no previous study of this important

problem could be identified. The aim of this study is, therefore, to identify the

key microstructural features determining the central crack formation behaviour

in CWR. The hot workability of the as-received billets was studied under uni-

axial tensile conditions using a Gleeble 3800 test machine. Scanning electron

microscope with energy-dispersive X-ray spectroscopy and electron backscatter

diffraction was applied to characterise, quantitatively analyse, and compare the

chemical composition, phase, grain, and inclusions in these two billets, both at

room temperature and also at the CWR temperature (1080 �C). Non-metallic

inclusions (oxides, sulphides, and silicates) in the billets were determined to be

the main cause of the reported central cracking problem. The ductility of the

steels at both room and elevated temperatures deteriorated markedly in the

presence of the large volumes of inclusions. Grain boundary embrittlement

occurred at the CWR temperature due to the aggregation of inclusions along the

grain boundaries. It is suggested that a standard on specifying the inclusion

quantity and size in CWR billets be established to produce crack-free products.
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Introduction

Cross-wedge rolling (CWR) is widely used to man-

ufacture axially symmetric products, such as the

camshafts, gear shafts, or preforms for forging [1].

The formation of central cracks (i.e. the cavities

formed in the centre of the workpiece), also known as

the Mannesmann effect, was acknowledged as the

most common defect limiting the development of

CWR [2]. To drive further development of CWR into

areas such as the more safety-critical aerospace

industry, it is of great importance to understand the

fracture mechanisms of central crack formation and

determine a proper fracture criterion or damage

model to produce crack-free CWR products. The

research in this area is globally active and ongoing.

Pater et al. [3] compared nine fracture criteria to find

the one most suitable for the prediction of central

crack formation. Yang et al. [4] studied central crack

formation on a microstructural scale and revealed the

ductile fracture mechanism of steels at high temper-

ature. Zhou et al. [5] considered the combined effects

of the shear and normal stress and proposed a novel

fracture criterion, which was validated quantitively.

However, there is not an agreement on the fracture

mechanisms of central crack formation due to the

complex mechanical and microstructural behaviours

during CWR.

It is well known that the workability of a material is

usually determined by two factors: the process-re-

lated parameters (including die geometries, thermal

history, strain rate, etc.) and the material-related

parameters (such as phase composition, grain size,

and chemical composition). Intensive studies have

been conducted to investigate the effects of stress

states on central crack formation. Dong et al. [6] used

finite element methods to analyse the stress distri-

bution during CWR and determine the cause of

central cracks. Li et al. [7] systematically investigated

central crack formation under various die geometries

and proposed a non-dimensional fracture criterion

for producing central crack-free products. By adopt-

ing the Cockcroft–Latham damage model, Pater

concluded that using a large forming angle and small

spreading angle during CWR could effectively avoid

central cracking [8]. After careful analysis of the shear

and tensile deformation at the central region of the

workpiece during CWR, Yang et al. [4] suggested that

the forming angle had the greatest effect on central

crack formation. Although many studies have been

conducted to analyse the effects of process parame-

ters (e.g. die geometries), however, limited attention

has been devoted to understanding the effects of

material-related parameters (grain size, phase, and

chemical composition) on the central crack formation

problem. Thus, in order to control central crack for-

mation accurately and efficiently, it is necessary to

understand the microstructure evolution during

CWR and determine the critical microstructural fea-

ture for central crack formation.

Cross-wedge rolling companies previously found

that when using the same working process-related

parameters (i.e. die geometry, thermal history, and

strain rate), central cracks were frequently observed

in some batches of the CWR-formed steel parts, but

not in other batches, even though the batches had the

same nominal chemical composition [9]. The initial

steel feedstock billets met all the typical technical

specifications required, including strength, ductility,

chemical composition, and porosity. It is, therefore, of

great interest to investigate which material-related

parameters may influence central crack formation,

and the mechanisms involved. Cross-wedge rolling

companies suffer heavy losses due to this problem-

atic phenomenon. In discovering the material-related

fracture mechanisms and proposing possible solu-

tions to mitigate the risk of cracking, it is thought that

the findings from this study could have a large ben-

eficial impact on the CWR industry.

