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ABSTRACT

The Leibniz–Reynolds transport theorem yields an omnimetric interface energy

balance, i.e., one valid over all continuum length scales. The transport theorem,

moreover, indicates that solid–liquid interfaces support capillary-mediated

redistributions of energy capable of modulating an interface’s motion—a ther-

modynamic phenomenon not captured by Stefan balances that exclude capil-

larity. Capillary energy fields affect interfacial dynamics on scales from about 10

nm to several mm. These mesoscopic fields were studied using entropy density

multiphase-field simulations. Energy rate distributions were exposed and

measured by simulating equilibrated solid–liquid interfaces configured as sta-

tionary grain boundary grooves (GBGs). Negative rates of energy distributed

over GBGs were measured as residuals, by subtracting the linear potential

distribution contributed by applied thermal gradients constraining the GBGs

from the nonlinear distributions actually developed along their solid–liquid

interface. Rates of interfacial cooling revealed numerically confirm independent

predictions based on sharp-interface thermodynamics, variational calculus, and

field theory. This study helps answer a long-standing question: What creates

patterns for diffusion-limited transformations in nature and in material

microstructures?

Introduction

‘‘A very small cause that escapes our notice

determines a considerable effect that we cannot

fail to see, and then we say that the effect is due

to chance.’’—Henri Poincaré, Science et méthode,

1908.

Patterns encountered in nature, such as those exhib-

ited by snow flakes and many crystallized mineral

forms, and those found in the microstructures of cast

alloys and fusion weldments, remain subjects of long-

standing scientific interest and practical engineering

importance [1, 2]. Alan Turing’s paper, ‘‘The Chem-

ical Basis of Morphogenesis’’ [3], is credited as

explaining that diffusion-limited processes can drive
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thermodynamically ‘‘open’’ systems to instability.

Patterns then evolve spontaneously in response to

Poincaré’s ‘‘very small cause(s).’’ But what, in fact, are

the nature and function of such very small causes?

A century beyond Poincaré’s quoted remark, and

six decades after Turing’s explanation of instability in

chemically reacting systems, major issues remain

unresolved concerning pattern formation dynamics

in diffusion-limited systems. These issues entail the

following questions: (1) How do specific patterns

initiate during crystal growth, solidification, and

other diffusion-limited phase transformations? (2) Is

there an agent that provides a template, or guide, for

pattern development, especially where neither prior

structures nor preferred directionality is present in

the metastable melt, solution, or vapor phase? This

paper explores the origin of ‘‘very small causes,’’ or

perturbations, that appear spontaneously in diffu-

sion-limited systems and guide pattern formation.

Most fluid phases (gases and liquids) lack dis-

cernible internal structures, order, or directionality,

excepting ephemeral correlations associated with

their localized molecular configurations. For exam-

ple, short-range order in supersaturated melts sel-

dom extends beyond a few nanometers [4]. It is

unlikely, therefore, that information residing at the

atomic/molecular level guides patterns emerging at

scales three to six orders-of-magnitude larger. Diffu-

sion-limited patterns of interest falling within this

category include well-organized cellular and den-

dritic forms, invaginated and highly ramified inter-

faces, including ‘‘seaweed’’ and other irregularly

branched microstructures. Indeed, increasingly com-

plex patterns might even be extensible to those found

in biological systems.

In other words, to understand the origin of many

natural patterns, and, ultimately, control microstruc-

tures derived from materials processes involving

solidification, welding, and crystal growth, one must

determine: (1) whether pattern-forming ‘‘signals’’ or

‘‘instructions’’ exist, and, if so, (2) do they funda-

mentally devolve from stochastic processes, or from

higher-order deterministic sources.

This paper addresses both issues for crystal–melt

interfaces in unary systems, by exploring the pres-

ence of interfacial energy fields that provide pattern-

forming stimuli in 2D. The presence of such stimuli

on solid–liquid interfaces described in earlier publi-

cations [5, 6] is finally revealed and measured here

through novel measurements extracted from phase-

field simulations. Capillary fields in the form of

interfacial energy distributions are exposed and

measured on simulated microstructures in the form

of equilibrated solid–liquid grain boundary grooves

(GBGs). Simulated interfacial data also allow quan-

tifiable comparison with analytic predictions of

interfacial energy fields derived from sharp-interface

thermodynamics. Simulations and measurements

reported in this study also confirm that equivalent

pattern-forming fields arise within standard phase-

field physics that manifest themselves as determin-

istic perturbations.

Numerical simulations are compared with predic-

tions based on interface energy conservation and

classic field theory. The comparison reveals the

existence of persistent capillary-mediated energy

fields that influence the dynamics of interfacial shape

changes during phase transformation. Such fields

stimulate complex pattern formation on unstable in-

terfaces with, or without, benefit of noise.

Experimental observations: capillary-
induced shape change

Prior microgravity studies

The idea that innate capillary phenomena, rather

than ‘‘selectively amplified’’ noise [7–10], control

pattern formation in diffusion-limited phase trans-

formations was initially prompted by experimental

observations of unusual solid–liquid interfacial shape

changes. Needle-like crystallites progressively melted

self-similarly under convection-free conditions in

orbital microgravity, but suddenly, and surprisingly,

spheroidized [11].

The first gravity-free studies yielding quantitative

kinetic data on diffusion-limited crystal growth,

melting, and pattern formation were the Isothermal

Dendritic Growth Experiments (IDGE). Three IDGE

experiments were flown by NASA during the mid-to-

late 1990s on Space Shuttle Columbia using the US

Microgravity Payload (USMP) platform. Video and

precision thermal data, streamed directly from the

IDGE-3/USMP-4 orbital experiments, indicated that

capillary effects might be responsible for such unu-

sual changes. These experiments recorded the

evolving shapes of melting crystallites of ultra-puri-

fied pivalic anhydride (PVA) (2,2-dimethylpropionic

anhydride) [11]. PVA is a transparent face-centered
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cubic crystal that melts at approximately 36 �C. Video

(shape) data and precision thermal data for quasi-

statically melting PVA crystallites were analyzed

kinetically and reported through encouragement

received from both NASA and the German Aero-

space Center (DLR) at Köln-Porz, Germany [12–14].

IDGE melting data from USMP-4 showed that

unexpected crystal shape changes occurred in

microgravity during diffusion-limited melting. Slen-

der, melting ellipsoidal crystallites initially experi-

enced slowly increasing major-to-minor axial ratios.

Then, at a further reduced size, these crystallites

suddenly underwent dramatic decreases of more

than an order-of-magnitude from their typical high

axial ratios of 15–20, down to almost unity. The onset

of large interfacial shape changes always occurred

when the crystallites during slow melting entered a

narrow range of sizes: viz., when their major axes

were reduced to about 5 mm, and their minor axes

simultaneously decreased to about 500 microns.

These dramatic shape changes—viz., needles sud-

denly contracting into spheroids—were consistently

recorded as diffusion-limited melting progressed

toward extinction of PVA crystallites under quiescent

microgravity conditions.

During terrestrial melting, by contrast, where grav-

ity is present, buoyancy convection and rapid sedi-

mentation totally obscure the onset of shape changes.

Several aspects of these experimental observations in

microgravity were later reproduced in a phase-field

simulation of melting crystallites reported by Mullis

[15]. Mullis’s numerical results provided the first ink-

ling that conventional phase-field simulations, with-

out modification, might also produce interface fields

responsible for transformation-induced shape chan-

ges. Indeed, this paper advances that initial suggestion

toward near certainty.

Our explanation of deterministic—versus stochas-

tic—pattern dynamics is based on two independent

insights: (1) heuristic observations in microgravity, as

summarized above, of dynamic shape changes for

crystallites melting under diffusion control, and, (2)

to be described next in ‘‘Interface energy balances’’

section, the application of sharp-interface thermody-

namics that imposes interfacial energy conservation

over all relevant length scales. We will combine

insights based on experimental observation involving

quantitative shape and thermal analysis [13] with

interface energy conservation, via Leibniz–Reynolds

transport theory, which identifies the higher-order

energy terms responsible for interfacial shape chan-

ges during melting and guides pattern formation

during solidification [16].

Interface energy balances

Conservation principles applied in the form of the

Leibniz–Reynolds transport theorem [17, 18] identify

an overlooked higher-order energy term. We shall

demonstrate that this term represents a thermody-

namic field that exists ubiquitously on heterophase

interfaces exhibiting capillarity and curvature gradi-

ents. Moreover, general formulas published recently

for calculating energy redistribution on interfaces are

also capable of predicting the initial geometric char-

acter of patterns evolved in both isotropic and ani-

sotropic solid–liquid systems [5]. These same energy

fields are, in a sense, nature’s pattern-forming ‘‘in-

formation,’’ which is provided autonomously by

thermodynamics.

In this paper, we expose and measure the active

presence of capillary-mediated energy fields on sta-

tionary interfaces, chosen as equilibrated grain

boundary grooves simulated using a multiphase-field

model. We then compare them to theoretical predic-

tions from thermodynamics and field theory.

Stefan conditions

The Stefan condition conserves energy and/or spe-

cies by balancing their release or intake at moving

phase boundaries [2]. Indeed, Stefan conditions pro-

vide the accepted method, through control volume

requirements, to connect the speed of a moving

interface—related to its rate of phase transformation

energy and species release—to the transport rates of

these quantities. The rates of generation and trans-

port must balance. Although usually credited to Josef

Stefan’s lecture notes and journal publications from

the late nineteenth century, for example, [19, 20], an

energy balance similar to Stefan’s eponymous con-

dition was introduced much earlier, appearing in

1831, by Lamé and Clapeyron [21]. So, interface

energy and mass balances have been under discus-

sion and use for nearly two centuries. Today, phase

change kinetics, free-boundary problems, and most

theories of diffusion-limited pattern dynamics

invariably employ ‘‘Stefan balances’’ to impose con-

servation laws at moving heterophase interfaces.
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The fundamental issue raised here regarding limi-

tations in Stefan balances is to re-examine closely the

length scales over which an interface must precisely

balance its energy/mass budget. Our view, to be

examined in detail, is that (1) energy and matter at

interfaces, of course, are conserved, and (2) sources

and fluxes of these quantities must remain balanced

in control volumes of arbitrary spatial extent. In short,

energy rates on, to, and from, an interface must bal-

ance ‘‘omnimetrically’’, i.e., over all continuum length

scales. As will be shown next in ‘‘Omnimetric energy

balances’’ section, the Stefan condition, per se, does

not satisfy these basic requirements if capillarity is

present. As humorist Mark Twain once famously

remarked, ‘‘. . . this [finding] will gratify some people,

and surprise the rest.’’

