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ABSTRACT

We report the synthesis and single-crystal X-ray characterization of diphenyltin

bis(2-methoxyethylxanthate) and diphenyltin bis(iso-butylxanthate). These

xanthates have been used as a single-source precursor to deposit tin chalco-

genide thin films by aerosol-assisted chemical vapor deposition. Grazing inci-

dence X-ray diffraction and scanning transmission electron microscope imaging

coupled with elemental mapping show that films deposited from diphenyltin

bis(iso-butylxanthate) contain orthorhombic SnS, while films deposited from

diphenyltin bis(2-methoxyethylxanthate) between 400 and 575 �C form a SnS/

SnO2 nanocomposite. In synthesizing the thin films, we have also demonstrated

an ability to control the band gap of the materials based on composition and

deposition temperature.

Introduction

There has recently been a surge of interest into metal

chalcogenide-based materials, as these materials

demonstrate a remarkable range of applications

including use in magnets, catalysis, lubricants, pho-

tovoltaics, energy storage and drug delivery [1–13].

Among these, tin sulfide is a promising material that

is suitable as an absorber layer for photovoltaic

applications due to its exciting properties. It pos-

sesses a high absorption coefficient (a [ 104 cm-1)

[14], a band gap of 1.1–1.4 eV [15] and a theoretical

power conversion efficiency of up to 24%, though so

far the record is 4.4%, leaving great room for

improvement [16]. It is an attractive material for large

scale use, owing to its compositional elements being

earth abundant and environmentally benign. SnS in

its orthorhombic form demonstrates excellent ther-

mal stability and remains stable under ambient con-

ditions and has found some promise as anodes in Li-

ion batteries [17].

Tin is found in the second half of Group 14, and as

such has two accessible oxidation states: Sn(II) and

Sn(IV). As a result of a fine thermodynamic balance

between divalent and tetravalent tin [18], tin sulfide

can be found in three main forms: SnS [Sn(II)], Sn2S3
[mixed Sn(II)/Sn(IV)] and SnS2 [Sn(IV)]. The low
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energy form of SnS is an orthorhombic herzenbergite

structure, adopting a Pnma space group. This is a

layered structure with strong Sn–S bonds in a puck-

ered sheet and weak Van der Waals-type interactions

between sheets—similar to black phosphorus [19, 20].

The mixed valent species Sn2S3 also adopts the Pnma

space group, while tetravalent SnS2 is trigonal P-3m1

[21].

Tin sulfide nanomaterials have been synthesized

through a variety of ‘bottom-up’ approaches, such as

chemical vapor deposition (CVD) [22–27], chemical

vapor transport [18], melt reactions [28], chemical

bath deposition [29, 30], colloidal nanoparticle syn-

thesis [31–33], vacuum evaporation [34, 35], physical

vapor transport [36], electrochemical deposition

[37, 38], spray pyrolysis [39] or ‘top-down’ exfoliation

approaches [19]. In most of the ‘bottom-up’ cases, it is

difficult to produce phase-pure SnS, with mixtures of

Sn2S3 or SnS2 often found as contaminants.

We have recently focused our attention on the use

of single-source precursors to synthesize metal

chalcogenide thin films and nanoparticles. In partic-

ular, we, and others, have found that simple metal

xanthates [M(S2COR)x] and dithiocarbamates [M(S2-
CNR2)x] (R = alkyl) are excellent precursors to metal

sulfides [5, 40–48]. In this report, we discuss the use

of the diorganotin(IV) dixanthate complexes as pre-

cursors for the production of SnS thin films by aero-

sol-assisted chemical vapor deposition (AA-CVD).

We focus on the annealing temperature and the role

of the xanthate ligand during the decomposition

process for the potential in controlling the structural

and optical properties of the films produced.

Experimental

All chemicals were purchased from Sigma-Aldrich

and used without further purification. Elemental

analysis of the complexes was carried out using a

Flash 2000 Thermo Scientific elemental analyzer in

the School of Chemistry, University of Manchester.

Thermogravimetric analysis (TGA) and differential

scanning calorimetry (DSC) of the complex were

carried out by a METTLER TOLEDO TGA/DSC 1

stare system under an atmosphere of dry nitrogen.