Some studies have been conducted to understand

the microstructure distribution and evolution during

CWR. For example, Wang et al. [10] studied AISI 5140

steel both numerically and experimentally, consid-

ering phase transformation, grain recrystallisation,

and grain growth. Huo et al. [11] established a uni-

fied constitutive model coupling microstructure and

ductile damage to predict the microstructure evolu-

tion and damage distribution. Nevertheless, limited

understanding of the key microstructural features of

central crack formation has been gained.

The workability of steel under warm and hot

forming conditions is greatly affected by

microstructural features such as inclusions, grain

size, phase, and carbides. In some cases, inclusions

were found to be detrimental to the mechanical

properties [12–14]. The size and distribution of

inclusions are of great importance to the workability

of steel [15–17]. The fracture mechanisms caused by

inclusions in stainless steels was revealed [15]. Under

deformation, microvoids, cracks, and decohesion
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formed around these inclusions due to the mismatch

of elastic and thermal properties within the matrix.

The microcracks formed could subsequently link up

and lead to fracture in the material. It has been

reported that the common inclusions in steels such as

alumina (Al2O3), manganese sulphide (MnS), and

spinel (mainly MgO–Al2O3) are mostly formed dur-

ing the steel melting-casting stage, or are introduced

in the calcium treatment, as in the case of calcium

aluminates (xCaO–yAl2O3) [18, 19]. It was studied

that Al2O3 inclusions are prone to form clusters

during hot rolling [20, 21]. These clusters break into

stringers and lead to anisotropy of toughness and

ductility, as further substantiated by Ma et al. [22].

MnS inclusions are softer than the surrounding steel

matrix, and during hot rolling, they tend to elongate

along the rolling direction and cause in-plane aniso-

tropy [12, 20, 23, 24].

Aside from these inclusions, the grain size effects

are also significant. Crowther and Mintz [25] and

Mintz et al. [26] discovered that a smaller grain size

could typically increase the hot formability of some

steels. Kim et al. [27] found that this effect became

negligible when the final fracture could be attributed

to precipitates. Phases, in terms of morphology and

volume fraction, affect the hot workability of steels

[28]. Marder and Bramfitt [29] found that the inter-

lamellar spacing of pearlites was inversely related to

both the yield strength and the fracture strength.

Elwazri et al. [30] observed that the ductility of

hypereutectoid steel was related to the pearlite col-

ony size. Further, Kammerhofer et al. [31] found that

the fully spheroidised microstructure in pearlitic steel

could reduce the strength but, remarkably, also

increase the fracture toughness. Kulakov et al. [32]

found that different phase components (ferrite,

pearlite, bainite, or martensite) in dual-phase steels

affected the recrystallisation and austenite formation

process. The interaction between recrystallisation and

austenitic transformation during intercritical anneal-

ing of cold-rolled DP steels was revealed by Zheng

and Raabe [33]. This interaction affected the mor-

phology and spatial distribution of the austenite.

However, as CWR is a complex problem involving

many variables at a microscopic scale, no compre-

hensive study has been found which identifies the

microstructural factors critical to the formation of

central cracks in steels during CWR.

The aim of this study, therefore, is to investigate

the microstructural factors associated with central

crack formation. The material studied is a gear shaft

steel, namely 20NiCr3H steel. Two characteristic

batches of steel samples were selected. The selection

was based on whether or not central cracks were

found in cross-wedge-rolled parts formed using the

batch. The mechanical behaviour of the two sample

batches was evaluated at both room and elevated

temperature using a Gleeble 3800 testing machine.

Four microscopic variables, potentially relevant in

central crack formation (inclusions, chemical com-

positions, phase, and grain size), were then studied

and compared in detail. From these studies, the key

variables and fracture mechanisms were determined,

and possible solutions for mitigating this problem

were proposed.