Omnimetric energy balances

Interface energy balances in the presence of capil-

larity were recently analyzed by applying the Leib-

niz–Reynolds transport theorem [17]. This theorem

imposes Leibniz differentiation on both volume and

surface integrals, taken in this case over a time-de-

pendent 3D domain of pure solid and liquid under-

going freezing or melting. The sought-after

omnimetric energy balance is captured by adding

two steps to the Leibniz–Reynolds transport analysis.

These include: (1) applying contraction mapping, to

focus ‘‘bookkeeping’’ energy rates in a 3D domain to

those exchanges occurring over the solid–liquid

interface and (2) applying the 2D divergence theorem

to a line integral tracking energy crossing the space

curve formed by the intersection of that interface

with the domain’s outer boundary [5, 22].

The Leibniz–Reynolds energy balance, when

modified as indicated above, includes the energy

terms found in Stefan’s balance, plus additional rates

linked to capillarity, all of which have been recog-

nized and discussed in theoretical surface thermo-

dynamics [23]. Although these higher-order energy

terms are identified, their functions in pattern

dynamics in transforming systems are not. They

include in particular capillary energy stored or

released as an interface changes its area and crystal-

lographic orientation to the melt, plus energy redis-

tributed over the interface via divergence of

capillary-mediated fluxes arising from interfacial

gradients of the Gibbs–Thomson thermo-potential.

Moving interfaces

The Leibniz–Reynolds transport theorem specifically

identifies six independent sources (excluding thermal

radiation) that contribute to the interfacial energy

balance for a moving anisotropic solid–liquid inter-

face [5], whereas the Stefan balance, which excludes

capillarity, includes only three. One such interfacial

energy source, easily eliminated for our present

purposes, is to consider isotropic solid–liquid inter-

faces, so that crystallographic orientation, per se,

does not influence an interface’s energy density, i.e.,

cs‘ ¼ const: ðJ m�2Þ.
Another capillary-mediated energy source identi-

fied by Leibniz–Reynolds analysis is the rate of

interfacial deformation, or ‘‘stretching.’’ Area changes

on evolving interfaces require some energy storage or

release as a moving interface advances or retreats

during phase transformation. The rate of area change

for moving interfaces is proportional to the product

of their local mean curvature and speed. Insofar as

interfacial stretching and latent heat production both

occur at rates proportional to an interface’s normal

velocity, energetic effects from stretching or shrink-

age can be combined with the local rate of latent heat

production. This is accomplished by inserting a small

correction to the volumetric latent heat,

DHf=X ðJ m�3Þ, where X ðm3 � mol�1Þ is the system’s

molar volume, and DHf ðJ mol�1Þ is the molar

enthalpy change upon melting. Corrections to DHf

added to account for any stretching may be safely

ignored provided that the average mean curvature of

the microstructure, H � DHf=cs‘X � 10 ðnm�1Þ.
Mean curvatures of mesoscopic solid–liquid

microstructures would seldom exceed this level. This

explains why Stefan’s balance, which excludes cap-

illarity, predicts net (overall) transformation rates

correctly, irrespective of the detailed intermediate

solid–liquid microstructure, but fails to address

properly energy exchanges occurring at smaller

length scales.

Thus, the Leibniz–Reynolds transport theorem can

be reduced to four independent rates that enter

omnimetric energy conservation for isotropic inter-

faces [5]:

kcr½TcðrÞ� � nþ k‘r½T‘ðrÞ� � nþ
DHf

X
vLRðrÞ � n

�rs½/sðrÞ � s� ¼ 0:

ð1Þ
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The first two terms in Eq. (1) are local rates of thermal

conduction driven by macro-gradients within the bulk

crystalline (c) and liquid (‘) phases surrounding a

moving interface, rðx; y; z; tÞ. The third term represents

the rate of latent heat produced (or absorbed) by nor-

mal motion of the interface during phase transforma-

tion, including—by adjustment of the volumetric

enthalpy change—energy stored (or released) from

interface ‘‘stretching.’’ All the energy rates described

by the first three terms in Eq. (1) are associated with

gradients or velocities directed along the unit normal,

n, to the interface. The subscript ‘‘LR’’ appended to the

latent heat rate designates the local interface velocity

consistent with the presence of the fourth energy rate

term included in Eq. (1) that varies, point to point, over

the interface. The average rate of latent heat released,

when integrated over the solid–liquid interface, agrees

with Stefan’s balance, as capillary modulations, which

arise from a conservative vector field, tend to cancel

over large scales on moving interfaces. (For proof, see

Ref. [5], Section 5.2.2.)

The fourth energy rate, appearing in Eq. (1), is

responsible for local capillary-based energetic addi-

tion and subtraction. It represents the interfacial

energy rate associated with the surface divergence of

the capillary-mediated tangential flux vector,

/sðrÞ � s. This flux, itself a conservative vector field,

arises in response to gradients of the Gibbs–Thomson

thermo-potential. Much more will be discussed later

about the capillary flux, /s � s, and its scalar

divergence.

The Leibniz–Reynolds theorem tracks the fourth

interfacial energy exchange rate as a line integral

taken round the intersection of the solid–liquid

interface with the exterior boundary of the 3D solid–

liquid domain. This line integral sums any interfacial

energy losses or gains that exit or enter this closed

space curve. The line integral transforms to a stan-

dard area integral over the solid–liquid interface by

applying the 2D divergence theorem [22], yielding

the last term in Eq. (1). See again ‘‘Omnimetric energy

balances’’ section.

Despite its technical origin, the fourth term

appearing in the Leibniz–Reynolds interfacial energy

budget—termed the ‘‘bias field’’1—is essential in

achieving omnimetric balance. The Stefan condition,

which excludes capillary, does not yield the desired

multi-scale energy balance, particularly at smaller

mesoscopic scales. For example, a positive flux

divergence withdraws energy at points on an

advancing freezing interface and slightly reduces the

net energy rate released at those points. This reduc-

tion in energy rate would locally imbalance the

nearly constant energy rate entering and required by

the surrounding phases’ slowly changing macro-

gradients. Long-range macroscopic thermal gradients

act quasi-statically and change relatively slowly over

time, compared to either latent heat or capillary-me-

diated energy sources that arise from fast-changing

(microscopic) molecular scale events. The energy rate

reduction resulting from an onset of positive flux

divergence must, therefore, be ‘‘cancelled’’ by a

prompt compensatory increase in local interface

speed, from vStðrÞ ! vLRðrÞ, a modulation that boosts

the local latent heat rate slightly and restores the local

balance of interfacial energy. Conversely, a negative

flux divergence that adds energy would raise the

interface’s energy release rate by a small amount. A

locally increased energy rate requires a compensatory

decrease in interface speed that reduces the local

latent heat rate and restores balance to that region’s

energy budget. The capillary bias field, in this con-

text, allows omnimetric energy balances down to the

smallest mesoscopic scales affected by capillarity and

pattern formation.

In general, we argue, capillary-mediated diver-

gences occurring along an interface are automatically

buffered by small countervailing speed adjustments

(modulations) to the interface. These modulations

insure ‘‘spectral’’ compliance of local energy conser-

vation at every continuum spatial scale. Thus, it is

multi-scale energy (and/or mass) conservation that is

exposed here as fundamental dynamic mechanisms

influencing pattern initiation on moving interfaces.

Random noise might well be present during solidi-

fication and melting; however, it is the spectral, or

omnimetric, balancing of the interface’s energy bud-

get that thermodynamics demand. This intrinsic

control mechanism, apparently, has not appeared in

prior dynamic pattern analyses. As shown later,

moreover, the multiscale balances just described are

also captured by phase-field theories and their

numerical models.

Now, applying similar notation to that used in

Eq. (1), we write the Stefan condition as used in

1 The term ‘‘bias field’’ is chosen for these thermodynamic
fields, as they modulate, or bias, the local velocity on a moving
interface to be slightly above or below the mean speed
predicted by the Stefan condition.
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conventional interface balances describing solidifica-

tion and crystal growth as [24, 25],

kcr½TcðrÞ� � nþ k‘r½T‘ðrÞ� � nþ
DHf

X
vStðrÞ � n ¼ 0:

ð2Þ

Note that the interface velocity appearing in Eq. (2),

by contrast with vLRðrÞ in Eq. (1), now denotes the

Stefan interface velocity, vStðrÞ, as the normal speed

of the solid–liquid interface, without consideration of

capillarity.

If one subtracts Stefan’s condition, Eq. (2), from the

Leibniz–Reynolds energy balance, Eq. (1), and rear-

ranges terms, an interesting expression appears that

estimates the normal speed difference expected

between moving interfaces with and without

capillarity:

�rs½/sðrÞ � s�
DHf=X

¼ vStðrÞ � vLRðrÞð Þ � n: ð3Þ

The right-hand side of Eq. (3) equals the interfacial

speed difference, or ‘‘modulation’’ (m s�1), caused by

capillary energy fields. Its left-hand side is the ratio of

the scalar bias field ðWm�2Þ to the system’s volu-

metric enthalpy density ðJm�3Þ. Also of interest in the

case of moving interfaces are any discrete locations

where this field reverses sign. Sign reversals occur at

the roots (zeros) of the capillary bias field. Roots

cause speed modulations that simultaneously

increase and decrease over a small region surround-

ing the roots. The juxtaposition of opposing speed

modulations causes inflections to form. Inflections,

amplified by the transport fields surrounding the

moving interface, can develop into bumps, branches,

or ‘‘fingers’’ that protrude from the interface and

enhance pattern complexity [5].

