Skip to main content
Log in

Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Analytical solutions of exact lithium-ion (Li-ion) concentration distributions and diffusion-induced stresses (DISs) within elliptical and spherical particles are obtained. A two-dimensional scanning electron microscopy image-dependent model of porous electrodes that accounts for the diffusion, DIS, and the size and shape polydispersity of electrode particles is developed. The effects of the size and shape polydispersity on concentration profiles, DIS evolution, and mechanical failure mechanisms are numerically discussed. Simulations show that small particles experienced less DIS than larger particles, primarily because of their reduced strain mismatch. In elliptical electrode particles, simple cracks appear at the endpoints of the major axis, while more complicated and severe cracks appear at the endpoints of the minor axis. Small particles with a spherical geometry are most favorable for alleviating DIS. Thus, the microscopic state of charge (SOC) values and mass fractions of differently sized and shaped particles should be considered simultaneously when determining the optimal macroscopic SOC of a porous electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Palacin MR, de Guibert A (2016) Why do batteries fail? Science 351:1253292

    Article  Google Scholar 

  2. Liu H, Strobridge FC, Borkiewiez OJ, Wiaderek KM, Chapman KW, Chupas PJ, Grey CP (2014) Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344:1252817

    Article  Google Scholar 

  3. Ebner M, Marone F, Stampanoni M, Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:716–720

    Article  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  Google Scholar 

  5. Banerjee J, Dutta K (2017) Materials for electrodes of Li-ion batteries: issues related to stress development. Crit Rev Solid State 42(3):218–238

    Article  Google Scholar 

  6. Malavé V, Berger JR, Martin PA (2014) Concentration-dependent chemical expansion in lithium-ion battery cathode particles. J Appl Mech 81(9):091005

    Article  Google Scholar 

  7. Malavé V, Berger JR, Zhu H, Kee RJ (2014) A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles. Electrochim Acta 130:707–717

    Article  Google Scholar 

  8. Zhang X, Shyy W, Sastry AM (2007) Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J Electrochem Soc 154(10):A910–A916

    Article  Google Scholar 

  9. Zhang X, Sastry AM, Shyy W (2008) Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J Electrochem Soc 155(7):A542–A552

    Article  Google Scholar 

  10. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344

    Article  Google Scholar 

  11. Liang L, Stan M, Anitescu M (2014) Phase-field modeling of diffusion-induced crack propagations in electrochemical systems. Appl Phys Lett 105(16):163903

    Article  Google Scholar 

  12. ChiuHuang CK, Huang HYS (2013) Stress evolution on the phase boundary in LiFePO4 particles. J Electrochem Soc 160(11):A2184–A2188

    Article  Google Scholar 

  13. Drozdov AD (2014) Constitutive equations for self-limiting lithiation of electrode nanoparticles in Li-ion batteries. Mech Res Commun 57:67–73

    Article  Google Scholar 

  14. Drozdov AD (2014) A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech 225(11):2987–3005

    Article  Google Scholar 

  15. Golmon S, Maute K, Lee SH, Dunn ML (2010) Stress generation in silicon particles during lithium insertion. Appl Phys Lett 97(3):033111

    Article  Google Scholar 

  16. Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280–1295

    Article  Google Scholar 

  17. Kalnaus S, Rhodes K, Daniel C (2011) A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources 196(19):8116–8124

    Article  Google Scholar 

  18. Chen B, Zhou J, Cai R (2016) Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries. Electrochim Acta 210:7–14

    Article  Google Scholar 

  19. Brassart L, Zhao K, Suo Z (2013) Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int J Solids Struct 50:1120–1129

    Article  Google Scholar 

  20. DeLuca CM, Maute K, Dunn ML (2011) Effects of electrode particle morphology on stress generation in silicon during lithium insertion. J Power Sources 196(22):9672–9681

    Article  Google Scholar 

  21. Cheng YT, Verbrugge MW (2010) Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J Electrochem Soc 157(4):A508–A516

    Article  Google Scholar 

  22. Verbrugge MW, Cheng YT (2009) Stress and strain-energy distributions within diffusion-controlled insertion-electrode particles subjected to periodic potential excitations. J Electrochem Soc 156(11):A927–A937

    Article  Google Scholar 

  23. Li Y, Zhang K, Zheng B (2014) Stress analysis in spherical composition-gradient electrodes of lithium-ion battery. J Electrochem Soc 162(1):A223–A228

    Article  Google Scholar 

  24. Zhang K, Li Y, Zheng B (2015) Effects of concentration-dependent elastic modulus on Li-ions diffusion and diffusion-induced stresses in spherical composition-gradient electrodes. J Appl Phys 118(10):105102