Materials and methodology

Material description

Two 20NiCr3H steel samples were supplied by Helai

Ltd. A representative axial section along with the

typical microstructure at the central region is illus-

trated in Fig. 1. The samples were taken from two

different steel billets, Billet 1 and Billet 2. Billet 1 was

selected from the batch of steel that was not found to

exhibit central cracking, while Billet 2 was selected

from a different batch that had produced cracked

products, as shown in Fig. 1b1, b2. Both samples

exhibited similar phase compositions, pearlite and

ferrite. The nominal chemical compositions of the

steels are presented in Table 1. These two batches of

steel billets were manufactured by the same process

(continuous casting and rolling). The total weight of

each batch was around 50 tonnes. To confirm the

consistency of central crack formation in each batch,

100 billets from each batch were selected and pro-

cessed using the same CWR process, that is, the bil-

lets were first heated to 1080 �C in a furnace within

65 s for austenisation, then placed in a CWR machine

(H1200) with the same tools (forming angle 30�,
stretching angle 7.5�, and area reduction ratio of 58%)

at the same rolling speed (20 m/min). After rolling,

all of the CWR products were cooled in the air, fol-

lowed by ultrasonic flaw testing to inspect for central

cracks. The 100 billets from Batch 1 did not show any

central cracks, while those from Batch 2 were all

centrally cracked.
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Thermal mechanical tests

The mechanical properties of two billets at both room

temperature and at the hot rolling temperature of

1080 �C were determined from uniaxial tensile tests

using a Gleeble 3800 test machine. The tensile test

specimen geometry and location in the billet cross

section is illustrated in Fig. 2a. For the tests under hot

rolling conditions the specimens were heated to

1080 �C within 65 s (at a heating rate of 16.2 �C/s),
then pulled to fracture at a strain rate of 1/s. The

samples were cooled down in the air. A thermocou-

ple was spot welded on the surface of the central

region of the specimen to record and control the

temperature. A dilatometer was applied to record the

width change during the tests. The above process was

repeated for the tensile test at room temperature with

the same sample geometry and strain rate, but

without any heating process. At least three tests at

room temperature and at 1080 �C were conducted to

ensure the repeatability of the obtained results.

Heat treatment process

The same thermal profile was applied to replicate the

preheating stage of CWR to investigate the preheated

microstructure changes prior to plastic deformation.

Samples of dimensions 5 9 5 9 3 mm were cut from

the central regions of both Billets 1 and 2, indicated as

the A0 region in Fig. 2b. The samples were heated to

Figure 1 As-received materials: a the axial cross section of one billet along with the SEM characterised microstructure at the central

region; b1, b2 the CWR-formed axial products from Billets 1 and 2, respectively.

Table 1 The nominal chemical compositions of the steel 20CrNi3H [34]

Chemical compositions C Si Mn P S Cr Ni Cu [O]

GB/T5216-85 0.17/0.23 0.17/0.37 0.30/0.65 B 0.035 B 0.035 0.60/0.95 2.70/3.25 B 0.20 B 20 ppm

Figure 2 Schematic

illustration of a geometry and

location of the tensile testing

specimen on the billets and

b the regions of interest on the

transverse section of the billet.
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1080 �C and held for 65 s in a preheated furnace, then

were immediately water quenched to freeze the

formed microstructure.

Material characterisation

Samples taken from the test specimens were ground

with grinding papers from P800 to P4000, followed

by 1 lm diamond suspension polishing. The polished

sample surfaces were then etched by the 2% nital for

approximately 20 s to reveal the phase structure. For

electron backscatter diffraction (EBSD) characterisa-

tion, the samples were polished further via colloidal

silica suspension for 20 min.

The inclusions in the samples were characterised

using optical microscope and scanning electron

microscope (SEM) images. To quantify the statistic

distribution of the inclusions, Image J software [35]

was used to detect inclusions based on the high

contrast between the steel matrix and inclusions.

