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Abstract The thickness, the refractive index, and the

optical anisotropy of thin sulfonated poly(ether ether

ketone) films, prepared by spin-coating or solvent deposi-

tion, have been investigated with spectroscopic ellipsom-

etry. For not too high polymer concentrations (B5 wt%)

and not too low spin speeds (C2000 rpm), the thicknesses

of the films agree well with the scaling predicted by the

model of Meyerhofer, when methanol or ethanol are used

as solvent. The films exhibit uniaxial optical anisotropy

with a higher in-plane refractive index, indicating a pre-

ferred orientation of the polymer chains in this in-plane

direction. The radial shear forces that occur during the

spin-coating process do not affect the refractive index and

the extent of anisotropy. The anisotropy is due to internal

stresses within the thin confined polymer film that are

associated with the preferred orientations of the polymer

chains. The internal stresses are reduced in the presence of

a plasticizer, such as water or an organic solvent, and

increase to their original value upon removal of such a

plasticizer.

Introduction

The properties of membranes derived from sulfonated

poly(ether ether ketone) (SPEEK) have been investigated

for many years. SPEEK films have a distinct thermo-

chemical–mechanical stability. In addition, the degree of

sulfonation (DS) of SPEEK can be changed, which can be

beneficial for many applications. In the vanadium redox

flow battery and fuel-cell applications, the sulfonic acid

groups in SPEEK enable conductivity of protons [1–8]. In

biorefinery applications and reverse electrodialysis, the

sulfonic groups provide the possibility to exchange cations

[9, 10]. The high affinity for water of the negatively

charged groups empowers application of SPEEK mem-

branes in dehydration processes [11–15]. Additionally, due

to the amorphous structure and high glass transition tem-

perature, SPEEK membranes have been considered good

candidates for high-pressure gas separation [16–18].

Despite the merits, the high concentration of sulfonic

acid groups also has drawbacks. In comparison to pure

poly(ether ether ketone) (PEEK), the sulfonation of this

material to SPEEK causes a significant reduction in

thermal stability [19]. This reduction in stability becomes

larger for a higher degree of sulfonation [20]. Generally,

above 200 �C, chemical decomposition of SPEEK starts

to occur, which is initiated from the sulfonated domains

[21, 22]. Therefore, the thermal treatments that are fre-

quently performed after formation of membranes to

relieve stresses and remove solvents are challenging in the

case of SPEEK. The effective removal of non-volatile,

high boiling point casting solvents, such as N-meth-

ylpyrrolidinone (NMP) and dimethyl sulfoxide (DMSO)

is hindered [22] and alternative removal methods have

been reported, such as rinsing out-of-DMSO in boiling

water [23].
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In addition, the highly non-equilibrium glassy state of

polymeric films can be affected by high spin speeds or

rapid solvent evaporation [24, 25]. These may cause

polymer chains to orient in preferential directions. The

preferred orientations of polymer chains induce internal

stresses in the material that in turn can affect the perme-

ability and the selectivity [26]. For many polymers, the

heating above the glass transition temperature and sub-

sequent thermal quenching remove the non-equilibrium

characteristics. Concerning SPEEK, the study of Reyna-

Valencia et al. has shown that membranes with a degree of

sulfonation of 63 and 83 %, formed from solvent casting

using N,N-dimethylacetamide (DMAc) and dimethylform-

amide (DMF), exhibited polymer chain orientations [27].

Notably, their study shows that repeated heating to tem-

peratures close to the glass transition temperature causes

reorganization of the material, with more pronounced

preferential orientations of the polymer chains in the plane

parallel to the surface of the film [27]. As such, SPEEK

membranes are affected by their processing history and the

thermal cycling results in relaxations that cause the mate-

rial to become anisotropic, instead of isotropic.

In this paper, we focus on the relations between SPEEK

film formation procedures and the molecular orientations in

the obtained SPEEK films. Two techniques have been used

for film preparation; spin-coating and solution deposition.

For spin-coating, methanol and ethanol have been used as

volatile organic solvents with distinct physical properties.

For solution deposition, the volatile methanol and non-

volatile NMP have been selected. Motivated by the study

of Reyna-Valencia et al. [27], we conduct a systematic

study on the effects of induced polymer relaxations on the

internal stresses in SPEEK films, by changing the ambient

relative humidity and the conditioning temperatures. The

extent of polymer chain orientation is related to the optical

anisotropy of the films [28], which in this study is deter-

mined with spectroscopic ellipsometry.