Connections between pattern formation, interfacial

speed modulations, and the presence of fourth-order

capillary fields were overlooked in early mathemati-

cal formulations of dendritic growth [26], in subse-

quent pattern-formation models for diffusion-limited

systems [2], including a major monograph on pattern

formation in solidification by Xu [27].

The authors also suggest, without formal proof at

this time, that use of the Leibniz–Reynolds multi-

scale energy balance, rather than the Stefan balance,

might avoid mathematical singularities introduced

by capillarity in sharp-interface models of pattern-

forming dynamics. Another unintended consequence

of relying on the Stefan condition to satisfy interfacial

energy and/or mass conservation is that it limits use

of the interface’s Gibbs–Thomson potential as a scalar

boundary condition to match chemical potentials

along curved heterophase interfaces. As shown later

in ‘‘Thermodynamic properties of variational GBGs’’

section, applying the Gibbs–Thomson scalar poten-

tial, but ignoring its vector gradient and flux, over-

looks a critical function of allowing omnimetric

energy conservation to hold, especially at interfacial

scales where patterns form.

Lastly, we demonstrate in ‘‘Phase-field model and

results’’ section that thermodynamically consistent

diffuse interface simulations, as used in this study, do

not suffer these limitations, as their physics admit

formation of equivalent interface energy fields.

Stationary isotropic interfaces

Stationary solid–liquid interfaces provide a simple,

non-trivial setting on which to measure capillary-

mediated potential gradients, fluxes, and their vector

divergences. In particular, static solid–liquid inter-

faces neither generate nor absorb latent heat, nor do

they change shape, undergo interface ‘‘stretching’’ or

change orientation over time. Such interfaces, more-

over, remain strain free, are neither subject to mor-

phological instability nor stress relaxation, and,

perhaps most importantly, may be probed with great

precision to measure the distribution of their ther-

modynamic potentials and evaluate their active

energy fields.

The Leibniz–Reynolds energy balance, Eq. (1), for a

stationary interface in the form of a grain boundary

groove constrained by an applied thermal gradient,

G, simplifies still further as,

�rs½/sðrÞ � s� ¼ kthJ ðGÞ; ð4Þ

where J ðGÞ is the jump that develops in the norm of

the thermal gradient across the interface from the

divergence of the tangential flux, namely jGj‘ � jGjc.
Equation (4) describes the effect of the interfacial bias

field on a stationary solid–liquid interface. The inter-

face’s shape, separating phases with identical thermal

conductivities, kth, is described by the position vector

rðx; y; zÞ. The presence of an interfacial energy field

causes a ‘‘jump,’’ J ðGÞ, to appear in the normal

components of the thermal gradient across that

interface. Note, that absent the presence of a bias

field, for equal phase thermal conductivities sur-

rounding a stationary solid–liquid interface, the

10960 J Mater Sci (2018) 53:10955–10978



thermal gradient would remain perfectly uniform

and continuous, and would not change magnitude

when crossing the interface.

Equation (4), moreover, also suggests a basis for

detecting bias fields that manifest their presence as

small nonlinear shifts in the interface’s thermo-po-

tential. The change in thermo-potential along static

solid–liquid interfaces is also proportional to the local

energy rate of the bias field [the left-hand side of

Eq. (4)], and proportional to the jump developed in

the gradient across the interface [the right-hand side

of Eq. (4)]. The basis for proportionality between

shifts in interface thermo-potential and field energy

rate is discussed in detail in ‘‘Detecting interfacial

energy fields’’ section.

Grain boundary grooves

Background

Grain boundary grooves (GBGs) are commonly

occurring features found along polycrystalline solid–

liquid interfaces. GBGs have been studied in con-

siderable detail because they influence solidification

behavior by affecting interfacial stability. Specifically,

grain boundaries intersecting solid–liquid interfaces

initiate grooved ‘‘defects,’’ or cusps, which provide

locations on moving interfaces that are prone to

morphological instability. The linear theory for mor-

phological instability was developed over 50 years

ago [28–30]. Along this line, Wang et al. concluded

from their experiments on GBGs on succinonitrile

interfaces [31]:

‘‘. . . the interface instability occurring first at the

grain boundary groove probably becomes the

origin of the entire planar interface instability.’’

Wang et al.’s observation and conclusion, quoted

above, indicates that GBGs provide the ‘‘trigger’’

mechanism for actually inducing morphological

instabilities on polycrystalline solid–liquid interfaces.

Dynamic interactions of grain boundaries with

stationary and moving solid–liquid interfaces were

described in the 1960s by investigators using hot-

stage optical and electron microscopy [32–35]. In situ

studies of moving solid–liquid interfaces demon-

strated that persistent defects, such as grain bound-

aries and screw dislocations, were often responsible

for initiating morphological instabilities that led to

increasingly complex patterns in solidifying dilute

alloys [36–38]. Isolated GBGs on solid–liquid inter-

faces, moreover, provide well-studied examples of

microstructures analyzed for both energy measure-

ment and stability [39]. Dynamic effects induced by

GBGs on solid–liquid interfaces were examined in

greater detail by Yeh et al., who applied a phase-field

model to simulate these instabilities and subsequent

pattern formation [40].

Variational GBGs with different dihedral angles

were selected in this study to provide a range of

equilibrated microstructures that allow both theoreti-

cal calculation of their individual bias fields, as well as

permitting quantitative comparison with indepen-

dently measured interfacial energy fields using phase-

field simulation. Stationary GBGs are used here as test

microstructures to probe the presence of such fields.

Variational grooves

The mathematical term ‘‘variational’’ applied to ana-

lytically derived GBG profiles denotes interface

forms obtained as solutions to the Euler–Lagrange

differential equation, using methods of the calculus

of variations [41]. Figure 1 is a variational profile

derived for an isolated GBG, embedded, and held

stationary, by a vertical thermal gradient. The con-

figuration of solid and liquid represents a static

thermodynamically ‘‘open’’ system, insofar as heat is

uniformly conducted downward through the gradi-

ent from the hotter liquid through the cooler solid.

Both phases have identical thermal conductivities, so

that their steady-state heat-flow fields exhibit hori-

zontal isotherms, vertical lines of heat flow, and a

spatially uniform rate of entropy production in 2D.

The form of variational GBGs in a uniform thermal

gradient was discovered by Bolling and Tiller [42].

Their mathematical solution yields solid–liquid pro-

files that in 2D minimize a GBG’s free energy func-

tional.2 The free energy of a variational solid–liquid

GBG consists of capillary energy stored along its

solid–liquid interface, which is increased by the

‘‘pull’’ of an intersecting grain boundary that curves

and lengthens that interface. The grain boundary

itself decreases its total area and energy as it con-

tracts. Also included in a GBG’s variational energy

functional is the volume-free energy within the

2 Details of GBG functionals and the mathematics of ‘‘extrem-
izing’’ their profiles via the Euler–Lagrange equation are
available in Ref. [43].
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slightly undercooled melt confined within the groove

cusp, relative to its adjacent curved solid phase at the

same temperature and pressure. The sequence of

variational grooves plotted in Fig. 2 illustrates how

crystal boundaries with different energy density, or

surface tension, ‘‘pull’’ against a solid–liquid interface

to form, under the same thermal gradient, unique

variational profiles, each with its specified dihedral

angle, W, and equilibrium groove depth, gHðWÞ.
Importantly, variational GBGs do not accommo-

date any additional interfacial energy fields, includ-

ing the bias field. Although variational GBGs are

theoretical constructs, their mathematical profiles

prove useful for our purposes, as they closely

approximate real equilibrated GBGs. Specifically, the

analytic shapes of variational GBGs may be used to

calculate accurate estimates of capillary-mediated

bias fields that, according to thermodynamics, should

be present on real, or simulated, GBGs with the same

geometric profile.

As suggested by Figs. 1 and 2, the dihedral angle,

W, of a GBG is determined by force equilibrium

among three interacting interfaces. Specifying the

dihedral angle provides a natural boundary condi-

tion for the variational problem, equivalent to

Young’s vector force balance at a GBG’s triple junc-

tion [12]. The flat, or outer, regions of a variational

groove, far from its triple junction, become coincident

with the system’s melting point isotherm, T ¼ Tm,

where the profile coordinates approach g ¼ 0, and

l ! �1.

Equilibrated GBGs

Stationary GBGs equilibrate in thermal gradients

aligned with their grain boundaries. The photomi-

crograph of an equilibrated GBG, shown in Fig. 3,

exhibits a stationary microstructure similar in shape

with its variational profile, having the same dihedral

angle and groove depth. (Cf. Fig. 2, W ¼ 0). Note also

how the variational profile coordinates plotted as

points on the micrograph in Fig. 3 fit along the

crystal–melt interface.

There is, as mentioned, a critical distinction

between variational GBGs, with linear potential and

curvature distributions, and what we term here as

equilibrated GBGs, with nonlinear potential and cur-

vature distributions and groove depths that are

altered slightly by the presence of capillary-mediated

energy fields. These differences, linear versus non-

linear potential and curvature distributions, allow us

to evaluate the resident bias fields supported on

equilibrated GBGs.

In the example offered in Fig. 3, the dihedral angle

is small, W � 0, and the groove depth is large

(� 170 lm). Equilibrated solid–liquid GBGs develop

on spatial scales typically between a few tens of

nanometers and several hundred microns, depending

primarily on the magnitude of their thermal gradient.

Similar GBGs have been equilibrated over a range of

thermal gradients in experiments that yield values for

the solid–liquid interface energy density of a number

of transparent crystalline substances [48–52].

Figure 1 Variational groove profile, lðg;WÞ, plotted in dimen-

sionless Cartesian coordinates, l ¼ x=2K; and g ¼ y=2K, with

dihedral angle W ¼ 83:6�. The capillary metric, K, that scales all
lengths, is set by the magnitude of the applied thermal gradient,

G ¼ rTj j. This gradient remains a constant vector field (for a

variational GBG) always pointing in the þg direction. The

presence of this thermal gradient constrains the size and shape of

the variational GBG. The l-axis is coincident with the melting

point isotherm, T ¼ Tm. Light gray represents stable melt phase

(g[ 0), whereas white areas (g\0Þ are stable crystals separated

by a vertical grain boundary, GB. The melt within the cusp is

increasingly supercooled with depth, suggested by gradient

shading.
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The steady-state size of an equilibrated GBG

microstructure is inversely proportional to the square

root of the magnitude of its thermal gradient. A

typical value for the thermo-capillary length is

K � 3 	 10�4 m, in many materials exposed to a rel-

atively small thermal gradient of G � 1 K m�1.