Scanning electron microscopy with energy-dispersive

X-ray spectroscopy (SEM/EDX) was applied to

identify the chemical composition of inclusions.

SEM/EDX was also used to identify the chemical

elements, Ni, Cr, and Mn, and quantitatively analyse

their distribution across the transverse section (from

A0 to A5 along three paths, Fig. 2b). Three points/

maps were taken at each area, and the average values

were calculated to observe their distribution across

the transverse section.

The phase and grain size evolution were charac-

terised using the Bruker Esprit EBSD system. The

SEM operating voltage was 25 kV, the magnification

was set at 5009, and the scanning step size was set at

0.5 lm. The postprocess for phase identification was

carried out using Atex software [36]. A 15� misori-

entation between adjacent points was set as the grain

boundary definition. No smoothing process was

applied to these obtained EBSD maps.

Results

Thermal mechanical tests

Stress–strain curves

The stress–strain curves for the two billets at room

temperature and at 1080 �C are compared in Fig. 3.

The specimen fracture areas are displayed as insets.

The ductility of Billet 1 (crack-free) was considerably

higher than that of Billet 2 (central cracked), both at

room temperature and at elevated temperature. At

room temperature, the fracture strain of Billet 2 was

approximately 50% lower than that of Billet 1—0.07

and 0.12, respectively. At elevated temperature, the

ductility of both samples increased significantly. The

fracture strain of Billet 2 doubled, but it was still only

about 75% of that of Billet 1. Although the difference

in ductility between two samples was significant, it is

interesting to note that their flow stress levels were

similar. At room temperature, the yield strengths

were almost the same, at approximately 490 MPa,

and the ultimate strengths were 685 and 690 MPa, for

Billets 1 and 2, respectively. At 1080 �C, the yield

strength of Billet 2 was 46 MPa, with an ultimate

strength of 60 MPa, slightly higher than that of Billet

1 (54 MPa).

Fracture surface

Figure 4 presents the fracture micrographs from the

tensile specimens. Ductile fracture was observed in

billets deformed and fractured at room temperature,

and intergranular fracture was found at elevated

temperature. According to Fig. 4a, b, large numbers

of dimples and cracks were observed in both speci-

mens, indicating ductile fracture at room temperature

in both billets. The clear regular patterns show that

the cracks were prone to propagate through the

thickness direction, as indicated by the blue arrows in

Fig. 4a, b. This corresponds to the axial direction of

the as-received billets. A closer look reveals that large

Figure 3 True stress—true strain curves of the two billets at room

temperature and rolling temperature.
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and elongated inclusions were scattered throughout.

These were identified as MnS by using SEM/EDX.

When comparing the room temperature fracture

surfaces of the two billets, it is clear that the fracture

surface of Billet 2 was rougher, and the crack prop-

agating paths were more random, whereas the cracks

in Billet 1 propagated mainly along the thickness

direction. This may point to the greater presence of

MnS inclusions formed in Billet 2.

At elevated temperature, intergranular fracture

occurred in both billets, as shown in Fig. 4c, d. The

fracture nucleated on the transverse section, then

propagated along the loading direction, and finally

failed along the transverse section. Unlike the rough

surface at room temperature, here, the fracture sur-

faces were relatively smooth. Large particles were

observed, and higher magnification images indicate

these may be austenite grains. The austenite grains

observed in Billet 2 were significantly smaller than

those in Billet 1. This may be due to constrained

dynamic recrystallisation in Billet 2 resulting from

the inclusions hindering grain growth.

Figure 4 Fractography of two

billets at room temperature and

at 1080 �C.
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The longitudinal section of the fracture tips for the

two elevated temperature samples is shown in Fig. 5.