Scanning electron microscope images (SEM) were

observed using a Philips XL 30FEG equipped with

DX4 energy-dispersive X-ray spectroscopy (EDX)

instrument or a FEI Quanta 200 ESEM equipped with

an EDAX Genesis V4.61 for EDX analysis. Grazing

incidence X-ray diffraction (GIXRD) patterns were

obtained with a Bruker D8 Advance diffractometer

using a Cu-Ka source (k = 1.5418 Å) and an incident

angle of 3�.
Single-crystal X-ray diffraction was performed

using a Bruker APEX-II CCD with a Cu-Ka1 source

[Ph2Sn(S2CO(CH2)2OMe)2] (1) at 100 K and a XtaLAB

AFC11 (RINC): quarter-chi single with a Mo–Ka

source [Ph2Sn(S2CO
iBu)2] (2) at 150 K.

STEM imaging and energy-dispersive X-ray (EDX)

spectroscopic analysis were performed in a probe-

side aberration corrected FEI Titan G2 80-200 Che-

miSTEM microscope operated at 200 kV equipped

with Super-X EDX silicon drift detectors with a total

collection solid angle of * 0.7 srad. For high-angle

annular dark-field (HAADF) imaging, a convergence

angle of 26 mrad and a detector inner angle of

48 mrad were used. EDX spectrum images were

acquired with the sample at 0� tilt and with all four of

the ChemiSTEM’s Super-X SDD detectors turned on.

STEM images were recorded in FEI TIA software,

and EDX data were recorded and analyzed using

Bruker Esprit. The thicknesses of the films were

measured using Veeco Dektak 8 Surface Profilometer,

and the cantilever force was about 15 mg.

Synthesis of metal xanthate complexes

Synthesis of potassium 2-methoxyethylxanthate

[KS2CO(CH2)2OMe]

Potassium 2-methoxyethylxanthate was prepared

according to our previously published procedure

[43]. Potassium hydroxide (11.2 g, 0.20 mol) was

dissolved in (75 ml) of 2-methoxyethanol, the reac-

tors were stirred for 6 h at 0 �C, and then a solution of

CS2 (15.2 g, 12 ml, 0.20 mol) in 2-methoxyethanol

(25 ml) was added dropwise, resulting in a clear

yellow solution. [KS2CO(CH2)2OMe] was isolated

from solution by adding THF (100 ml) and shaking

the mixture for 15 min. The yellow solid product was

dried in vacuo and recrystallized from 2-methox-

yethanol to give [KS2CO(CH2)2OMe)] (19.8 g,

0.104 mol, 52% yield). M.p. = 216–219 �C. Calc. for

C4H7KO2S2 (%): C 25.3, H 3.71, S 33.6, K 20.6; found:

C 25.5, H 3.79, S 33.5, K 20.8. FT-IR (cm-1): 2935 (w),

2888 (w), 1442 (m), 1445 (w), 1230 (m), 1134 (m), 1099

(m), 1066 (s), 1018 (m), 844.3 (w), 676.7 (m), 532.5 (m).
1H NMR (400 MHz, D2O) d (ppm) = 3.35 (s, 3H,

2316 J Mater Sci (2019) 54:2315–2323



OCH3), 3.72 (t, 2H, MeOCH2CH2OCS2), 4.50 (t, 2H,

MeOCH2CH2OCS2).
13C NMR (400 MHz, D2O) d

(ppm: 58.15 (OCH3), 70.2 (MeOCH2CH2OCS2), 72.1

(MeOCH2CH2OCS2), 232.5 (MeOCH2CH2OCS2).

Synthesis of potassium iso-butylxanthate [KS2CO
iBu]

Potassium hydroxide (5.64 g, 0.10 mol) and iso-bu-

tanol (50 ml) were stirred for 2 h at room tempera-

ture, and then CS2 (7.73 g, 6.11 ml, 0.10 mol) was

added to the reaction, resulting in an orange solution.

The unreacted alcohol was removed in vacuo, and

the yellow solid product was dried and recrystallized

from iso-butanol. (9.66 g, 65% yield). M.p. =

241–243 �C. Calc. for C5H9KOS2 (%): C 31.9, H 4.82, S

33.4, K 20.8; found: C 31.7, H 4.72, S 33.8, K 21.0. FT-

IR (cm-1): 2958 (m), 2927 (w), 2870 (w), 1463 (w), 1386

(w), 1366 (w), 1179 (w), 1165 (w), 1141 (m), 1092 (s),

968.8 (m), 937.6 (w), 912.7 (w), 802.1 (w), 653.3 (w),

571.9 (w). 1H NMR (400 MHz, D2O) d (ppm) = 0.89

(d, 6H, CH(CH3)2), 1.99 (s, 1H, CH(CH3)2), 4.16 (d,

2H, OCH2CH).