Moreover, weak thermal gradients equilibrate slowly

and produce relatively large groove cusps, whereas

steep gradients, circa 105 K m�1, formed rapidly via

laser or electron beam heating, reduce the cusp depth

to a micron or less.

The plot in Fig. 4 correlates the norm, or magni-

tude, of applied thermal gradients, jrTj, with

experimentally observed steady-state sizes (cusp

depths) of an equilibrated GBG in pure succinonitrile,

similar to the one displayed in Fig. 3. The scaling

relationship established with these data for equili-

brated groove size and the applied thermal gradient

agrees with that predicted from Eq. (6), expressing an

inverse square-root relationship among thermal gra-

dient, thermo-capillary length, K, and equilibrium

groove depth.

Figure 2 Isometric variational GBG profiles, calculated from

Eq. (5), with dihedral angles W 2 ð0;\180�Þ. A constant thermal

gradient points left to right in each frame. The profile’s equilibrium

arc length, cusp area (volume per unit thickness into the page),

maximum melt supercooling, and reduction of grain boundary

length, all diminish as W increases.

Figure 3 Photomicrograph of a fully equilibrated symmetrical

GBG, with a small dihedral angle, W � 0, in BCC succinonitrile

[44, 45]. This material was purified to 7–9 sþ using distillation

and multiple zone refining [46, 47]. Black area is melt phase, and

gray areas are two crystallites separated by a vertical tilt boundary.

The melting point of this ultra-pure material,

Tm � 58:082 � 0:001 �C, is the temperature realized along the

flat regions of the profile [46]. A uniform thermal gradient of

� 4 K m�1 points vertically upward, constraining the groove’s

steady-state size and shape. The small thermal gradient maintains a

relatively deep cusp of 167 � 15lm. Points marked along the

solid–liquid interfaces refer to equivalent variational groove profile

coordinates, xðyÞW¼0, calculated from Eq. (5). Micrograph adapted

from Ref. [48].
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Isotropic grain boundary grooves

Two categories of isotropic3 variational GBGs have

been analyzed in detail in earlier investigations: (1)

isotropic grooves separating phases with equal ther-

mal conductivity, the profiles, and linear thermo-

potentials for which were solved by variational

methods as used in this study [42]; and (2) the more

general situation of isotropic grooves separating

phases with unequal thermal conductivities. For

unequal thermal conductivities, nonlinear potentials

develop, which were analyzed theoretically, calcu-

lated, and then confirmed using an analog potentio-

metric device. The potentiometer consisted of alloy

sheets, with dissimilar electrical conductivities,

shaped and joined as a meter-sized variational

‘‘GBG.’’ As steady-state temperature and voltage

distributions both obey Laplace’s equation, the non-

linear voltage distribution measured along this ana-

log GBG profile for a large (7:1) conductivity ratio

served to reflect the thermo-potential distribution of

its equivalent GBG [53]. GBG profiles for other

unequal liquid–solid thermal conductivities were

computed by identical numerical methods, from

which the theoretical profile for a 4:1 thermal con-

ductivity profile was calculated, and later employed

by Hardy [50], to determine the solid–liquid interface

energy surrounding the rhombohedral c-axis of pure

water ice.

Additional features attending strong anisotropy of

the solid–liquid interfacial energy density on GBGs

were analyzed by Voorhees et al. [54]. More recently,

the influence of weak anisotropy on the dynamic

stability of GBGs was studied experimentally by

Wang et al. [39]. The capillary-mediated fields cal-

culated later in ‘‘Capillary flux divergence’’ section,

and then confirmed numerically using phase-field

simulations in ‘‘Thermo-potentials on analytic pro-

files and phase-field isolines’’ section, also explain the

observations of Wang et al. of how GBGs when set

into motion affect interface stability.

The goals in the present study, however, remain:

(1) to calculate capillary-mediated bias fields expec-

ted on equilibrated GBGs with variational profiles,

and (2) establish the existence of interface energy

fields independently as thermodynamic entities on

simulated GBGs. Both tasks are accomplished more

easily by studying isotropic GBGs: the first with

variational profiles, and the second with simulated

phase-field equilibrated GBGs.

Variational GBGs

Bolling and Tiller [42] solved the Euler–Lagrange

equation [41] for the energy functional of a stationary

GBG subject to flat (zero curvature) end-point con-

ditions as l ! �1, and g ! 0. Details for con-

structing this functional may be found in [43].

The profile, lðg;WÞ, for an isotropic GBG in R2,

with arbitrary dihedral angle W 2 ½0; p� at its triple

junction, l ¼ 0; gH ¼ gðWÞ, may be generalized as,

lðg;WÞ ¼ � 1

2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � g2
p

� 1

g

 !"

� log cot
1

8
ðWþ 3pÞ

� �� ��

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � g2
p

� sin
Wþ p

4

� �

; g 2 ½gHðWÞ; 0Þ;

ð5Þ

where the minus sign in Eq. (5) denotes the groove’s

right-side profile, l 2 ½0;1Þ, and the plus sign

denotes its left-side profile, l 2 ð�1; 0�. See again

Figure 4 Experimental verification that the cusp depth of an

equilibrated GBG in high-purity succinonitrile varies with the

reciprocal square root of the magnitude of the thermal gradient,

jrTj�1=2. Error bars of � 5% were added to the abscissa and

ordinate values of these data points to suggest accuracy limitations

established by the linear regression, positioned here with its slope

equal to 0:36 ðmKÞ1=2. Data adapted from Ref. [48].

3 Isotropy is approximated by some crystalline materials that
exhibit weak variations (\1%) of their crystal–melt interface
energy, cs‘, around some particular crystallographic zone axis.
For GBGs in BCC succinonitrile, an example of which is
provided in Fig. 3, the fourfold anisotropic variation of the
solid–liquid interfacial energy density is only � 0:5% around
its three cubic [100] zone axes, with its mean value

cs‘ ¼ ð9:0 � 1Þ 	 10�3ðJ m�2).
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Fig. 1. Cartesian coordinates used in Eq. (5) are l ¼
x=2K and g ¼ y=2K, where x and y are the groove’s

physical coordinates, and K is the thermo-capillary

length that scales physical lengths into dimensionless

numbers. The characteristic thermo-capillary length,

K, of a variational GBG, which has a distribution of

curvature, is defined from its Euler–Lagrange differ-

ential equation as

K 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cs‘ X Tm

GDHf

s

ðmÞ; ð6Þ

where the SI units for the quantities appearing in the

thermo-capillary length, Eq. (6), are cs‘ (J m�2) ; X

(m3 mol�1); T (K); G (K m�1); and DHf (J mol�1).

The lower limit (dimensionless cusp depth) of a

GBG’s vertical coordinate occurs at the groove’s tri-

ple junction, gHðWÞ, where maximum curvature and

supercooling coexist,

gHðWÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
1 � cos

W� p
2

� �� �

s

; 0�W� p: ð7Þ

In accord with Eq. (7), the maximum melt depth

allowed for a variational GBG occurs when its dihe-

dral angle W ! 0, and its cusp depth is gHmax ¼
�

ffiffiffi

2
p

=2: The cusp depth decreases as the groove’s

dihedral angle increases, and becomes zero when

W ! p. See again Fig. 2.

Thermodynamic properties of variational
GBGs

Thermo-potential and interface curvature

A convenient thermo-potential, #ðgðlÞ;WÞ, may be

defined along the curved solid–liquid interface of a

GBG constrained by a uniform thermal gradient of

magnitude G, pointing along the vertical g-axis. The

location of the system’s melting point isotherm,

Tint ¼ Tm, occurs as g ! 0, where its local dimen-

sionless thermo-potential is also set equal to zero, so

#ðgðlÞ;WÞ ¼ 0 as l ! �1.

In accord with its definition, the thermo-potential

for the solid–liquid interfaces of GBGs [43] is

#ðgðlÞ;WÞ 
 2ðTintðgðlÞÞ � TmÞ
GK

; g 2 ½gHðWÞ; 0Þ: ð8Þ

The thermo-potential represented by Eq. (8) is a sca-

lar field easily extended throughout the rest of R2,

i.e., beyond the g-range specified above for the loca-

tion of the GBG’s solid–liquid interface. Replacing

interfacial temperature, Tint, by the phase tempera-

ture, Tiðl; gÞ (i ¼ s; ‘), anywhere not occupied by the

variational GBG, allows the extended thermo-poten-

tial to specify where stable melt (‘) exists for a pure

substance with melting point, Tm, namely where

#ðgÞ� 0, and where stable solid (s) exists, namely

#ðgÞ� 0. See again Fig. 1.

Curvature of the solid–liquid interface, jðyðxÞÞ, at

constant pressure, results in small shifts in the equi-

librium thermo-potential. These shifts allow the

thermodynamic activities of curved solid and its

contacting liquid phase to match along a GBG’s

curving solid–liquid interface. Specifically, convex

interfaces (j[ 0), where the outward normal vector

points toward the liquid phase, have equilibrium

temperatures slightly below the melting point of a flat

interface (\Tm), whereas concave interfaces (j\0)

have equilibrium temperatures elevated slightly

([ Tm).

The Gibbs–Thomson relationship [12] links the

equilibrium thermo-potential, defined in Eq. (8), to a

groove’s dimensionless curvature, defined here as

ĵðgðlÞÞ 
 2K	 jðyðxÞÞ. One finds that this thermo-

potential and the dimensionless interfacial curvature

are related as

2

GK
ðTintðgðlÞÞ � TmÞf g ¼ � 2

GK
cs‘X
DSf

� �

ĵðgðlÞÞ
2K

� �

:

ð9Þ

Curly brackets in Eq. (9) delineate the standard (di-

mensional) Gibbs–Thomson relationship in 2D [12].