A comparison of the macroscopic images in Fig. 5a, b

reveals intensive secondary cracks in Billet 1. In both

cases, the cracks propagated along the same direc-

tion, normal to the loading direction. Under a higher

magnification, as depicted in Fig. 5c, it is clear that

the crack edges were not strictly normal to the load-

ing direction, but were distributed along the prior

austenite grain boundaries, confirming the inter-

granular nature of the fracture. A layer of iron oxides

between the crack and the steel matrix is also

observed. This layer is suspected to have been

formed after the tensile test, possibly during the

sample preparation process, as steel tends to oxide

easily in the air. Through observing the gap between

the iron oxides and the steel matrix, as illustrated in

Fig. 5c, d, some granular voids were observed with

weak signals of oxides, sulphides, and silicates. These

may be attributed to the residual debris of the oxides

and silicates. These are ‘hard’ phases and may have

separated from the steel matrix during the tensile test

or been removed during the subsequent sample

preparation. However, the EDX signal of the MnS

inclusions was strong, as indicated in Fig. 5g. This is

probably due to the greater compatibility between the

MnS inclusions and the steel matrix.

In the longitudinal section of Billet 2, no secondary

cracking was observed, as shown in Fig. 5b, indicat-

ing that Billet 2 was less ductile than Billet 1. The

fracture occurred and propagated rapidly along the

primary crack without triggering any visible sec-

ondary cracks. On investigating the crack propaga-

tion, MnS inclusions were found along the crack tip,

which suggests that the MnS inclusions accelerated

the crack propagation and determined the crack

propagating route. This supports previous studies,

which have found that MnS inclusions increase the

anisotropy of ductility, as observed by Pickering [23],

Holappa and Helle [20] and Bhadeshia and Honey-

combe [12].

Characterisation of inclusions

The inclusions present in the two as received billets,

both before and after the heat treatment (heated to

1080 �C and water quenched), are compared in

Figs. 6 and 7. Before the heat treatment, both elon-

gated and granular defects were observed in the two

billets, as depicted in Fig. 6a, b. Figure 6c, d presents

individual typical granular and elongated inclusions

as found in the two billets. The granular defects were

identified to be oxides, such as Al2O3, MgO, and CaO

(Fig. 6f), while the elongated ones were mostly made

Figure 5 Microstructure of the longitudinal section of specimens after tensile tests at 1080 �C: a, b macrostructure of Billets 1 and 2 at the

fracture tips; c, d one crack in Billet 1 at various magnifications; e crack propagation in Billet 2; f, g typical inclusions in Billets 1 and 2.
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by sulphides, such as MnS (Fig. 6g). MnS and CaS

occasionally appeared along with the oxides, as

illustrated in Fig. 6e.

After the heat treatment, the inclusions altered

greatly in terms of size, number, and chemical com-

position, as demonstrated in Fig. 7. It can be clearly

Figure 6 Inclusions distribution and identification in the two as-received billets: a, b backscattered images showing inclusions in Billets 1

and 2; c, d typical inclusions in Billets 1 and 2; e–g chemical compositions of the typical inclusions.

Figure 7 Inclusions distribution and identification in the two

billets after heat treatment: a, b backscattered images show

impurities in Billets 1 and 2 after heat treatment; c–e typical

inclusions in Billets 1 and 2 after heat treatment; f–h chemical

compositions of the typical inclusions.
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seen from Fig. 7a, b that the size and number of

inclusions increased after the heat treatment, as

compared with those in Fig. 6a, b. The number of

inclusions in Billet 2 was higher than that in Billet 1,

whereas this trend was not observed at room tem-

perature. As illustrated in Fig. 7c–e, large gaps were

found between the inclusions and the steel matrix,

while, at room temperature, they were well bonded,

as shown in Fig. 6c–e. In addition, based on Fig. 7f–h,

it is clear that the chemical components became more

complex, with a new type of inclusion (silicates)

being formed due to element diffusion at the high

temperature.

In terms of the morphologies and chemical com-

position, there was no difference between the two

billets at room temperature and at 1080 �C. However,

at 1080 �C, the number and size of inclusions in Billet

2 was notably higher than in Billet 1.