Synthesis of diphenyltin bis(2-methoxyethylxanthate)

[Ph2Sn(S2CO(CH2)2OMe)2] (1)

[Ph2Sn(S2CO(CH2)2OMe)2] was prepared by a pro-

cedure that was modified from that described in the

literature [49]. Potassium 2-methoxyethylxanthate

[KS2CO(CH2)2OMe] (0.74 g, 0.0039 mol) in ethanol

(50 ml) was added dropwise to a solution of diphe-

nyltin dichloride (0.55 g, 0.0016 mol) in DCM (50 ml)

and stirred for 1 h at room temperature. After filter-

ing, the solution was evaporated under reduced

pressure and the residue was dissolved in a (1:5)

DCM/ethanol solution and left to crystallize as white

crystals of [Ph2Sn(S2CO(CH2)2OMe)2] (0.62 g,

0.0011 mol, 67% yield). M.p. = 186–189 �C. Calc. for
C20H24O4S4Sn (%): C 41.8, H 4.21, S 22.3; found: C

41.5, H 4.21, S 22.3. FT-IR (cm-1): 3061 (w), 2935 (w),

1426 (m), 1207 (m), 1134 (m), 1052 (s), 988.2 (m), 841.3

(m), 724.3 (m), 685.9 (m), 622.3 (w), 558.2 (w). 1H

NMR (400 MHz, CDCl3) d (ppm): 3.23 (s, 3H, OCH3),

3.46 (t, 2H, CH2CH2O), 4.33 (t, 2H, CH2CH2O), 7.39

(m, 3H, Ph), 7.9(m, 2H, Ph). 13C NMR (400 MHz,

CDCl3) d (ppm): 59.0 (OCH3), 69.5 (CH2CH2O), 75.0

(CH2CH2O), 129.1 (Ph), 130.2 (Ph), 135.4 (Ph), 141.3

(Ph), 218.8 (S2COCH2),

Synthesis of diphenyltin bis(iso-butylxanthate)

[Ph2Sn(S2CO
iBu)2] (2)

[Ph2Sn(S2CO
iBu)2] was prepared via the same

method using [K(S2CO
iBu)] (0.73 g, 0.0039 mol). The

product crystallizes as needles crystals. (0.58 g,

0.0010 mol, 64% yield). M.p. = 92–94 �C. Calc. for

C22H28O2S4Sn (%): C 46.3, H 4.94, S 22.4; found: C

46.3, H 5.28, S 22.1. FT-IR (cm-1): 3062 (w), 2960 (w),

1478 (m), 1430 (m), 1204 (w), 1154 (w), 1044 (s), 996.3

(m), 852.6 (w), 725.5 (s), 692.8 (s), 615.8 (w), 557.8 (w).
1H NMR (400 MHz, CDCl3) d (ppm) = 0.78 (d, 6H,

CH(CH3)2), 1.89 (s, 1H, CH(CH3)2), 3.98 (d, 2H,

OCH2CH), 7.39 (m, 3H, Ph), 7.92 (m, 2H, Ph). 13C

NMR (400 MHz, CDCl3) ppm: 19.0 (CH(CH3)2), 27.6

(CH(CH3)2), 82.7 (OCH2), 129.1 (Ph), 130.2 (Ph), 135.4

(Ph), 141.6 (Ph), 225.2 (S2CO).

Aerosol-assisted chemical vapor deposition
AA-CVD

In a typical deposition of the thin films, 0.25 g,

0.435 mmol of 1 was dissolved in THF (20 ml). A

quartz tube reactor containing borosilicate glass

substrates (1.8 cm 9 1.5 cm 9 1 mm thick) was

placed in a pre-warmed Carbolite furnace. The pre-

cursor solution was aerosolized using an ultrasonic

humidifier, and the aerosol droplets were carried to

the reactor tube by a constant flow of argon

(140 cm3 min-1).

Results and discussion

Diphenyltin bis(2-methoxyethylxanthate) [Ph2Sn(S2-
CO(CH2)2OMe)2] (1, Fig. 1a) and diphenyltin bis(iso-

butylxanthate) [Ph2Sn(S2CO
iBu)2] (2, Fig. 1b) were

synthesized from the reaction of the corresponding

potassium xanthate [43] and diphenyltin dichloride.