Theory

Spectroscopic ellipsometry

Spectroscopic ellipsometry is an optical method that is

used to determine thickness and wavelength-dependent

refractive indices (optical dispersion) of films atop a sub-

strate. For a detailed explanation, the interested reader is

referred to the book of Fujiwara [29]. In short, the method

is based on measuring the change in the polarization state

of p- and s-polarized light upon reflection at a surface. In

practice, linearly polarized light is used as incident beam

and after reflection the light has become, to a certain

extent, elliptically polarized. The ellipticity is quantified by

two angles: the amplitude component Psi (W) (�) and phase

difference Delta (D) (�). Combined, these can be expressed

as the complex reflectance ratio, q (-):

q ¼ rp

rs

¼ tanðWÞ � eiD; ð1Þ

where rp and rs is the reflectivity of the p- and s-polarized

light (-), respectively.

The dispersion and thickness of a film are obtained by

fitting an optical model to the experimentally obtained

spectra. This is expedited using a simple expression for the

dispersion. Various empirical expressions are available.

For transparent isotropic materials, the Cauchy relation is

generally considered appropriate [29]:

nðkÞ ¼ Aþ B

k2
þ C

k4
; ð2Þ

where n(k) is the wavelength dependent refractive index (-),

k is the wavelength of the light (nm), and A, B, and C are

coefficients that describes the dependency of the refractive

index on the wavelength.

The quality of the fit of the optical model to the

experimental data is given as the Mean Square Error

(MSE). There is no fixed MSE value that resolves if a

model can be considered correct or not. For thicker films

and in-situ measurements, a maximum value of 20 is

considered to be reasonable [30].

For anisotropic materials, the refractive index is depen-

dent on the propagation direction of the light in the material.

When the refractive index is different in all directions,

nx = ny = nz, the material is referred to as biaxial aniso-

tropic. Thin polymer films often exhibit uniaxial anisotropy,

with a different refractive index in the direction perpendic-

ular to the surface of the film nx = ny = nz. The z-direction

corresponds with the so-called optical axis, i.e., the axis of

symmetry with all perpendicular directions optically equiv-

alent. The difference between two refractive indices is called

optical anisotropy, Dn, also termed birefringence. In this

paper, we refer to Dn as to optical anisotropy. In the case of

a uniaxial anisotropic material, the single optical anisotropy

value is given by

Dn ¼ nxy � nz: ð3Þ

Here, nxy is referred to as the in-plane refractive index

(also termed ordinary) and nz is referred to as the out-of-

plane refractive index (also termed extraordinary). The

optical anisotropy is correlated with internal stresses in a

material by the empirical equation [31]:

ðr1 � r2Þ ¼ Dn � C; ð4Þ

where r1 and r2 are principal in-plane and out-of-plane

stresses (Pa), and C is the stress-optical coefficient (Pa).
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Materials and methods

Materials

SPEEK was obtained by sulfonation of PEEK (Victrex,

United Kingdom) using sulfuric acid according to the

method reported by Shibuya et al. [32]. The degree of

sulfonation determined by 1H NMR in DMSO-d6 using a

AscendTM 400 (Bruker) at a resonance frequency of

400 MHz, according to the method described by Zaidi

et al. [33], was 84 %. Methanol and ethanol (Emsure�

grade of purity) were obtained from Merck (The Nether-

lands), NMP 99 % extra pure was obtained from Acros

Organics (The Netherlands). DMSO-d6 (99.5 at.% D) was

obtained from Sigma–Aldrich (The Netherlands). Nylon

Membrane 25-mm syringe filters 0.45 lm were obtained

from VWR International. Polished, h100i-oriented silicon

wafers were obtained from Okmetic (Finland). Nitrogen

gas (4.5) was supplied by Praxair (The Netherlands).

Film preparation

Films were coated on pre-cut pieces of a silicon wafer.

Prior to coating, the solutions were filtered using a 0.45-lm

syringe filter to remove solid contaminations. The two

following methods were used for SPEEK film formation.

Spin-coating

Films were formed by spin-coating of SPEEK dissolved in

either methanol or ethanol (3, 5, and 7 wt%). The spinning

time was always 50 s. The spin speed was set at 1000,

2000, 3000, or 4000 rpm. All samples were prepared in

duplicate; one part was treated under vacuum at 30 �C for

48 h, and the second part under vacuum at 140 �C for 48 h.