A quantitative comparison of the inclusion his-

tograms for the two billets is presented in Fig. 8. The

histograms show that there were more small inclu-

sions and less large ones in all samples. Comparison

of the inclusions in Billets 1 and 2 reveals that the

number of inclusions in Billet 2 was always higher

than that of Billet 1, both with or without heat treat-

ment, and in nearly all inclusion size ranges. The heat

treatment significantly increased the number of

inclusions in Billet 2, especially inclusions sized

between 0 and 40 lm2. This number was nearly three

times of that in Billet 1, which suggests that the slight

difference in inclusion quantity at room temperature

became significantly enlarged at elevated

temperature.

Characterisation of chemical and phase
compositions and grain size

Figure 9 presents the chemical components of ele-

ments Cr, Mn, and Ni in the two billets and compares

them with the specification. The difference in the

element content between the two samples was mini-

mal. The results also indicate that each element was

uniformly distributed from the centre to the edges in

both billets, and that all chemical content was within

specification. This confirms that chemical composi-

tion and distribution were in close agreement with

the specification provided by the steel supplier.

Figure 10 displays the distribution and compo-

nents of the phases in the two billets before and after

the heat treatment. The phase components of the four

samples were consistent, containing ferrite, cemen-

tite, and austenite. However, the phase fractions

between the two samples significantly differed before

the heat treatment, as evidenced in Fig. 10a, b. In

Billet 1, the percentage of ferrite was as high as

95.58%, with a tiny amount of cementite and

austenite, while, in Billet 2, the percentage of

austenite reached 23.38%. A significant difference in

phase fraction may lead to different microstructures

at high temperature. Heat treatment was applied to

allow comparison of the microstructures at the roll-

ing temperature. The heat treatment was applied

without any loading of deformation of these

specimens.

Figure 8 Histogram of inclusions in the two billets before and

after heat treatment.

Figure 9 Chemical distribution of Cr, Mn, and Ni on the cross

section of the two billets (dashed lines with the same colours

present the requirements of the specification).
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Figure 10c, d illustrates that the heat treatment

induced homogeneous phase structures. The differ-

ence in ferrite content between two samples was as

little as 0.01%. The differences in the other two phases

were also minimal, because the steel was fully

austenitised during the heat treatment at 1080 �C.
The austenitising temperature for this steel is 850 �C.

The average grain size of the two billets before and

after the heat treatment is also compared in Fig. 11.

Again, only a small difference in grain size was found

between the two billets. Before the heat treatment, the

grain size in Billet 1 was 4.9% larger than that in Billet

2, while, after the heat treatment, the difference was

reduced to 0.75%. This means that the heat treatment

also reduced the difference in grain size between the

two billets.

Discussion

Reasons for low hot ductility

It is widely known that for a given initial material,

intrinsic factors such as inclusions, chemical

Figure 10 Phase comparisons

of billets before and after heat

treatment.

Figure 11 Grain size

distribution of the two billets

before and after the heat

treatment.
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segregation, grain size, and phase composition sig-

nificantly affect ductility during subsequent hot

forming. In most cases, a small grain size will

improve hot ductility [25, 26, 37, 38]. High amounts of

large inclusions typically have a detrimental effect on

the formability of the metals and must be strictly

controlled [17, 19, 39, 40]. Alloyed elements such as V

and B are beneficial to the hot ductility of steel, but

some elements, such as Ti, are not [41, 42]. The initial

phase composition and volume fraction affect the

subsequent recrystallisation and phase transforma-

tion process, as well as ductility [33]. In the work

presented here, all four of these factors have been

considered, analysed, and compared.

Significant differences were identified between the

phase volume fractions and inclusions within the two

billets in the as-received condition, as illustrated by

Figs. 8 and 10a, b. These two critical microstructural

factors do, however, demonstrate highly distinct

trends after the heat treatment. The differences in

phase volume between the two samples were sig-

nificantly reduced as phase transformation resulted

in homogenisation, as demonstrated in Fig. 10c, d.