    Article  Google Scholar 

  25. Zhang K, Li Y, Zheng B (2015) Influence of maximum lithium ion concentration in composition-gradient electrodes on diffusion-induced stresses and electrochemical performances. J Electrochem Soc 162(9):A1873–A1878

    Article  Google Scholar 

  26. Zhang XY, Chen HS, Fang DN (2016) Diffusion-induced stress of electrode particles with spherically isotropic elastic properties in lithium-ion batteries. J Solid State Electr 20(10):2835–2845

    Article  Google Scholar 

  27. Zhang XY, Hao F, Chen HS, Fang DN (2014) Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J Electrochem Soc 161(14):A2243–A2249

    Article  Google Scholar 

  28. Dal H, Miehe C (2014) Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput Mech 55(2):303–325

    Article  Google Scholar 

  29. Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic–plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69–70:328–342

    Article  Google Scholar 

  30. Suthar B, Subramanian VR (2014) Lithium intercalation in core-shell materials–theoretical analysis. J Electrochem Soc 161(5):A682–A692

    Article  Google Scholar 

  31. Hao F, Fang D (2013) Diffusion-induced stresses of spherical core-shell electrodes in lithium-ion batteries: the effects of the shell and surface/interface stress. J Electrochem Soc 160(4):A595–A600

    Article  Google Scholar 

  32. Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354–4364

    Article  Google Scholar 

  33. Zhang L, Song Y, He L, Ni Y (2014) Variations of boundary reaction rate and particle size on the diffusion-induced stress in a phase separating electrode. J Appl Phys 116(14):143506

    Article  Google Scholar 

  34. Wang C, Ma Z, Wang Y, Lu C (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163(7):A1157–A1163

    Article  Google Scholar 

  35. Ma ZS, Xie ZC, Wang Y, Zhang PP, Pan Y, Zhou YC, Lu C (2015) Failure modes of hollow core–shell structural active materials during the lithiation–delithiation process. J Power Sources 290:114–122

    Article  Google Scholar 

  36. Deshpande R, Cheng YT, Verbrugge MW, Timmons A (2011) Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J Electrochem Soc 158(6):A718–A724

    Article  Google Scholar 

  37. Purkayastha RT, McMeeking RM (2012) An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput Mech 50(2):209–227

    Article  Google Scholar 

  38. Purkayastha R, McMeeking R (2013) A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput Mater Sci 80:2–14

    Article  Google Scholar 

  39. Zhu M, Park J, Sastry AM (2012) Fracture analysis of the cathode in Li-ion batteries: a simulation study. J Electrochem Soc 159(4):A492–A498

    Article  Google Scholar 

  40. Stein P, Zhao Y, Xu BX (2016) Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles. J Power Sources 332:154–169

    Article  Google Scholar 

  41. Xu R, Zhao K (2016) Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mech Lett 8:13–21

    Article  Google Scholar 

  42. Grantab R, Shenoy VB (2011) Location- and orientation-dependent progressive crack propagation in cylindrical graphite electrode particles. J Electrochem Soc 158(8):A948–A954

    Article  Google Scholar 

  43. Song Y, Lu B, Ji X, Zhang J (2012) Diffusion induced stresses in cylindrical lithium-ion batteries: analytical solutions and design insights. J Electrochem Soc 159(12):A2060–A2068

    Article  Google Scholar 

  44. Chakraborty J, Please CP, Goriely A, Chapman SJ (2015) Combining mechanical and chemical effects in the deformation and failure of a cylindrical electrode particle in a Li-ion battery. Int J Solids Struct 54:66–81

    Article  Google Scholar 

  45. Lee SW, McDowell MT, Berla LA, Nix WD, Cui Y (2012) Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc Natl Acad Sci USA 109(11):4080–4085

    Article  Google Scholar 

  46. Hao F, Fang D (2013) Tailoring diffusion-induced stresses of core-shell nanotube electrodes in lithium-ion batteries. J Appl Phys 113(1):013507

    Article  Google Scholar 

  47. Damle SS, Pal S, Kumta PN, Maiti S (2016) Effect of silicon configurations on the mechanical integrity of silicon–carbon nanotube heterostructured anode for lithium ion battery: a computational study. J Power Sources 304:373–383

    Article  Google Scholar 

  48. Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088

    Article  Google Scholar 

  49. Sikha G, De S, Gordon J (2014) Mathematical model for silicon electrode—part I. 2-d model. J Power Sources 262:514–523

    Article  Google Scholar 

  50. Chang S, Moon J, Cho K, Cho M (2015) Multiscale analysis of prelithiated silicon nanowire for Li-ion battery. Comput Mater Sci 98:99–104

    Article  Google Scholar 

  51. Xie Y, Qiu M, Gao X, Guan D, Yuan C (2015) Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim Acta 186:542–551

    Article  Google Scholar 

  52. Newman J, Tobias C (1962) Theoretical analysis of current distribution in porous electrodes. J Electrochem Soc 109:1183–1191