The pre-factors ð 2
GKÞ (1/K) convert curvature-shifted

equilibrium temperatures to non-dimensional

thermo-potentials, appropriate for variational GBGs

of size K, embedded in a thermal gradient G.

After rearranging terms on the right-hand side of

Eq. (9), substituting the parametric definition given

in Eq. (6) for K2, and simplifying, one finds that the

thermo-potential equals minus the interface’s

dimensionless curvature,

#ðgðlÞ;WÞ ¼ �ĵðgðlÞÞ: ð10Þ

The right-hand side of Eq. (10) can be evaluated by

applying the standard Cartesian relationship for in-

plane curvature, Eq. (11), middle expression.

Substituting the first and second derivatives

derived for the profile of a variational GBG from
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Eq. (5), and simplifying the resulting expression,

yields its interfacial curvature, which is linear with

depth, Eq. (11), right-hand expression [43],

ĵðgðlÞÞ 
 �
d2l
dg2

1 þ ðdl
dgÞ

2
� 	3=2

2

6

4

3

7

5

¼ � 4g; g 2 ½gHðWÞ; 0Þ:

ð11Þ

Equations (10) and (11) show that for any isotropic

variational GBG, linear relationships hold among its

thermo-potential, #ðgðlÞ;WÞ, dimensionless interface

curvature, ĵðgðlÞÞ, and depth coordinate, g, viz.,

#ðgðlÞ;WÞ ¼ �ĵðgðlÞÞ ¼ 4g; g 2 ½gHðWÞ; 0Þ: ð12Þ

Tangential interface gradients

A consequence of the scalar potential distribution,

Eq. (12), along the solid–liquid interface of a varia-

tional GBG is the unavoidable appearance of a vector

gradient field directed tangentially along its solid–

liquid interface. The vector operator, rs½ �, for the

tangential gradient in 2D is obtained by applying the

chain rule to differentiate the GBG’s thermo-potential

distribution, #ðgðlÞÞ, with respect to its dimension-

less arc length, ŝ.4 Dimensionless arc length is scaled

similarly with the groove’s thermo-capillary length,

2K. The tangential, or arc-length, gradient may be

found by applying the vector sequence,

rs½#ðgðlÞ;WÞ� 
 d

dg
½#ðgðlÞ;WÞ� dg

dŝ

� �

s; g2 ½gHðWÞ;0Þ:

ð13Þ

The unit tangent vector, s, introduced into Eq. (13),

points anticlockwise along both halves of the GBG

profile, with solid on its left and liquid on its right.

This interface vector defines the positive arc-length

direction. The sign of the arc-length derivatives5 that

appear in definition (13) reflects the derivatives,

dg=dŝ, taken along the groove’s left and right profiles,

per equations (5), which reverse sign when crossing

the GBG’s triple junction,

dg=dŝ ¼ � 1 þ dl=dgð Þ2
� 	�1

2¼ 
 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � g2
p

; ðg\0Þ:

The chain rule sequence for calculating tangential

gradients of the Gibbs–Thomson thermo-potential

along the left and right branches of a variational

groove profile reduces to a pair of dimensionless

quadratic expressions,

rs½#ðgðlÞ;WÞ� ¼ 
 8g
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � g2
p

� s; g 2 ½gHðWÞ; 0Þ:
ð14Þ

Capillary-mediated energy fluxes

Difficulties encountered specifying temperatures on

surfaces and interfaces are briefly included in [55],

and higher-order heat conduction phenomena near

fast-moving solid–liquid phase boundaries are dis-

cussed by Serdyukov [56]. Superficial thermal gra-

dients and heat fluxes on heterophase interfaces, as

considered in this study, are, however, rarely

addressed, as these gradients involve extremely small

temperature differences mediated by capillarity,

which vary spatially over mesoscopic distances along

curved interfaces. So, when capillarity is present,

irrespective of whether an interface is considered

sharp—i.e., having zero thickness, or, more realisti-

cally, slightly diffuse—field theory shows that

thermo-potential gradients develop as a necessary

condition for the transport of thermal and mass

fluxes from higher potential (flatter or concave areas)

toward regions of lower potential (curved convex

areas). The sufficient condition required for the

appearance of capillary-mediated fluxes is that the

interface have nonzero transport numbers for heat

and mass flow.

Interfacial transport of capillary-mediated energy

is analogous to another well-studied fourth-order

phenomenon: viz., species diffusion along interfaces

and free surfaces in response to superficial gradients

of the chemical potential [57]. In fact, surface diffu-

sivities and interfacial thermal conductances are

always expected to be nonzero, especially at tem-

peratures near Tm, appropriate to solid–liquid inter-

faces. Indeed, Mullis was able to compute interfacial

fluxes near the tip region of 2D dendritic crystals

4 Arc length, ŝ, increases as the unit tangent vector, s, advances
anticlockwise along a GBG’s solid–liquid interface. The
thermo-potential falls with increasing arc length along a GBG’s
right profile, whereas this potential increases with increasing
arc length along the left profile. Thus, the tangential gradient of
a GBG’s thermo-potential switches from antiparallel to parallel
with the local unit tangent vector and reverses sign when
crossing its triple junction.
5 The derivatives dy=ds ¼ dg=dŝ are positive along the groove’s
left profile and negative along its right profile. The depth
coordinates, y or g, become increasingly negative into the
groove cusp. See Fig. 1.
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with a noise-suppressed fourth-order accurate phase-

field model [58]. Mullis’s flux data closely matched

the capillary-mediated fluxes calculated for an

appropriately scaled parabolic solid–liquid interface

[5].

A phenomenon studied in reasonable depth and

closely connected with capillary-mediated interfacial

heat conduction is Bénard–Marangoni hydrodynamic

flow. This thermo-mechanical phenomenon is asso-

ciated with free fluid surfaces subject to tangential

temperature gradients [59]. Bénard–Marangoni flows

are usually driven by large thermal gradients that

directly affect a fluid’s surface tension, inducing stress

gradients and surface flow. Interface heat conduction

via capillarity in solid–liquid systems, as explained in

‘‘Capillary flux divergence’’ section, arises instead

through an indirect effect of small capillary-induced

gradients of the Gibbs–Thomson potential.

Fourier’s law

Fourier’s law of heat conduction relates heat fluxes to

their associated thermal gradients and conductivities,

irrespective of dimensionality. Specifically, a thermal

flux directed along a 2D interface by tangential

thermal gradients, /sðx; yÞs, bears units of (W m�1).

Its corresponding thermal conductivity, kint, has

physical units of (W K�1). The energy flux along a

solid–liquid GBG with a variational profile is found

by applying Fourier’s law [55]. The superficial gra-

dient responsible for this flux is the tangential gra-

dient of the GBG’s Gibbs-Thomson thermo-potential,

Eq. (14).

Fourier’s law when dimensionalized via a GBG’s

applied thermal gradient, G / 4 (K/m), yields a

superficial energy flux,

/sðyðxÞÞ � s ¼ � kintG

K

� �

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � y2

4K2

s

� s ðWm�1Þ:

ð15Þ

Tangential energy fluxes are directed opposite to

their arc-length gradients, Eq. (14). The correspond-

ing dimensionless vector flux, ÛsðgðlÞÞ, Eq. (16), is

recaptured by scaling Eq. (15) with the system’s

thermo-capillary rate constant, kintG=4 (W m�1).

ÛsðgðlÞÞ 

4/sðyðxÞÞ

kintG
� s ¼ �8g

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � g2
p

� s: ð16Þ

The dimensionless tangential flux is plotted in Fig. 5

for GBGs with several different dihedral angles.

It is important to note that tangential capillary

fluxes travel along curved solid–liquid interfaces, but

do not directly alter, or influence, the interface’s local

energy budget. What occurs instead is that the left

and right groove profiles support opposing, i.e.,

negatively and positively directed fluxes along each

half of the GBG. These fluxes finally meet at the triple

junction, where their l-components cancel and their

g-components add. The combined flux components

enter the grain boundary as a persistent current of

thermal energy. As they travel along the solid–liquid

interface, however, these fluxes merely ‘‘pass

through,’’ remaining orthogonal to the interface’s

normal vector. Consequently, tangential fluxes do not

account for any direct influence on a microstructure’s

local energy budget.

Although it might seem unusual that a stationary

solid–liquid microstructure can spontaneously ‘‘ab-

sorb’’ a continuous stream of thermal energy and

insert it into the perturbing grain boundary, one

Figure 5 Plot of capillary-mediated interface flux [Eq. (16)]

predicted along the left and right profiles of a variational GBG.

Opposing fluxes from the left and right profiles move along the

interface and approach each other, traveling from the flatter

regions of the GBG toward their common triple junctions. Triple

junctions are each located at the intersections of the dashed lines,

where the left and right fluxes for grooves with various dihedral

angles combine, and their g-components enter the grain boundary.
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should recall that an equilibrated GBG is a steady-

state microstructure that remains open to the passage

of copious amounts of thermal energy moving down

the applied thermal gradient, from the melt, through

the interface, to its cooler solid. The thermal gradient

constraining the stationary GBG, in a sense, also

supports the much weaker tangential Gibbs–Thom-

son thermal gradients responsible for capillary-in-

duced interfacial heat fluxes.

As shown next, it is the more subtle influence of the

capillary flux’s vector divergence—not the energy

flux itself—that causes energy removal to occur along

a stationary solid–liquid interface that actively alters

the local energy budget. Although the effect of cap-

illary flux divergence is concentrated primarily in the

steeper parts of the GBG’s cusp, it will also be shown

that a persistent distribution of cooling occurs over

the entire GBG microstructure.

Capillary flux divergence

As discussed thus far, the persistent capillary-medi-

ated energy flux along the solid–liquid interface of a

stationary GBG does not result in changes to its

energy budget. Only indirect effects result through

that flux’s vector divergence. The deeper explanation

for this distinction lies in a fundamental difference

between steady-state thermal fields developed within

the bulk solid and liquid phases, and the capillary-

mediated fields on and along the GBG’s interface

separating these phases. Specifically, steady-state

heat flow obeys Laplace’s equation—the fluxes for

which are harmonic and non-divergent—whereas

that restriction applies neither to the tangential flux

driven by capillary gradients along a sharp interface,

nor to capillary fluxes passing between equilibrated

bulk phases separated by a thicker diffuse interface.