However, after the heat treatment, significantly more

and larger inclusions were found in Billet 2 (the

cracked billet) as compared to Billet 1, as shown in

Fig. 8. Therefore, inclusions can be identified as

potentially being the key factor responsible for cen-

tral crack formation. This is consistent with the

findings of Huo et al. [11] and Yang et al. [4], which

state that the inclusions in CWR are considered to be

a nucleation source for central cracks. This also aligns

well with the general concept that inclusions are

primary factors driving central crack formation [1, 7].

All other microstructural factors, such as chemical

composition and grain size, exhibited little difference

between the two billets. Therefore, they are highly

unlikely to have resulted in the central cracks found

in this study.

Inclusions evolution and crack formation

By comparing Figs. 5, 6, and 7, the inclusion evolu-

tion in terms of chemical composition, distribution,

and morphologies can be seen. According to Figs. 6

and 7, it is clear that both samples experienced an

increase in size and number of inclusions due to the

thermal expansion and the formation of new inclu-

sions at the high temperature. The newly formed

microvoids/cracks resulted from the different

thermal expansion coefficient and elasticity between

the steel matrix and the inclusions. This generated

stress concentration around the inclusions, and

finally led to microvoid/crack formation. These

microvoids/cracks became the nucleation sites for

the subsequent fracture. The complicated chemical

compositions of the inclusions after the heat treat-

ment, as depicted in Fig. 7f–h, indicates that strong

diffusion occurred during the heat treatment, and

new inclusions, such as silicates, were generated.

The inclusions along the edges of the tensile test

cracks were characterised, as shown in Fig. 5.

Although the numbers of inclusions in Fig. 5f, g were

not very high, oxides and silicates were observed

around the crack edges and in the steel matrix. Pre-

existing inclusions were still observed in the unde-

formed samples after the heat treatment, as shown by

comparing Fig. 6a, b, (as-received) with Fig. 7a, b,

(after heat treatment). The size of inclusions in Fig. 5d

was small compared to the inclusions after the heat

treatment. This is mainly due to the debonding

between the steel matrix and the inclusions during

the tensile test. Larger inclusions are more suscepti-

ble to this decohesion due to the accumulated stress

between the interface with the matrix. However, the

MnS is relatively soft and deformable at the high

temperature, so similar numbers of MnS inclusions

were still observed after the tensile test.

Under the plastic deformation, the previous

microvoids/cracks in Fig. 7c, e grew and coalesced

along the direction normal to the loading direction, as

illustrated in Fig. 5a. Meanwhile, as the plastic

deformation proceeded, new microvoids/cracks

formed as a result of inclusions fracture, debonding

between inclusions and steel matrix, or damage to the

steel matrix [16]. With increasing plastic deformation,

the voids/cracks quickly propagated the crack and

led to fracture.

In summary, during the heat treatment process,

element diffusion, new inclusion formation, and

inclusion growth occurred simultaneously. Micro-

voids/cracks were formed. During the tensile test,

these microvoids/cracks then grew and coalesced,

and finally lead to fracture during the plastic defor-

mation process.

Fracture mechanisms in CWR

The embrittlement resulting in premature fracture

during the hot tensile test, depicted in Fig. 4c, d,
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occurred when the Gleeble 3800 was used to replicate

the CWR process. Previous studies demonstrated that

the steel experienced a ductility drop at a tempera-

ture ranging from 900 to 1200 �C, which was sug-

gested as being due to the aggregation of sulphites

and oxides at grain boundaries [19, 43]. The inclu-

sions, such as oxides and sulphides, observed in

Fig. 4c, d, are considered to be the dominant factor

responsible for the low ductility.