Solution deposition

Films were formed by deposition of SPEEK dissolved in

methanol or N-methylpyrrolidone on the substrate and

subsequent solvent evaporation. Thus, the spin speed was

equal to zero. Prior to deposition from the SPEEK/NMP

solution, the silicon wafers were pre-treated 20 min in

oxygen plasma, in order to ensure NMP wettability of

silicon waver. Without plasma treatment, the NMP solu-

tions did not wet the wafers. All samples were prepared in

duplicate; one part was treated under vacuum at 30 �C for

48 h, and the second part under vacuum at 140 �C for 48 h.

Ellipsometry measurements

An M-2000 spectroscopic ellipsometer (J.A. Woollam

Co., Inc., USA) was used. The size of the light spot for the

standard configuration was 2 mm. For the films obtained

with the solution deposition technique, focusing probes

were used with a light spot size of 150 lm. This was

necessary to cope with the very extensive thickness

variations within each of these films. Ex-situ experiments

were conducted at three angles of incidence (55�, 65�, and

70�) for the initial investigations of the optical anisotropy

of the SPEEK films. Further systematic studies were

conducted at an angle of incidence of 70�. In-situ drying

measurements under nitrogen were conducted for 15 min

using a custom-made temperature-controlled glass flow

cell [34]. Prior to entering the flow cell, the nitrogen was

dried with a water absorbent and was led through an

oxygen trap.

The CompleteEase 4.64 software (J.A. Woollam Co.,

Inc.) was used for spectroscopic data modeling. The optical

properties of the silicon waver, and the native oxide silica

layer on top of it, were taken from the software database.

The thickness of the native silicon oxide was measured

with spectroscopic ellipsometry and the obtained value

of *2 nm was fixed in further modeling. The wavelength

range included in the fitting was 450–900 nm; in this range

SPEEK is transparent and the Cauchy relation (Eq. 2) can

be applied. All values reported for n and Dn correspond to

the value at the wavelength of a helium–neon laser

(632.8 nm). Depolarization that occurs due to thickness

inhomogeneity was always carefully checked and fitted. In

uniaxial modeling, the B parameters of the Cauchy equa-

tion for nxy and nz were coupled to ensure a physical

realistic optical dispersion for SPEEK films. By coupling

Bxy and Bz, a parallel trend of nxy and nz with wavelength is

imposed and it is prevented that they cross.

Analysis of variance

Analysis of variance (ANOVA) with a confidence interval

of 95 % was used to substantiate the significant differences

in optical properties of SPEEK films formed under various

conditions in spin-coating.

Results and discussion

Optical anisotropy

Figure 1 shows the ellipsometry spectra of a representative

SPEEK film coated on a silicon substrate. Both the Psi and

Delta spectra show a single oscillation with a position and

amplitude that depends on the angle of incidence. These

raw spectra are typical for SPEEK films of several hundred

nanometers.

Fitting simultaneously the data obtained at the three

angles, with an optical model that considers the material to
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be isotropic, yields a thickness of 324.4 nm (Fig. 1a).

However, the MSE = 24.1, corresponding to this optical

fit, is relatively high and not acceptable for a single film of

low thickness. The high MSE value is mainly due to the

skewness of the spectra that cannot be captured by the

isotropic optical model. Fitting the data with a model that

considers the material as uniaxial anisotropic results in an

essentially unchanged thickness of 324.8 nm, but also in a

significant reduction in MSE to a value of 6.8 (Fig. 1b).

This significant decrease in MSE is considered to indicate

that SPEEK films are anisotropic and Dn should be taken

into account. Spectra obtained at different spots and after

different sample rotations within the xy plane show no

differences in Dn, implying that the SPEEK films exhibit

no biaxial anisotropy and that the uniaxial Dn does not

depend on the radial position on the wafer. The observed

optical uniaxial anisotropy coincides with the observations

of Reyna-Valencia et al. [27], who also determined

Dn using an optical method and correlated the value of

Dn to in-plane polymer chain orientations.

Here, we study several factors that may affect Dn and

that are discussed in more detail below. The factors are the

ambient relative humidity, the drying process, film for-

mation via spin-coating and solution deposition, the use of

volatile and non-volatile solvents, and the film conditioning

under vacuum at 30 and 140 �C.