Both of these situations instead obey Poisson’s

equation. The difference between non-divergent

‘‘Laplace fluxes’’ and divergent ‘‘Poisson fluxes’’

explains the fundamental origin of pattern-forming

perturbations on moving interfaces, and shape-alter-

ing fields on stationary GBGs.

This distinction, moreover, accounts for the pres-

ence of autogenous Poisson sources—i.e., bias

fields—the significance of which has not been

addressed in theories of microstructure dynamics

and pattern formation. Poisson sources enter as

higher-order contributions to both interfacial energy

and mass balances, especially at smaller length scales

where patterns initiate. They represent, in fact are

identical to, the higher-order capillary-mediated

energy rate that appears in the Leibniz–Reynolds

energy balance, Eq. (1).

Thus, heterophase interfaces support capillary

thermo-potentials, the spatial distribution of which is

governed by Poisson’s equation [60], namely

r2
s ½#ðgðlÞ;WÞ� ¼ �BðgðlÞ;WÞ; ð17Þ

where BðgðlÞ;WÞ is the bias-field rate, or Poisson

source strength. The left-hand side of Eq. (17) shows

that scalar bias fields in 2D are surface Laplacians of

the Gibbs–Thomson thermo-potential, or, equiva-

lently, (minus) the vector s-divergence of the capil-

lary-mediated tangential flux,

BðgðlÞÞ ¼ �rs � ½ÛsðgðlÞÞ � s�: ð18Þ

Bias fields on equilibrated GBGs

Stationary microstructures, such as GBGs interacting

with their own interface fields, provide unique oppor-

tunities to generate and study persistent capillary fields.

Upon equilibration with its applied thermal gradient,

GBGs allow exposure and inspection of their equili-

brated microstructure’s capillary fields and absent the

complications that would normally accompany moving

interfaces, such as time-dependent shape change,

morphological instability, latent heat release, or species

redistribution in the case of alloys.

The bias field in 2D may be determined analytically

from its thermo-potential distribution by twice

applying the chain rule for arc-length (s) differentia-

tion. The nested set of elementary operations repre-

sents the 2D (surface) Laplacian of the Gibbs–

Thomson potential, #ðgðlÞ;WÞ, which defines (minus)

the scalar bias field, BðgðlÞ;WÞ,

r2
s ½#ðgðlÞ;WÞ� ¼ d

dg
d

dg
½#ðgðlÞ;WÞ� dg

dŝ

� �

s


 �

� dg
dŝ

� �

s 
 �BðgðlÞ;WÞ:
ð19Þ

The operational sequence shown in Eq. (19), when

applied to the equilibrium thermo-potential on a

variational GBG, Eq. (12), yields a cubic expression

for the field resident along its solid–liquid interface,

BðgðlÞ;WÞ ¼ 16ðg� 2g3Þ; g 2 ½gHðWÞ; 0Þ: ð20Þ

Such capillary-mediated energy sources—according

to thermodynamics and field theory—should exist on
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real GBGs equilibrated in a fixed thermal gradient, or,

as to be demonstrated next, on GBGs simulated in a

thermodynamically consistent manner with a phase-

field model.

An example of what has been observed experi-

mentally using an equilibrated GBG is captured in

the photomicrograph, Fig. 3. This microstructure

developed by maintaining a GBG for several hours in

a uniform thermal gradient in a high-precision,

temporally stable thermostat. The supercooling

developed at its triple junction is extremely small,

less than 1 mK, which reflects the large radii of cur-

vature even deep within the GBG’s cusp region—a

result of its relatively small constraining thermal

gradient of only 4 K=m [48].

Theoretical profile points added to Fig. 3 were

calculated from Eq. (5), noting its near-zero dihedral

angle, and calculating its characteristic thermo-cap-

illary length, K ¼ 1:18 	 10�4 (m). The thermo-capil-

lary length, K, was determined from the GBG’s cusp

depth, yH ¼ 1:67 	 10�4 (m), which corresponds to

the dimensionless location of its triple junction at

gH ¼ �
ffiffiffi

2
p

=2. At the scale and resolution of this

micrograph, one is unable to detect discernible dif-

ferences in the equilibrated interface shape from the

one predicted using the variational profile formula.

Now, whether or not an active bias field is present

on such a stationary solid–liquid interface after

equilibration and whether or not higher-order GBG

profile changes are induced by the bias field inter-

acting with its own microstructure are the issues next

addressed.

Bias-field distributions

The bias field, BðgðlÞ;WÞ, Eq. (20), predicts rates of

capillary-mediated energy withdrawn at the interface

at any cusp depth g for different dihedral angles, W.

The associated energy rate distributions, BðlðgÞ;WÞ,
are easily calculated from BðgðlÞ;WÞ by cross-plot-

ting Eq. (20) against the variational profile lðg;WÞ,
Eq. (5). The plots in Fig. 6 display energy removal

rates over the right-hand half interface of GBG’s with

various variational profiles.

Each such distribution indicates the presence along

the solid–liquid interface of varying amounts of

steady-state cooling, because the energy rates—

which are negative over all interface points—

represent positive flux divergences. This shows,

counterintuitively, that GBGs, even at rest, withdraw

persistent streams of thermal energy from the sur-

rounding phases that slightly cool the entire interface.

The cooling imposed by these bias fields is strongest

along the solid–liquid interface itself, where energy is

removed.

Cooling distributions are uniquely determined by

a GBG’s dihedral angle, with the highest rates of

energy adsorption occurring well within their cusps

either near, or at, their triple junction. Curiously,

GBGs exhibit capillary-mediated cooling without

any heated regions. This behavior differs markedly

from capillary-mediated energy distributions exam-

ined previously for other interfacial profiles, where

both cooling and heating were found in all cases

[14]. Specifically, previous studies of capillary

energy fields included the following interfacial

forms: (1) closed conic sections, such as the circle

and ellipses; (2) protuberant ‘‘open profiles,’’ such as

the parabola and hyperbolas [5]; and (3) several

transcendental shapes, such as the cellular forms of

Saffman–Taylor ‘‘fingers’’. You et al. recently exam-

ined the stability and pattern-formation dynamics

on phase-field simulated periodic Saffman–Taylor

cells and found quantitative agreement confirming

their dynamic simulations of cellular growth with a

Figure 6 Theoretical energy extraction rates, BðlðgÞÞ, along the

right half of symmetric GBGs, calculated for various dihedral

angles, W. Mirror-image curves exist for the left half, l� 0. All

bias-field distributions show that BðlÞ� 0, so that grooves are

cooled by energy removal along their profiles. Where

0�W� 83:6�, cooling curves exhibit smooth extrema that locate

where maximum cooling rates occur at l� 0. Where W[ 83:6�,

the point of maximum cooling rate is always located at l ¼ 0 and

occurs at cusped minima that steadily diminish in their peak

intensity as W increases to 180�.
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bias-field analysis for tip stability of the same shape

[61, 62].

Phase-field simulations

Diffuse and sharp interfaces

Simulations of capillary-mediated energy fields were

accomplished in the present study using a thermo-

dynamically consistent multiphase-field model based

on an entropy density functional [63]. In diffuse-in-

terface simulations that employ the phase-field

method, initial and boundary conditions are specified

and the evolution of far-from-equilibrium

microstructures are usually computed. In this study,

grain boundaries with prescribed orientation and

energy densities intersected initially with planar

solid–liquid interfaces. These simulations evolved

constrained states over many time steps, as the sim-

ulated GBGs relaxed within their thermal gradient

field to yield their steady-state equilibrated

microstructures.

Figure 7 portrays major aspects of the equilibration

sequence leading to simulation of each equilibrated

GBG microstructure studied. The starting

configuration shows the grain boundary (dashed

vertical line) separating crystals 1 and 2, intersecting

with the GBG’s left and right solid–liquid interfaces,

all of which are smooth, slightly diffuse borders

separating crystals 1 and 2 and their melt. The ratio of

the grain boundary energy to solid–liquid energy

selected for this particular sequence produced at

equilibrium a dihedral angle of W ¼ 120�.

(a) Early in the equilibration process, the observed

thermal field displays a grid of isotherms with

orthogonal lines of heat flow that already

suggest cooling of the melt within the groove

cusp. Interface cooling causes upward

deflection of the isotherms within the melt

accompanied by bending, or ‘‘focusing,’’ of the

lines of heat flow. The ‘‘jump,’’ or discontinuity,

displayed by the thermal gradient is predicted

by Eq. (4) and indicative of the presence of an

active, persistent interface energy field.

(b) Several hundred thousand time steps later,

isotherm deflection from interface cooling has

spread further away from the triple junction,

and inward bending of the heat flow lines is

noticeable within the outermost five lines.

Figure 7 Images and

isotherm sequences observed

simulating an equilibrated

diffuse-interface GBG. a

Starting configuration. Three

diffuse interfaces (crystal-1/

melt, crystal-2/melt, crystal-1/

crystal-2) begin relaxation. b

Early equilibration of the

thermal field displayed as

gray-scale isotherms and

(black) orthogonal lines of

heat flow. c Late equilibration.

Isotherm deflection in the melt

spreads further from the triple

junction located at 1000DX, as
evidence of interface cooling.

d Diffuse GBG in its

multiphase-field computational

domain, 2000DX by 400DY.

10970 J Mater Sci (2018) 53:10955–10978



(c) Steady-state equilibration is eventually

achieved after hundreds of thousands of

numerical time steps, each one iteratively

calculated by solving phase-field Eqs. (26) and

(27).

(d) The phase image forms an equilibrated GBG

consisting of a light gray region, the melt; a

medium gray area, crystal 1, which forms a

grain boundary with the dark gray area, crystal

2. All ‘‘interfaces’’ are, in fact, slightly diffuse:

light gray/medium gray and light gray/dark

gray borders represent smooth transition of the

multiphase-field variables. Thermo-potentials

are measured post-processing along the solid-

to-liquid isolines given by an average value of

the phase-field order parameters corresponding

to phases that are in contact.

