Skip to main content
Log in

Engineering biomimetic polyurethane using polyethylene glycol and gelatin for blood-contacting applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyurethane (PU) has been utilized in the development of various blood-contacting medical devices owing to their good biocompatibility and mechanical properties. The present study highlights the design and engineering of biomimetic polyurethanes with enhanced hemocompatibility by blending it with polyethylene glycol (PEG) and modifying its surface using gelatin as a surface modifier. The physicochemical characterization of the developed polyurethanes was performed by attenuated total reflectance-Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, water contact angle analysis and water uptake studies, while thermal properties were evaluated using thermogravimetric analysis. The surface protein adsorption pattern along with hemocompatibility of the films was verified by BCA, hemolysis assay, activated partial thromboplastin time, prothrombin time and platelet adhesion studies. Our results demonstrated that the developed polyurethane surfaces modified with PEG and gelatin exhibited increased hydrophilicity which caused enhanced biocompatibility and hemocompatibility. The platelet adhesion was reduced by 92.54% and 88.81% on the developed PU/PEG-4K and PU/PEG-4K/GEL surfaces, respectively. The in vitro cytocompatibility evaluation was done using HUVECs which confirmed that the developed surfaces were able to promote adhesion and proliferation of HUVECs. The biomimetic polyurethane surfaces co-engineered with PEG and gelatin exhibited excellent hemocompatibility and can be promising candidates for their further evaluation toward their application in the blood-contacting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ratner BD (1993) The blood compatibility catastrophe. J Biomed Mater Res 27(3):283–287. https://doi.org/10.1002/jbm.820270302

    Article  CAS  Google Scholar 

  2. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier, Amsterdam

    Google Scholar 

  3. Gbyli R, Mercaldi A, Sundaram H, Amoako KA (2018) Achieving totally local anticoagulation on blood contacting devices. Adv Mater Interfaces 5(4):1700954. https://doi.org/10.1002/admi.201700954

    Article  CAS  Google Scholar 

  4. Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman P, Wiseman J (1991) N omega-hydroxy-l-arginine is an intermediate in the biosynthesis of nitric oxide from l-arginine. J Biol Chem 266(10):6259–6263

    CAS  Google Scholar 

  5. Marletta MA (1989) Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci 14(12):488–492. https://doi.org/10.1016/0968-0004(89)90181-3

    Article  CAS  Google Scholar 

  6. Kushwaha M, Anderson JM, Bosworth CA, Andukuri A, Minor WP, Lancaster JR Jr, Anderson PG, Brott BC, Jun HW (2010) A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials 31(7):1502–1508. https://doi.org/10.1016/j.biomaterials.2009.10.051

    Article  CAS  Google Scholar 

  7. Cook KE, Perlman CE, Seipelt R, Backer CL, Mavroudis C, Mockros LF (2005) Hemodynamic and gas transfer properties of a compliant thoracic artificial lung. ASAIO J 51(4):404–411. https://doi.org/10.1097/01.mat.0000169707.72242.8f

    Article  Google Scholar 

  8. Kolla S, Crotti S, Lee WA, Gargulinski MJ, Lewandowski T, Bach D, Hirschl RB, Bartlett RH (1997) Total respiratory support with tidal flow extracorporeal circulation in adult sheep. ASAIO J 43(5):M811–M816

    Article  CAS  Google Scholar 

  9. Sato H, Griffith GW, Hall CM, Toomasian JM, Hirschl RB, Bartlett RH, Cook KE (2007) Seven-day artificial lung testing in an in-parallel configuration. Ann Thorac Surg 84(3):988–994. https://doi.org/10.1016/j.athoracsur.2007.03.016

    Article  Google Scholar 

  10. Amoako KA, Cook KE (2011) Nitric oxide-generating silicone as a blood-contacting biomaterial. ASAIO J 57(6):539–544. https://doi.org/10.1097/MAT.0b013e31823b9692

    Article  CAS  Google Scholar 

  11. Murphy JA, Savage CM, Alpard SK, Deyo DJ, Jayroe JB, Zwischenberger JB (2001) Low-dose versus high-dose heparinization during arteriovenous carbon dioxide removal. Perfusion 16(6):460–468. https://doi.org/10.1177/026765910101600605

    Article  CAS  Google Scholar 

  12. Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29(32):4285–4291. https://doi.org/10.1016/j.biomaterials.2008.07.039

    Article  CAS  Google Scholar 

  13. Chen KY, Kuo JF, Chen CY (2000) Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials 21(2):161–171. https://doi.org/10.1016/S0142-9612(99)00144-1

    Article  Google Scholar 

  14. Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14(1):67–90. https://doi.org/10.1177/088532829901400104