The effect of ambient relative humidity and subsequent

drying

The dynamics of the changes in thickness and refractive

indices of a representative SPEEK film, upon drying under

nitrogen, are presented in Fig. 2a. In Fig. 2b, the black solid

lines in the Psi and Delta spectra correspond to spectra

obtained under ambient conditions (relative humidity

RH = 50 %), prior to drying. The dashed lines correspond

to the spectra obtained at the end of the drying process. The

shift of oscillations toward lower wavelengths indicates a

decrease in film thickness. The dynamics of the changes in

thickness are representative for a desorption process

involving both water diffusion and polymer relaxation. Ini-

tially, a sharp decrease in thickness is observed, due to

diffusion limited removal of water. The subsequent slower

reduction in thickness is related to polymer relaxation,

which is a process with a much larger time constant. These

observations are consistent with those of Potreck et al., who
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drying in N2 (dashed line). The film was spin-coated from a 5 wt%

methanol solution at 2000 rpm and conditioned under vacuum at

30 �C for 48 h
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studied vapor sorption in SPEEK by mass uptake [35].

During desorption, the sample thickness decreased from an

initial thickness of 333.8 to 284.7 nm at the end of the

desorption process. Concurrently, the refractive indices of

the film increased, indicating the removal of water and the

densification of the polymer. Thus, the refractive index of

the films is lower under ambient conditions as compared to

under dry nitrogen. The presence of the sulfonic acid groups

in SPEEK makes the material highly hydrophilic and causes

the polymer films to swell and plasticize in the presence of

water vapor [36, 37]. Because the refractive index of liquid

water, 1.33, is lower than that of the polymer, the swollen

films have a lower overall refractive index.

The removal of water also causes a significant increase in

optical anisotropy, from 0.021 to the value of 0.047. This

increase indicates that the stresses in the material become

higher upon removal of water. The increase of optical anisot-

ropy upon desorption of water coincides with the observations

of Reyna-Valencia et al. [27], who have shown that upon

repeated thermal cycling SPEEK films undergo orientations

that result in increased and constant optical anisotropy.

Moreover, they reported that the direction of the orientations

was in-plane to the surface of the film. SPEEK films studied in

our paper also exhibit orientations in the same direction. This is

evidenced by the in-plane refractive nxy, which is always higher

than the out-of-plane refractive index nz.

Thus, the results show that the ambient relative humidity

has a direct impact on the thickness and optical anisotropy

of SPEEK films. High affinity for the moisture results in

swelling that in turn reduces the internal stresses. The

effect becomes stronger with increasing relative humidity,

as the sorption of water for SPEEK increases sharply above

RH = 50 %. These observations imply that correct

reporting of properties of SPEEK films requires specifica-

tion of the relative humidity.

Additionally, the usage of SPEEK in processes, in which

SPEEK films are alternately exposed to high humidity and

dry conditions, results in repeated changes in material

dimensions. Such behavior damages the membrane integ-

rity, and reinforcement procedures are necessary [38].

Spin-coating with volatile solvents

Effect on thickness

Figure 3 shows the thicknesses as a function of the spin

speed for several SPEEK films, prepared using either

methanol or ethanol as a solvent. The measurements were

performed in a humid ambient (RH = 50 %). At a spin

speed of 1000 rpm, no layers could be obtained from 5 and

7 wt% solutions, due to poor substrate wettability at those

conditions. The two distinct conditioning temperatures of

30 and 140 �C did not result in a difference in thickness.

Methanol and ethanol are highly volatile solvents,

commonly used for the fabrication of SPEEK membranes

with a high degree sulfonation [39]. The viscosity of

methanol (0.00059 Pa�s) is approximately half of that of

ethanol (0.0012 Pa�s), and the vapor pressure of methanol

(13.02 kPa) is almost twice as high as that of ethanol

(5.95 kPa) [40, 41]. However, the data show no significant

differences in the thickness of the films for the two sol-

vents, despite the different solvent properties. This is in

agreement with the scaling predicted by the model of

Meyerhofer [42]. In this model, the film thinning process is

considered to comprise two distinct and subsequent stages.

In the first stage, the film thinning is only due to centrif-

ugal-induced radial flow. In the second stage, the film

thinning is only due to solvent evaporation. The resulting

expression for the film thickness, h (nm), predicts the fol-

lowing scaling:

h�ðg0 � qvapÞ
1
3x�

1
2: ð5Þ

This expression contains the initial solution viscosity g0

(Pa�s), the solvent vapor pressure qvap (kPa), and the spin

speed x (rpm). Based on this model, the expected differ-

ence in layer thickness for the two solvents is *3 %. For

the films obtained from the solutions with the low con-

centrations (3 and 5 wt%) and high spin speeds (2000–4000

rpm), the thickness scales with xm, where m is an empirical

scaling parameter. For both solvents and concentrations,

the value of m varied between -0.44 and -0.5. This is

again in good agreement with the scaling predicted by the

expression of Meyerhofer [42, 43]. Also, the R-squared of

the linear fits for calculation of the m is [0.998. For the

higher concentration of 7 wt%, the scaling m is between
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Fig. 3 The thicknesses of SPEEK films formed via spin-coating from