    Article  Google Scholar 

  53. Newman J, Tiedemann W (1975) Porous-electrode theory with battery applications. AIChE J 21:25–41

    Article  Google Scholar 

  54. Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157(3):A366–A380

    Article  Google Scholar 

  55. Lai W, Ciucci F (2011) Mathematical modeling of porous battery electrodes-revisit of Newman’s model. Electrochim Acta 56(11):4369–4377

    Article  Google Scholar 

  56. Landstorfer M, Jacob T (2013) Mathematical modeling of intercalation batteries at the cell level and beyond. Chem Soc Rev 42(8):3234–3252

    Article  Google Scholar 

  57. Zheng JP, Crain DJ, Roy D (2011) Kinetic aspects of Li intercalation in mechano-chemically processed cathode materials for lithium ion batteries: electrochemical characterization of ball-milled LiMn2O4. Solid State Ion 196:48–58

    Article  Google Scholar 

  58. Chung DW, Shearing PR, Brandon NP, Harris SJ, Garcia RE (2014) Particle size polydispersity in Li-ion batteries. J Electrochem Soc 161(3):A422–A430

    Article  Google Scholar 

  59. Vanimisetti SK, Ramakrishnan N (2011) Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during charge–discharge cycling. Proc IMechE Part C J Mech Eng Sci 226(9):2192–2213

    Article  Google Scholar 

  60. Harris SJ, Rahani EK, Shenoy VB (2012) Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite electrode. J Electrochem Soc 159(9):A1501–A1507

    Article  Google Scholar 

  61. Wu W, Xiao X, Wang M, Huang X (2014) A microstructural resolved model for the stress analysis of lithium-ion batteries. J Electrochem Soc 161(5):A803–A813

    Article  Google Scholar 

  62. Hu S, Li Y, Rosso KM, Sushko ML (2013) Mesoscale phase-field modeling of charge transport in nanocomposite electrodes for lithium-ion batteries. J Phys Chem C 117(1):28–40

    Article  Google Scholar 

  63. Wu L, Zhang Y, Jung YG, Zhang J (2015) Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. J Power Sources 299:57–65

    Article  Google Scholar 

  64. Jokar A, Rajabloo B, Désilets M, Lacroix M (2016) Review of simplified pseudo-two-dimensional models of lithium-ion batteries. J Power Sources 327:44–55

    Article  Google Scholar 

  65. Guo Z, Zhu J, Feng J, Du S (2015) Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv 5:69514–69521

    Article  Google Scholar 

  66. Lampe-Onnerud C, Shi J, Onnerud P, Chamberlain R, Barnett B (2011) Benchmark study on high performing carbon anode materials. J Power Sources 97–98:133–136

    Google Scholar 

  67. Takahashi K, Srinivasan V (2015) Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J Electrochem Soc 162(4):A635–A645

    Article  Google Scholar 

  68. Lu Y, Ni Y (2015) Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mech Mater 91:372–381

    Article  Google Scholar 

  69. Takahashi K, Higa K, Mair S, Chintapalli M, Balsara N, Srinivasan V (2016) Mechanical degradation of graphite/PVDF composite electrodes: a model-experimental study. J Electrochem Soc 163(3):A385–A395

    Article  Google Scholar 

  70. Wu B, Lu W (2016) Mechanical-electrochemical modeling of agglomerate particles in lithium-ion battery electrodes. J Electrochem Soc 163(14):A3131–A3139

    Article  Google Scholar 

  71. Stein P, Xu B (2014) 3D isogeometric analysis of intercalation-induced stresses in Li-ion battery electrode particles. Comput Method Appl Mech 268:225–244

    Article  Google Scholar 

  72. Harris SJ, Deshpande RD, Qi Y, Dutta I, Cheng YT (2010) Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J Mater Res 25(8):1433–1440

    Article  Google Scholar 

  73. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  74. Ru CQ (1998) Effect of interphase layers on thermal stresses within an elliptical inclusion. J Appl Phys 84:4872–4879

    Article  Google Scholar 

  75. Muskhelishvili NI (1977) Some basic problems of the mathematical theory of elasticity, 2nd edn. Noordhoff International Publishing, Groningen

  76. Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill Press, New York

    Google Scholar 

Download references

Acknowledgements

Liang and Zhansheng gratefully acknowledge the financial support of the National Science Foundation of China (No. 11472165 and 11332005). Lei is grateful for the financial support by NSF under CBET-1604104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhansheng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Ji, L. & Chen, L. Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape. J Mater Sci 52, 13606–13625 (2017). https://doi.org/10.1007/s10853-017-1455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1455-1

Keywords

Navigation