The free sulfur atoms do not appear to interact with

other atoms in the packed structure (ESI Figures S1.1

and S1.2). In 1, the Sn center adopts a distorted

tetrahedral arrangement, with Ph–Sn–Ph bond angles

of 140.0(2)�–144.2(2)�, S–Sn–S of 86.29(5)�–86.34(5)�
and S–Sn–C of 100.6(2)�–104.0(2)�. The Sn–S bond

lengths are 2.503(1)–2.543(2) Å, while the non-bond-

ing Sn–S distances are 2.914(1)–3.093(2) Å. Complex 2

adopts an analogous distorted tetrahedral arrange-

ment around the tin center with Ph–Sn–Ph bond

angles of 146.7(2)�, S–Sn–S of 86.10(5)� and S–Sn–C of
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101.8(1)�-102.6(1)�. It also has similar Sn–S bond

lengths to 1 of 2.5065(7)–2.5134(7) Å.

The decomposition of 1 was studied using ther-

mogravimetric analysis (TGA) in the temperature

range of 30–600 �C at a heating rate of 10 �C min-1

under nitrogen flow. The TGA trace for 1 (ESI

Figure S2.1) shows a clean, one-step decomposition to

SnS, with decomposition occurring between 300 and

375 �C. In contrast, 2 undergoes a two-step decom-

position to SnS. Metal xanthates typically decompose

via the Chugaev elimination mechanism [48], the first

step of which involves elimination of the pendant

alkyl groups, followed by carbonyl sulfide. The first

step of the decomposition of 2 likely involves elimi-

nation of 2 equiv. isobutylene and 1 equiv. carbonyl

sulfide. The second step would then involve the final

loss of the remaining carbonyl sulfide and then aro-

matic groups. Further investigations will focus on the

exact mechanism of decomposition of diaryltin(IV)

xanthates.

We used a solution of 1 in THF in an aerosol-as-

sisted chemical vapor deposition (AA-CVD) reactor

to generate thin films at temperatures ranging from

400 to 575 �C under an inert atmosphere of Ar. The

grazing incidence X-ray diffraction (GIXRD) patterns

of the films (Fig. 2a) indicate that at low temperature

tetragonal SnO2 (JCPDS 01-070-4177) dominates, but

at high temperatures orthorhombic SnS (JCPDS

00-039-0354) is the major species. The GIXRD patterns

indicate that at high temperatures some SnO2 is still

present, and likewise at low temperature there is still

some SnS.

Scanning electron microscopy (SEM) reveals that

there is a distinct change in morphology as the

deposition temperature is increased (Fig. 3). The

particles change from a collection of 0.5 lm cubes to

sheets made of thin rods via thin (* 100 nm) sheets

Figure 1 The structure of a diphenyltin bis(2-

methoxyethylxanthate) [Ph2Sn(S2CO(CH2)2OMe)2] (1) and

b diphenyltin bis(iso-butylxanthate) [Ph2Sn(S2CO
iBu)2] (2). H

are omitted for clarity. Teal = Sn, yellow = S, red = O, gray = C.

Figure 2 a The GIXRD patterns of the obtained films from 1

indicate that tetragonal SnO2 dominates at low temperatures, but

orthorhombic SnS is the major phase at high temperatures. Note

that there is still some SnO2 present at high temperatures and some

SnS at low temperatures. b The GIXRD patters of films obtained

from 2 indicate clean formation of SnS at all temperatures.
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(Fig. 3). The sulfur composition was determined by

energy-dispersive X-ray spectroscopy (EDX, Fig. 3f),

and this indicates an increased S content as the

reaction temperature is increased. This is in agree-

ment with the GIXRD patterns, which show an

analogous transition from SnO2 to SnS.

Samples suitable for transmission electron micro-

scope (TEM) imaging were prepared by ultrasonica-

tion of the films deposited at 400 and 575 �C from

complex 1. In order to examine the material at higher

resolution, high-angle annular dark-field (HAADF)

scanning transmission electron microscope (STEM)

imaging and STEM-EDX spectrum imaging were

used. The microscopy reveals the presence of a pos-

sible SnS/SnO2 lateral heterojunction in the material

prepared at 575 �C. In Fig. 4a, we show the HAADF

STEM image of a sample prepared at 575 �C, which

reveals contrasting brighter and darker regions. The

EDX maps shown in Fig. 4b–e indicate that the bright

regions are oxygen rich, while the darker regions are

S rich. An EDX line scan (ESI Figure S3.1) indicates

that the S and O are mutually exclusive, with a very

sharp transition from SnS to SnO2. It is apparent in

this case that the orthorhombic SnS and tetragonal

SnO2 are present in the same flake. Atomic resolution

TEM images (ESI Figure S3.2) of the material provide

further evidence of sharp interfaces between regions

of crystalline SnS and SnO2.