    Article  CAS  Google Scholar 

  15. Tai NR, Salacinski HJ, Edwards A, Hamilton G, Seifalian AM (2000) Compliance properties of conduits used in vascular reconstruction. Brit J Surg 87(11):1516–1524. https://doi.org/10.1046/j.1365-2168.2000.01566.x

    Article  CAS  Google Scholar 

  16. Han DK, Jeong SY, Kim YH (1989) Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes. J Biomed Mater Res 23:211–228

    Article  CAS  Google Scholar 

  17. Ito Y, Sisido M, Imanishi Y (1986) Synthesis and antithrombogenicity of anionic polyurethanes and heparin-bound polyurethanes. J Biomed Mater Res 20(8):1157–1177. https://doi.org/10.1002/jbm.820200808

    Article  CAS  Google Scholar 

  18. Ryu GH, Han DK, Park S, Kim M, Kim YH, Min B (1995) Surface characteristics and properties of lumbrokinase-immobilized polyurethane. J Biomed Mater Res 29(3):403–409. https://doi.org/10.1002/jbm.820290315

    Article  CAS  Google Scholar 

  19. Santerre JP, Ten Hove P, VanderKamp NH, Brash JL (1992) Effect of sulfonation of segmented polyurethanes on the transient adsorption of fibrinogen from plasma: possible correlation with anticoagulant behavior. J Biomed Mater Res 26(1):39–57. https://doi.org/10.1002/jbm.820260105

    Article  CAS  Google Scholar 

  20. Ito Y, Iguchi Y, Kashiwagi T, Imanishi Y (1991) Synthesis and nonthrombogenicity of polyetherurethaneurea film grafted with poly(sodium vinyl sulfonate). J Biomed Mater Res 25(11):1347–1361. https://doi.org/10.1002/jbm.820251104

    Article  CAS  Google Scholar 

  21. Okkema AZ, Visser SA, Cooper SI (1991) Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. J Biomed Mater Res 25(11):1371–1395. https://doi.org/10.1002/jbm.820251106

    Article  CAS  Google Scholar 

  22. Grasel TG, Cooper SL (1989) Properties and biological interactions of polyurethane anionomers: effect of sulfonate incorporation. J Biomed Mater Res 23(3):311–338. https://doi.org/10.1002/jbm.820230304

    Article  CAS  Google Scholar 

  23. Okkema AZ, Yu XH, Cooper SL (1991) Physical and blood contacting characteristics of propyl sulphonate grafted Biomer. Biomaterials 12(1):3–12. https://doi.org/10.1016/0142-9612(91)90123-R

    Article  CAS  Google Scholar 

  24. Silver JH, Marchant JW, Cooper SL (1993) Effect of polyol type on the physical properties and thrombogenicity of sulfonate-containing polyurethanes. J Biomed Mater Res 27(11):1443–1457. https://doi.org/10.1002/jbm.820271111

    Article  CAS  Google Scholar 

  25. Skarja GA, Brash JL (1997) Physicochemical properties and platelet interactions of segmented polyurethanes containing sulfonate groups in the hard segment. J Biomed Mater Res 34(4):439–455. https://doi.org/10.1002/(SICI)1097-4636(19970315)34:4%3c439:AID-JBM5%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  26. Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620. https://doi.org/10.1021/la010384m

    Article  CAS  Google Scholar 

  27. Pasche S, Vörös J, Griesser HJ, Spencer ND, Textor M (2005) Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. J Phys Chem B 109(37):17545–17552. https://doi.org/10.1021/jp050431+

    Article  CAS  Google Scholar 

  28. McPherson T, Kidane A, Szleifer I, Park K (1998) Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis. Langmuir 14(1):176–186. https://doi.org/10.1021/la9706781

    Article  CAS  Google Scholar 

  29. Efremova NV, Sheth SR, Leckband DE (2001) Protein-induced changes in poly(ethylene glycol) brushes: molecular weight and temperature dependence. Langmuir 17(24):7628–7636. https://doi.org/10.1021/la010405c

    Article  CAS  Google Scholar 

  30. Wang L, Murthy SK, Barabino GA, Carrier RL (2010) Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31(29):7586–7598. https://doi.org/10.1016/j.biomaterials.2010.06.036

    Article  CAS  Google Scholar 

  31. Thomas V, Zhang X, Vohra YK (2009) A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS® bio-blends. Biotechnol Bioeng 104(5):1025–1033. https://doi.org/10.1002/bit.22467

    Article  CAS  Google Scholar 

  32. Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, Mcmanus M, Bowlin G (2007) Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int 56(11):1349–1360. https://doi.org/10.1002/pi.2344