In accepting this procedure to confirm the existence

of interfacial bias fields resident on simulated GBGs,

one notes that phase-field models numerically solve

coupled partial differential equations that character-

ize the dynamic behavior of diffuse heterophase

interfaces with time-evolved continuous phase indi-

cators. Phase-field models, moreover—and this is

important—are not coded with any explicit physics

that admit autogenous capillary fields. In fact, quite

to the contrary, bias fields were originally discovered

by combining analytic constructs based on sharp-in-

terface thermodynamics, omnimetric energy conser-

vation, and classic field theory [5]. Bias-field theory

(for sharp interfaces) and phase-field numerics (for

diffuse interfaces) develop their respective thermo-

dynamic descriptions of interfacial energetics using

independent mathematical and physical approaches

that avoid tautologies or hidden circularity between

them; they are each consistent descriptions, applica-

ble to different physical limits that describe the nat-

ure of equilibrated solid–liquid interfaces.

Notable consistency will be shown between inde-

pendent approaches predicting interfacial behavior

for stationary microstructures that captures the

essentials of our findings: viz., phase-field equili-

brated GBGs harbor active capillary energy fields

equivalent to bias fields, which were predicted pre-

viously with sharp-interface thermodynamics and

field theory.

Detecting interfacial energy fields

Potential change and energy rate

Variational GBGs, as discussed in ‘‘Variational

grooves’’ section, lack interfacial energy fields. If the

interface of an equilibrated groove did not support an

active interface energy field, then its thermo-potential

distribution would remain linear with its depth

coordinate, as already shown with Eq. (12) for vari-

ational GBGs. If, however, capillary-mediated energy

fields do persist along equilibrated GBGs, then their

presence should modify the distribution of their

thermo-potentials. Detecting small nonlinear depar-

tures of nearly linear interface thermo-potential dis-

tributions remains the central challenge in making

phase-field measurements capable of uncovering the

existence of capillary fields on GBGs, and determin-

ing distributions of their energy rates.

Specifically, the steady distribution of cooling

found along a GBG’s solid–liquid interface, predicted

by Eq. (20) and displayed in Fig. 6, should add a

small nonlinear component to the GBG’s otherwise

linear thermo-potential distribution. Particularly

useful is the fact that, at steady-state, the nonlinear

additions to the thermo-potential are locally propor-

tional to the rate of thermal energy added to, or

removed from, the interface. That is, if the interface

were cooled, its thermo-potential would be lowered

in proportion to the cooling rate. If, instead, the

interface were heated locally, then its potential at that

location would rise by an amount proportionate to

the heating rate. Lastly, if the interface were lacking a

bias field, then its potential distribution would

remain linear with depth.

This proportional linkage between the energy rate

steadily added or removed on an interface, d _Q, and

the resulting steady-state change in local tempera-

ture, dT, is based on a first-order variation between

conjugate state variables: viz., between entropy, S,

and temperature T, the product of which is energy.

The resulting ‘‘calorimetric’’ relationship at steady

state provides the proportionality expected at con-

stant pressure6 between small changes in tempera-

ture and the associated energy rate. Thus, in an open

steady-state system at constant pressure, d _Q / dT,

6 See also Ref. [64], equation (4.42), and its discussion on
pp. 52–55 that provide formal proportional relationships
among heat content, enthalpy, and temperature changes in
pure substances at constant pressure.
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indicating that capillary-mediated interface energy

rates are precisely proportional to the changes they

induce in the local interface temperature, or thermo-

potential.

Finally, the steady-state relationship between

interfacial energy rate and local interface thermo-

potential, to be simulated in ‘‘Phase-field model and

results’’ section, also possesses a mathematical foun-

dation derived from scalar potential theory. The

strengths of point sinks, or sources, of energy (or any

other extensive quantity) released along boundaries

may be represented mathematically as line integrals

of their Green’s function distributions [18]. Some

specific examples are discussed in [16] of this pro-

portionate response for both instantaneous and con-

tinuous diffusion or conduction sources, where

Green’s functions are distributed along planar and

circular boundaries in different spatial settings. Those

cited examples also demonstrate that steady-state

source rates of extensive quantities induce, respec-

tively, proportionate changes on a boundary’s con-

jugate intensive parameters.

Exposure and measurement of interface
fields

Phase-field simulations were carried out to probe the

solid–liquid interfaces of GBGs, which upon full

equilibration in a steady thermal gradient should

spontaneously develop active interface energy fields.

The opportunity to equilibrate a stationary

microstructure presents a novel opportunity for

using phase field to verify interface behavior consis-

tent with predictions for sharp interfaces. Capillary-

mediated energy fields were exposed as thermo-po-

tential ‘‘residuals’’ and measured in situ along the

phase-field isoline of a simulated GBG’s solid–liquid

interface. The method revealing these interfacial

perturbations is explained next.

Phase-field model and results

Multiphase-field model

We employed the following entropy density func-

tional for multiphase-field computations [63] applied

to thermal grain boundary grooving,

S e;/ð Þ ¼
Z

V
sðe;/Þ � � a /;r/ð Þ þ 1

�
w /ð Þ

� �� �

dV:

ð21Þ

This phase-field model ensures consistency with

respect to classical irreversible thermodynamics. The

bulk entropy density, sðe;/Þ, depends on the internal

energy density, e, where / ¼ /að ÞNa¼1 is a vector of

phase-field variables that lies in the N � 1 dimen-

sional plane. N, in general, represents the total

number of grains and phases. In the present simula-

tions, we identified three phase fields to represent

crystal-1 (/1), crystal-2 (/2)—i.e., the two grains

separated symmetrically by the grain boundary—and

their common pure melt phase (/3), all configured as

the equilibrated GBG in Fig. 7d.

The functions a /;r/ð Þ and w /ð Þ represent the

gradient energy density and multi-obstacle potential,

respectively; � is a small length scale parameter

related to the thickness of the simulated diffuse

interface, and V represents the domain volume

[63, 65]. The gradient energy density a /;r/ð Þ is

given by

a /;r/ð Þ ¼
X

N;N

a; b ¼ 1 a\bð Þ
caba

2
ab /;r/ð Þjqabj2; ð22Þ

where aab /;r/ð Þ defines the form of the surface

energy anisotropy of the evolving phase boundary

and cab is the surface free energy per unit area of the

a� b boundary which may additionally depend on

the relative orientation of the interface. The vector

quantity qab ¼ /ar/b � /br/a is a generalized gra-

dient vector normal to the a� b interface. The surface

energy of the a� b phase boundary is chosen to be

isotropic by assigning aab ¼ 1:0.

The multi-obstacle potential that accounts for

multiple phase-field parameters is given by

w /ð Þ ¼

16

p2

X

N;N

a; b ¼ 1

a\bð Þ

cab/a/b þ
X

N;N;N

a; b; d ¼ 1

a\b\dð Þ

cabd/a/b/d; ðif / 2
P

Þ

1; ðelsewhereÞ

8

>

>

>

>

>

<

>

>

>

>

>

:

ð23Þ

where
X

¼ / j
XN

a ¼ 1 /a ¼ 1 and /a � 0

� �

. The

higher-order term proportional to /a/b/d in function

(23) is added to reduce the presence of unwanted

third- or higher-order phases at binary interfaces. A
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methodology to calibrate the parameter cabd has

previously been reported in the literature [63].

The pair of governing equations that account for

energy conservation as a function of temperature, T,

and the non-conserved phase-field variables, /i, is

derived from the functional, Eq. (21), as

oe

ot
¼ �r � L00 T;/ð Þr dS

de

� �

; ð24Þ

and

M�
o/a

ot
¼ dS

d/
: ð25Þ

The quantities dS=de and dS=d/ are, respectively,

variational derivatives of the entropy functional,

Sð�;/Þ, with respect to energy, e, and phase variable,

/. The parameter M denotes the mobility governing

interface kinetics, whereas the mobility coefficient,

L00 ¼ kT2, is related to the system’s thermal conduc-

tivity, k /ð Þ, which is assumed to be equal for both

phases. The choice of equal thermal conductivity for

both phases, as explained in ‘‘Isotropic grain bound-

ary grooves’’ section, is needed to compare phase-

field measurements of an interfacial potential distri-

bution with that for its variational GBG, the analytic

profile for which, Eq. (5), depends on the assumption

of equal thermal conductivities.

The internal energy density, e, is related to the

molar latent heat, DHf , and constant specific heat cv,

by the relationship e ¼ �DHf h /að Þ þ cvT. The inter-

polation function h /að Þ ¼ /3
a 6/2

a � 15/a þ 10
� �

satis-

fies the constraints hð1Þ ¼ 1 and hð0Þ ¼ 0.

Evolution of the temperature field over the 2-D

domain can be derived from Eq. (24), the energy

equation, given that the variation of the phase

energy, e, with respect to its entropy, S, defines the

thermodynamic temperature, T, of a pure material;

thus, dS=de ¼ T�1. Substitution of the reciprocal

temperature into Eq. (24) and then carrying out the

gradient and divergence operations yield the tem-

poral equation for the thermal field,

oT

ot
¼ jthr2T þ

DHf

cv

oh /að Þ
ot

� �

: ð26Þ

Here, jth ¼ k=cv is the thermal diffusivity, and DHf=cv
is the system’s characteristic adiabatic temperature.

Equation (25) and the Legendre transform, e ¼ f þ Ts,

allow the kinetic equation for phase-field order

parameters to be written as

M�
o/a

ot
¼ � r � a;r/a

/;r/ð Þ � a;/a
/;r/ð Þ

� 	

� 1

�
w;/a

/ð Þ �
f ;/a

T;/ð Þ
T

� k

ð27Þ

where k is a Lagrange parameter that maintains a

unitary constraint on the sum of all local phase

indicators, so that
PN

a¼1 /a ¼ 1, and the bulk free

energy, f T;/ð Þ, is

f T;/ð Þ ¼ DHf
T � Tm

Tm

� �

X

N

a¼1

h /að Þ: ð28Þ

The terms a;r/a
; a;/a

; w;/a
; and f ;/a

each denote partial

derivatives with respect to r/a and /a.