methanol (circle and square) and ethanol (triangle and diamond)

solutions of concentrations 3, 5, and 7 wt%, and conditioned under

vacuum at 30 �C (circle and diamond) or 140 �C (square and

diamond). Thickness values have been obtained from the center of the

sample. Lines are to guide the eye
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-0.32 and -0.42 indicating that the simple model starts to

fail for higher concentrations. The linear fits are also less

appropriate, as is evidenced from the R2 values (*0.98).

The presented thickness values are obtained from the

centers of the samples. The thickness at the outer sides of

the samples is typically a few percent less. This is due to

the shear thinning viscosity of the polymer solutions and

the radial dependence of the shear forces. The effect is

more pronounced for more concentrated polymeric solu-

tions. The results are in concurrence with the research of

Gupta et al., who also reported shear thinning behavior for

SPEEK solutions [44].

Effect on optical anisotropy and refractive index

Figure 4a, b depict Dn and nxy of the films corresponding to

Fig. 3 as a function of the spin speed, respectively. Only

the data for the 3 and 5 wt% solutions are presented. For

the 7 wt% solution inhomogeneous films (MSE [20) were

obtained, resulting in a pronounced scattering of the

Dn and nxy values.

The films were measured under humid ambient

(RH = 50 %) and dry nitrogen atmosphere (RH = 0 %).

The spin speed was varied in the range 1000–4000 rpm to

investigate if shear forces during the spinning process

affect the orientation of the polymer chains. In addition to

the variable spin speed, the difference in viscosity of

methanol and ethanol also implies distinct shear forces. For

the data obtained at high spin speeds (C2000 rpm) for 3

wt% solutions, no significant systematic dependence of

Dn and nxy on the spin speed or solvent properties is

observed. The analysis of variance confirms that no sta-

tistically relevant differences exist for those films. This

indicates that the shear forces during the spinning process

have no direct apparent effect on the stresses inside the

final films, which is consistent with the absence of varia-

tions in Dn and nxy as a function of the position on the

sample. For the lower spin speed of 1000 rpm, some

changes, which are supported by ANOVA, in Dn and nxy

can be observed. These can be possibly caused due to

factors associated when applying very low spin speeds,

such as poor surface wettability, increased film inhomo-

geneity, or changed drying rates [45, 46].

For the 5 wt%, there are statistical significant changes in

the values of Dn and nxy. In particular, for 2000 rpm, the

analysis of variance indicates that the values of Dn and nxy

are significantly lower as compared to 3000–4000 rpm.

The differences are possibly related to the decreased

homogeneity of the films obtained at low spin speeds from

more concentrated solutions. A lower homogeneity corre-

sponds to more spatial randomness, and hence would be

manifested by a lower Dn. To support this conclusion, films

from 7 wt% solution were so inhomogeneous that their

MSE exceed the value of 20.

The refractive index is strongly correlated with the

density of the film, and the uniaxial anisotropy is related to

internal stresses in the film originating from polymer chain

orientations. For films from a 3 wt% solution, the refrac-

tive index and uniaxial anisotropy are not affected by the

spinning conditions; the film thickness can be adjusted by

the spin speed without affecting the other film properties.

For a higher concentration, 5 wt%, films with lower and

higher anisotropy and higher and lower density can be

produced. For all SPEEK films, nxy is higher than nz. This

signifies that the SPEEK polymer chains are preferentially

oriented in-plane to the surface of the film. These orien-

tations are not caused by the radial flow and forces per-

taining to the spin-coating process, and are not affected by

the physical properties of the solvent used. Furthermore,

the preferred chain orientations persist when thermal con-

ditioning is performed at 140 �C instead of 30 �C. 140 �C

is apparently too far from the glass transition (*200 �C)

[47] to induce structural changes in the polymer films. Both

temperatures are sufficient to ensure removal of any
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Fig. 4 Optical anisotropy, Dn (a) and in-plane refractive index, nxy

(b) of SPEEK films formed via spin-coating from methanol (circle

and square) or ethanol (triangle and diamond) of concentrations 3 and

5 wt%, and conditioned under vacuum at 30 �C (circle and triangle)

or 140 �C (square and diamond). Open symbols indicate the ambient

humid atmosphere (RH = 50 %) and closed symbols indicate the end

of the drying process. The films obtained from 7 wt% are omitted due

to high film inhomogeneity
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residual methanol and ethanol. The internal stresses in the

films are affected by the presence of water. Water has high

affinity for the charged sulfonic groups and will readily

sorb into the material. The presence of water results in

plasticization: the polymer chains become more mobile due

to the presence of the water. The enhanced mobility,

combined with the dilation of the film in the z-direction to

accommodate the water sorption, causes relaxations of the

polymer chains with less preferred in-plane orientations.