    Article  CAS  Google Scholar 

  33. Solomon B, Sahle FF, Gebre-Mariam T, Asres K, Neubert RHH (2012) Microencapsulation of citronella oil for mosquito-repellent application: formulation and in vitro permeation studies. Eur J Pharm Biopharm 80(1):61–66. https://doi.org/10.1016/j.ejpb.2011.08.003

    Article  CAS  Google Scholar 

  34. Sutaphanit P, Chitprasert P (2014) Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem 150:313–320. https://doi.org/10.1016/j.foodchem.2013.10.159

    Article  CAS  Google Scholar 

  35. Shi C, Yuan W, Khan M, Li Q, Feng Y, Yao F, Zhang W (2015) Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Mater Sci Eng C 50:201–209. https://doi.org/10.1016/j.msec.2015.02.015

    Article  CAS  Google Scholar 

  36. Desai NP, Hubbell JA (1992) Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules 25(1):226–232. https://doi.org/10.1021/ma00027a038

    Article  CAS  Google Scholar 

  37. Desai NP, Hubbell JA (1991) Solution technique to incorporate polyethylene oxide and other water-soluble polymers into surfaces of polymeric biomaterials. Biomaterials 12(2):144–153. https://doi.org/10.1016/0142-9612(91)90193-E

    Article  CAS  Google Scholar 

  38. Quirk RA, Davies MC, Tendler SJ, Shakesheff KM (2000) Surface engineering of poly(lactic acid) by entrapment of modifying species. Macromolecules 33(2):258–260. https://doi.org/10.1021/ma9916133

    Article  CAS  Google Scholar 

  39. Medlicott NJ, Jones DS, Tucker IG, Holborow D (1992) Preliminary release studies of chlorhexidine (base and diacetate) from poly(ϵ-caprolactone) films prepared by solvent evaporation. Int J Pharm 84(1):85–89. https://doi.org/10.1016/0378-5173(92)90218-Q

    Article  CAS  Google Scholar 

  40. Medlicott NJ, Tucker IG, Rathbone MJ, Holborow DW, Jones DS (1996) Chlorhexidine release from poly(ε-caprolactone) films prepared by solvent evaporation. Int J Pharm 143(1):25–35. https://doi.org/10.1016/S0378-5173(96)04675-3

    Article  CAS  Google Scholar 

  41. Hou Q, Freeman R, Buttery LD, Shakesheff KM (2005) Novel surface entrapment process for the incorporation of bioactive molecules within preformed alginate fibers. Biomacromolecules 6(2):734–740. https://doi.org/10.1021/bm049420x

    Article  CAS  Google Scholar 

  42. Guo H, Ulbricht M (2010) The effects of (macro) molecular structure on hydrophilic surface modification of polypropylene membranes via entrapment. J Colloid Interface Sci 350(1):99–109. https://doi.org/10.1016/j.jcis.2010.06.032

    Article  CAS  Google Scholar 

  43. Berndt E, Behnke S, Ulbricht M (2011) Influence of alkyl chain length and molecular weight on the surface functionalization via adsorption/entrapment with biocidal cationic block copolymers. Eur Polym J 47(12):2379–2390. https://doi.org/10.1016/j.eurpolymj.2011.09.019

    Article  CAS  Google Scholar 

  44. González-González M, Mayolo-Deloisa K, Rito-Palomares M (2012) PEGylation, detection and chromatographic purification of site-specific PEGylated CD133-Biotin antibody in route to stem cell separation. J Chromatogr B 893:182–186. https://doi.org/10.1016/j.jchromb.2012.03.002

    Article  CAS  Google Scholar 

  45. Smith DL, Lemieux EN, Barua S (2018) Correction in bicinchoninic acid (BCA) absorbance assay to analyze protein concentration. Nano Life 8(03):1850005. https://doi.org/10.1142/S1793984418500058

    Article  CAS  Google Scholar 

  46. Bhagat PR, Pandey AK, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2008) Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes. Talanta 74(5):1313–1320. https://doi.org/10.1016/j.talanta.2007.08.03

    Article  CAS  Google Scholar 

  47. Raut PW, Khandwekar AP, Sharma N (2018) Polyurethane–polyvinylpyrrolidone iodine blends as potential urological biomaterials. J Mater Sci 53(16):11176–11193. https://doi.org/10.1007/s10853-018-2445-7

    Article  CAS  Google Scholar 

  48. Giram PS, Shitole A, Nande SS, Sharma N, Garnaik B (2018) Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous Mats. Mater Sci Eng C 92:526–539. https://doi.org/10.1016/j.msec.2018.06.031

    Article  CAS  Google Scholar 

  49. Jaganathan SK, Mani MP, Ismail AF, Ayyar M (2017) Manufacturing and characterization of novel electrospun composite comprising polyurethane and mustard oil scaffold with enhanced blood compatibility. Polymers 9(5):163. https://doi.org/10.3390/polym9050163