The phase-field model parameters described above

were non-dimensionalized by selecting a capillary

length scale, d0 
 cs‘Tmcv=DHf
2 and a characteristic

conduction time, t0 
 d0
2=kth. In carrying out the

numerical simulations, we chose dimensionless val-

ues for jth ¼ 0:1 (again, assumed equal in both the

crystals and their melt); DHf ¼ 1:0; interfacial energy,

cs‘ ¼ 1:0; interface mobility, M ¼ 1:0; and the melting

temperature, Tm ¼ 0:99.

The ratios of the grain boundary’s energy density

to that of the crystal/melt boundary were selected to

produce after steady-state equilibration a series of

specific dihedral angles selected between W ¼ 0 and

180�. Simulations started with either an initial con-

figuration consisting of a flat crystal–melt interface

intersected normally by a grain boundary, or, for

greater computational efficiency, with a starting

groove shape from a prior simulation run having a

dihedral angle not too far from the new final value.

Numerical iterations were extended well beyond the

point where a desired equilibrium dihedral angle

was initially achieved.

The following approach was adopted to assure that

the evolved dihedral angle corresponds precisely to

that predicted via Young’s force equilibrium and that

each simulated groove profile was relaxed and fully

equilibrated:

1. We employed an explicit finite-difference

scheme for iteratively solving Eqs. (26) and (27)

in a 2D domain of grid size 2000DX by 400DY.

2. We checked that the required steady 1-D thermal

gradient, G, a linear temperature distribution,

develops fully along the Y-grid, as shown for the

three thermo-potential traces plotted in Fig. 8.
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3. We measured the dihedral angle at every time step

[66]. After this angle converged to the expected W-

value, we continued equilibration for an additional

104 time steps, to rule out any chance of additional

relaxation affecting the shape of the triple-junction

region of the groove profile.

4. We initialized the numerical domain with the

equilibrated phase and thermo-potential fields

corresponding to W ¼ 90�, 120�, and 180�, for

subsequent simulations where the final angles

were W ¼ 83:6�, 150�, and 165:5�, respectively.

Adopting this strategy greatly reduced the time

needed to attain full equilibration of the simu-

lated GBG.

The number of grid points comprising the diffuse

crystal–melt interface was far greater at highly

curved regions in the cusp when compared to those

where the crystal–melt boundary remained relatively

flat. This disparity in the interface’s number of grid

points reduced the accuracy of potential measure-

ments over the flatter regions of the solid–liquid

interface. To maintain sufficient accuracy everywhere

along the interfacial isoline, / ¼ 0:5, when extracting

crystal–melt interfacial potentials, T/¼0:5, we

employed a numeric /-resolution range of

/ 2 0:499999; 0:500001½ �.

Recursion

The recursive task of extracting precise isoline

thermo-potentials was achieved by scanning the

groove’s computational domain and employing a

numerical post-processing algorithm. An additional

difficulty encountered with equilibrated isolated

GBGs was that the radii of curvature of their solid–

liquid isolines gradually approach extremely large

values in the flattest regions close to the domain’s

lateral edges. We found that for interface locations in

the immediate vicinity of a groove’s triple point, the

post-processing algorithm was capable of determin-

ing accurate isoline thermo-potentials that corre-

spond to / ¼ 0:5. However, achieving precise

potential measurements (T/¼0:5) proved more chal-

lenging along the flatter portions of the solid–liquid

boundary, remote from the groove’s triple junction.

This difficulty arose due to the narrowing of the

diffuse interface when almost flat, a condition

requiring far fewer boundary points to span the dif-

fuse interface between the bulk phases. We then

chose to perform a linear interpolation between T/1

and T/2
with T/3

to estimate the thermal residuals

more precisely, by requiring that the isoline

/i ði ¼ 1; 2Þ\1=2\/3.

Thermo-potentials on analytic profiles
and phase-field isolines

Both the steady-state potential and curvature distri-

butions along the analytic profile of a variational

GBG, which has zero thickness, are perfectly linear in

the variable g. See again Eqs. (8) and (12). Therefore,

if one were to subtract the value of the constraining

(embedded) linear potential, 4 	 g, from the interface

thermo-potential of a variational GBG, #ðgðlÞ;WÞ, one

would obtain a trivial null residual:

#ðgðlÞ;WÞ � 4g ¼ 0.

Now contrast what happens upon simulating a

GBG subjected to phase-field equilibration, where

superficial gradients of the Gibbs–Thomson interface

potential appear and stimulate a divergent tangential

flux. An interfacial energy sink, BðYðXÞÞ\0, is cre-

ated, by virtue of which the thermo-potential distri-

bution along the microstructure’s isoline, / ¼ 0:5, is

slightly, and non-linearly, depressed from its linear

‘‘variational’’ form. Depression of the linear thermo-

potential is linked to the fact that, as explained in

‘‘Potential change and energy rate’’ section,

Figure 8 Verification of three vertical scans of the thermo-

potential distributions measured at three X-grid locations in the

computational domain of an equilibrated GBG. (See again

Fig. 7d.) All three scans of the thermo-potential appear to be

linear in the Y-grid coordinate, but actually contain small

nonlinear components of the thermo-potential, revealed as resid-

uals by subtracting from the scanned measurements the value of

the linear thermo-potential contributed by the applied thermal

gradient, viz. jGj 	 Y-grid. Residuals derived from these data are

plotted in Fig. 9.
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thermodynamics and heat conduction theory show

that the expected change in temperature, or thermo-

potential, caused by an interface sink of energy is

proportional to its corresponding rate of energy

withdrawal, B(Y(X)).

Consequently, the residuals, RðYðXÞÞ 
 T/¼0:5�
G	YðXÞ, calculated along the interfacial isoline,

/ ¼ 0:5, equal the interfacial energy rate, B(Y(X))

times a ratio, n, that proportions the shifts in thermo-

potential (residuals) with their local capillary-medi-

ated energy rates along the isoline. Thus, one obtains

the relationship RðYðXÞÞ ¼ T/¼0:5 � G	 YðXÞ ¼
BðYðXÞÞ 	 n.

Moreover, if the magnitude of the simulated 1-D

gradient, G, was fixed, the value of the ratio n also

remained constant for other dihedral angles. Thus,

the ratio, n, found between the bias field cooling

distributions and the residuals remained constant for

all groove profiles tested, as shown in Fig. 9.

Also important, the energy distributions measured

for each specified dihedral angle, BðXðYÞ;WÞ, that

develop along simulated phase-field isolines are

congruent with the theoretical bias-field distribu-

tions, BðlðgÞ;WÞ, calculated from Eq. (20) and plotted

in Fig. 6.

In fact, the implied equality itself, viz.

RðYðXÞÞ ¼ n	BðgðlÞ;WÞ, supported by these mea-

surements is slightly imperfect, because it ignores

higher-order differences existing between the ana-

lytic shapes of variational profiles, viz. Eq. (5), and

the simulated phase-field isolines. The shapes of

equilibrated GBGs are modified slightly by self-in-

teraction with their capillary fields: (1) their local

interface curvatures increase slightly from the addi-

tional interface cooling, and, consequently, (2) their

cusp depths decrease slightly. The combination of

increased curvature and decreased cusp depth allows

the total rotation of a GBG’s normal angle between

the triple junction and flat interfacial regions to

remain constant at W=2, as required (in 2D) by

topology.

Conclusions

1. Application of the Leibniz–Reynolds transport

theorem shows that Stefan balances at solid–liq-

uid interfaces—which exclude capillarity—do not

satisfy omnimetric energy balance. Stefan bal-

ances lack higher-order capillary-mediated terms

needed to satisfy energy conservation on meso-

scopic scales.

2. Previous studies showed that capillary-mediated

interface fields are capable of stimulating com-

plex pattern formation on moving interfaces in

low-noise environments [5]. The present study

shows that stationary GBG microstructures sup-

port fields that cool their interfaces, allowing

their measurement via multiphase-field

simulations.

3. Isotropic GBGs provide well-studied examples of

stable microstructures that remain in thermody-

namic equilibrium in the presence of steady

thermal gradients. GBG profiles predicted from

variational calculus are linear minimizers of the

groove microstructure’s free energy and differ

only slightly from simulated equilibrated GBGs

that are nonlinear minimizers, because of self-

interaction with their persistent interfacial energy

fields.

4. The distribution of interfacial energy rates on

GBGs may be calculated from their variational

profiles as surface Laplacians of their Gibbs–

Thomson thermo-potential, or, equivalently, from

(minus) the divergence of the tangential flux.

Variational GBGs with isotropic solid–liquid

energy density yield simple cubic expressions

for their capillary energy fields.

Figure 9 Comparison between phase-field residual measurements

(data points, right ordinate) and analytical cooling rate distribu-

tions, BðlðgÞ;WÞ, (curves, left ordinate) for isotropic GBGs with
different dihedral angles, W. All graphs were constructed using an

ordinate ratio of 2:0 	 104 between residuals data and their

corresponding field curves. An abscissa scale ratio of 400:1 is

used to connect the phase field’s computational DX-grid (lower

abscissa) with the non-dimensional l-scale (upper abscissa).
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5. Multiphase-field simulations were performed on

simulated GBGs with different dihedral angles to

verify the existence of active capillary fields.

Measurements of isoline thermo-potentials per-

mit calculation of residuals by subtracting from

the potentials the linear distribution imposed by

the applied thermal gradient. Residuals are

shown to be proportional to the time rate of the

capillary energy field acting along the interface

isoline.

6. Phase-field residuals confirm, in every case

tested, quantitative agreement with interfacial

bias fields predicted from sharp-interface ther-

modynamics. Self-consistency and independence

of simulated phase-field measurements and

sharp-interface theory support the existence of

bias fields on stationary crystal–melt interfaces in

agreement with results found earlier for moving

solid–liquid interfaces [5].

7. The physical interface mechanism explored in

this study shows that capillary-mediated fields

provide perturbations capable of initiating diffu-

sion-limited patterns. These include patterns in

nature exhibited by snowflakes and crystallized

mineral forms, as well as microstructures of cast

alloys. Capillary-mediated interface fields might

provide new approaches toward achieving

improvements in solidification processing, weld-

ing, and crystal growth by control of microstruc-

ture at mesoscopic scales.
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