At elevated temperature, microvoids/cracks are

formed at the inclusion-steel matrix interface due to

the accumulated thermal stress generated by a mis-

match between the thermal expansion coefficients of

inclusion and matrix. Simultaneously, grain bound-

ary and phase boundary migration occur during the

associated recrystallisation and phase transforma-

tion, thus resulting in the aggregation of inclusions

adjacent to the grain boundaries. This reduces the

grain boundaries’ strength as compared to the grain

interiors, facilitating crack propagation along grain

boundaries, as shown in Fig. 5c. On a microscale, the

crack propagation direction was controlled by the

grain boundaries or inclusions, as indicated in

Fig. 5e, whereas, on a macroscale, the overall direc-

tion was determined by the stress state, as depicted in

Fig. 5a, b. As further deformation was imposed

during this CWR simulation process, micro- and

macrocracks formed and propagated, leading to the

final fracture of the material.

The inclusions in Billet 2 were denser and larger

than those in Billet 1, as seen in Fig. 8. At the CWR

temperature, the difference in the inclusions size and

quantity was enlarged because the thermal process

facilitated to revealing the edges of the initial inclu-

sions (e.g. MnS) due to the their thermal coefficient

mismatch with the matrix materials, and the forma-

tion of new inclusions (e.g. silica) caused by fast

diffusion and chemical reaction. The high quantity of

inclusions in Billet 2 accelerated the element con-

centration and facilitated the formation of new

inclusions [44–46]. The large-sized inclusions facili-

tated crack initiation, while the large volume fraction

of inclusions accelerated the crack propagation along

the grain boundary. As illustrated in Fig. 3, this

resulted in the premature fracture in Billet 2, as

demonstrated by the billet’s lower ductility.

Furthermore, in industry, the loading condition on

the workpiece is much more complex, as studied in

the previous work [5], being subjected to triaxial

stress state, cyclic loading, and large plastic strain.

This complex loading condition accelerates the

decohesion between the inclusion and steel matrix.

Figure 12 shows one large inclusion on the crack

surface. More detailed discussion on the important

role of inclusions in cracking formation during the

CWR was presented in Ref [4]. It demonstrated that

the inclusions provided the nucleation sites for void

formation, and generated strong localised stress

causing void coalescence, and finally formed macro-

scopic cracks under continuous growth and coales-

cence. Due to the specific loading conditions and the

specific fracture mechanism (shear cracking), the

material in the CWR process is sensitive to inclusions.

Therefore, to produce crack-free products, it is nec-

essary to establish standards to specify the inclusion

quantity and size in the CWR billet.

Conclusions

Central cracks in CWR were observed in one of two

20CrNi3H steel billets, both billets having the same

chemical composition. These two billets were studied

by experimentally simulating the CWR process in a

tensile test using a Gleeble 3800 testing machine. The

Figure 12 Cracked sample

a macro crack; b inclusions on

the crack surface.
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microstructure of samples taken from the two billets

was characterised under various thermal and

mechanical conditions. The primary reason for the

central cracking was identified, and a fracture

mechanism was suggested. The following conclu-

sions can be drawn:

1. Non-metallic inclusions, including oxides, sul-

phides, and silicates, are the critical factors for

central crack formation in the CWR of 20NiCr3H

steels. The effect of the steel chemical composi-

tion, phase composition, and grain size were

found to be less critical in this case.

2. At the CWR temperature, the number and size of

inclusions in the steels are enlarged, and micro-

voids/cracks initiate around the inclusions.

Under the plastic deformation, microvoids/

cracks propagate along the inclusions, and the

presence of sulphides accelerates the crack prop-

agation and leads to the material anisotropy. The

ostensibly compressive conditions in CWR make

the material more sensitive to inclusions.

3. The premature fracture in steel Billet 2 (inclined

to central cracking) could be attributed to the

inclusions introducing grain boundary embrittle-

ment, as they tend to aggregate along the grain

boundary during the recrystallisation at elevated

temperature.

4. Compared to other conventional forging pro-

cesses, a stricter standard on inclusions is

required for the billets used for CWR to produce

qualified products due to the specific loading

condition.
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