In contrast to this, in the sample prepared at 400 �C
it appears that SnO2 particles decorate the surface of

Figure 3 a–e Scanning electron microscopy (SEM) images of the deposited films. f Sulfur content determined by energy-dispersive

X-ray spectroscopy (EDX).
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the SnS crystals (Fig. 4f–j). Note that SnS has a den-

sity of 5.22 g cm-3, while SnO2 has a density of

6.95 g cm-3; it is therefore unsurprising that oxide

regions appear brighter in HAADF images (Fig. 4f).

The sample has a clearly different morphology,

appearing much less flake like in the SEM than the

other samples (Fig. 3).

The Chugaev elimination usually gives the relevant

metal sulfide in a clean manner, with zero O con-

tamination/content [44, 48, 50–54]. We investigated

the reason for the presence of SnO2 in these products

through the synthesis and decomposition of a second

diorganotin(IV) xanthate, diphenyltin bis(iso-butylx-

anthate) (2, Fig. 1b). 2 was used in the AA-CVD

apparatus in exactly the same manner as 1, but in this

case the GIXRD pattern indicates that SnS is the only

product (Fig. 2b). This result clearly implies that the

second oxygen in the xanthate chain of 1 must be key

to the production of SnO2 under the anaerobic con-

ditions of deposition. Therefore, we tentatively sug-

gest that metal alkoxyxanthates of the type

[M(S2CO(CH2)2OR)x] are a class of compound that is

worth further exploration as they may yield inter-

esting and complex MSx:MOy lateral heterojunctions.

Alternatively, if seeking to avoid oxide formation, it

is clear that the xanthato oxygen is not a problem, but

other O atoms further down the alkyl chain are.

Future work will look into the ability to fabricate

heterostructures from a single molecular precursor:

the potential to control both the chemical composi-

tion and morphology of the products through

reaction temperature is an attractive proposition,

especially considering the simplicity and potential

scalability of AA-CVD.

The optical band gaps (Eg) of the films were cal-

culated by from Tauc plots (ESI Table S5.1, ESI Fig-

ures S5.1 and S5.2). For the films deposited from

complex 1, the band gap of the films deposited at

400 �C is 2.97 eV, while increasing the deposition

temperature resulted in a decrease in Eg: 2.91 eV

(450 �C), 2.60 (500 �C), 2.47 (550 �C) and 1.71 eV

(575 �C). SnO2 is predicted to have direct energy gap

of 3.68 eV [55, 56], and SnS has a direct band gap of

1.32 eV [57]. The control of the stoichiometry that we

have obtained in the syntheses of the films allows for

tuning of band gaps. Films deposited from complex 2

gave pure phase SnS, and the experimentally deter-

mined band gaps match the literature values well,

with Eg for the films formed at 500, 550 and 575 �C of

1.46, 1.41 and 1.28 eV, respectively.

Conclusions

In conclusion, we have reported the synthesis of SnS

thin films and SnS/SnO2 nanocomposite from

diorganotin(IV) dixanthate complexes. We have dis-

covered that including a second oxygen in the alkyl

chain of the xanthate can be used to introduce an

certain amount of oxide formation, with the stoi-

chiometry being controllable through deposition

temperature. The method that we have presented

Figure 4 STEM EDX spectrum imaging of samples prepared at

575 �C (a–e) and 400 �C (f–j). HAADF STEM images of the

mapped regions are shown on the far left with corresponding EDX

maps for Sn, O and S going from left to right; overlaid maps of O

and S counts are found on the far right.
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here is simple and easily scalable, which we hope will

encourage the use of this exciting material. We

believe that this control over the stoichiometry of

oxide to chalcogenide may be of use to researchers

looking at other metal chalcogenides/oxides, with

the potential for synthesizing lateral heterostructures.

This could access exciting functionality and thus

increase the abilities of future devices.
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