    Article  CAS  Google Scholar 

  50. Gao Q, Yu M, Su Y, Xie M, Zhao X, Li P, Ma PX (2017) Rationally designed dual functional block copolymers for bottlebrush-like coatings: in vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater 51:112–124. https://doi.org/10.1016/j.actbio.2017.01.061

    Article  CAS  Google Scholar 

  51. Khandwekar AP, Doble M (2011) Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex®). J Mater Sci Mater Med 22(5):1231–1246. https://doi.org/10.1007/s10856-011-4285-8

    Article  CAS  Google Scholar 

  52. Khandwekar AP, Patil DP, Shouche YS, Doble M (2009) Controlling biological interactions with surface entrapment-modified polyurethane. J Med Biol Eng 29(2):84–91

    Google Scholar 

  53. Khandwekar AP, Patil DP, Khandwekar V, Shouche YS, Sawant S, Doble M (2009) Tecoflex™ functionalization by curdlan and its effect on protein adsorption and bacterial and tissue cell adhesion. J Mater Sci Mater Med 20(5):1115–1129. https://doi.org/10.1007/s10856-008-3655-3

    Article  CAS  Google Scholar 

  54. Khandwekar AP, Patil DP, Shouche Y, Doble M (2011) Surface engineering of polycaprolactone by biomacromolecules and their blood compatibility. J Biomater Appl 26(2):227–252. https://doi.org/10.1177/0885328210367442

    Article  CAS  Google Scholar 

  55. Khandwekar AP, Doble M, Patil DP, Shouche YS (2010) The biocompatibility of sulfobetaine engineered poly(ethylene terephthalate) by surface entrapment technique. J Biomater Appl 25(2):119–143. https://doi.org/10.1177/0885328209344004

    Article  CAS  Google Scholar 

  56. Khandwekar AP, Patil DP, Shouche YS, Doble M (2010) The biocompatibility of sulfobetaine engineered polymethylmethacrylate by surface entrapment technique. J Mater Sci Mater Med 21(2):635–646. https://doi.org/10.1007/s10856-009-3886-y

    Article  CAS  Google Scholar 

  57. Hoffman AS (2001) Hydrogels for biomedical applications. Ann Ann N Y Acad Sci 944(1):62–73. https://doi.org/10.1111/j.1749-6632.2001.tb03823.x

    Article  CAS  Google Scholar 

  58. Wang H, Feng Y, Fang Z, Yuan W, Khan M (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng C 32(8):2306–2315. https://doi.org/10.1016/j.msec.2012.07.001

    Article  CAS  Google Scholar 

  59. Shitole AA, Giram PS, Raut PW, Rade PP, Khandwekar AP, Sharma N, Garnaik B (2019) Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl. https://doi.org/10.1177/0885328219832984

    Article  Google Scholar 

  60. Xu LC, Bauer JW, Siedlecki CA (2014) Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf B 124:49–68. https://doi.org/10.1016/j.colsurfb.2014.09.040

    Article  CAS  Google Scholar 

  61. Martins MCL, Wang D, Ji J, Feng L, Barbosa MA (2003) Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials 24(12):2067–2076. https://doi.org/10.1016/S0142-9612(03)00002-4

    Article  CAS  Google Scholar 

  62. Merkle VM, Martin D, Hutchinson M, Tran PL, Behrens A, Hossainy S, Sheriff J, Bluestein D, Wu X, Slepian MJ (2015) Hemocompatibility of poly(vinyl alcohol)–gelatin core–shell electrospun nanofibers: a scaffold for modulating platelet deposition and activation. ACS Appl Mater Int 7(15):8302–8312. https://doi.org/10.1021/acsami.5b01671

    Article  CAS  Google Scholar 

  63. Van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, Van Aken WG (1985) Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials 6(6):403–408. https://doi.org/10.1016/0142-9612(85)90101-2

    Article  Google Scholar 

  64. Hajiali H, Shahgasempour S, Naimi-Jamal MR, Peirovi H (2011) Electrospun PGA/gelatin nanofibrous scaffolds and their potential application in vascular tissue engineering. Int J Nanomed 6:2133–2141. https://doi.org/10.2147/IJN.S24312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Symbiosis Centre for Research and Innovation (SCRI) and Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, India, for supporting the research work. Piyush W. Raut and Ajinkya A. Shitole receive Senior Research Fellowship from Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Lavale, Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Khandwekar or Neeti Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, P.W., Shitole, A.A., Khandwekar, A. et al. Engineering biomimetic polyurethane using polyethylene glycol and gelatin for blood-contacting applications. J Mater Sci 54, 10457–10472 (2019). https://doi.org/10.1007/s10853-019-03643-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03643-0

Navigation