Solution deposition with a volatile and a non-volatile

solvent

In the previous section, the plasticizing effect of water

vapor has been discussed. Water sorption reduces the

internal stresses in SPEEK membranes, and, therefore, it

also reduces the optical anisotropy. A similar effect can be

expected to occur for other penetrants, especially for those

that are able to dissolve SPEEK. Hence, here we study, the

optical properties of films that have been made using N-

methylpyrrolidinone as a solvent. NMP dissolves SPEEK

with a low degree of sulfonation [7], whereas methanol and

ethanol are typically used to dissolve SPEEK with a high

degree of sulfonation. The poor wettability of wafers by

NMP complicates controlled spin-coating, which can be

circumvented using the solution deposition method, i.e.,

spin-coating at zero spin speed.

In Table 1, the representative data are presented for

SPEEK films formed via solution deposition technique,

using NMP or the more volatile methanol as solvent, and

measured at RH 20–30 %. The film thicknesses could not be

easily controlled but they are in the range of the thicknesses

from Fig. 3. The focus is put on optical properties.

Visual observations indicate that film formation occurs

in approximately 1 min in the case of methanol, and in

several hours in the case of NMP. Before conditioning

under vacuum at 30 �C, methanol-derived films were

characterized 30 min after formation, and NMP-derived

films 3 days after formation. The refractive index values

nxy of the NMP- and methanol-derived films are much

lower than those of films corresponding to Fig. 4b ([1.63),

indicating that the solvents are still present in the films. The

refractive indices of methanol (n = 1.32) and NMP

(n = 1.47) are much lower than that of the polymer,

causing the effective refractive index to be reduced when

the solvents are present in the films. For the methanol-

derived films, nxy = 1.58 is higher as compared to

nxy = 1.51 for the NMP-derived films. This result is con-

sistent with the much faster evaporation of methanol as

compared to NMP. The low refractive index in the case of

the NMP-derived films is actually very close to the value of

pure NMP. This indicates that a large concentration of

NMP is still present in the film, even at 3 days after film

formation. This is substantiated by the absence of anisot-

ropy in the NMP swollen films; Dn = 0 and the isotropic

and anisotropic optical models give similar MSE values. In

contrast, significant anisotropy is observed for films

derived from the methanol solution; Dn [ 0.01 and lower

MSE for the anisotropic optical model.

Subsequently, the optical properties have been analyzed

after the films have been conditioned under vacuum at

30 �C. The values for nxy and Dn of methanol-derived films

are comparable with those of films formed via spin-coating

(Fig. 4). During conditioning, the methanol is completely

removed, causing an increase in density (nxy) and internal

stresses (Dn). Fitting with the anisotropic, instead of the

isotropic optical model, results in a significant reduction of

the MSE. NMP-derived films show a small positive value

for Dn and a strongly increased nxy. This indicates signif-

icant but not complete removal of the NMP.

Finally, the films have been characterized after condi-

tioning under vacuum at 140 �C. For methanol-derived

films the solvent is completely removed, similar to the

conditioning at 30 �C. Because the temperature of 140 �C

is too far from the glass transition temperature, no struc-

tural rearrangements of the polymer occur. Consequently,

the temperature of the conditioning step does not signifi-

cantly affect the optical properties of the methanol-derived

films, and the corresponding MSE.

For the NMP-derived films, the removal of NMP at

140 �C is far more effective than at 30 �C. This is mani-

fested by an increase in nxy as well as in Dn. Still, for

various spots on the sample a lower anisotropy is observed,

indicating that NMP is not removed completely at 140 �C.

The difficult removal of NMP is due to its high boiling

point, but also due to its favorable interactions with sul-

fonic acid groups [22, 48].

Overall, the results indicate that sorption of organic

solvents can reduce the internal stresses in thin SPEEK

films. Notably, the density of, and internal stresses in, thin

SPEEK films are similar when comparing films prepared

by spin-coating and solvent deposition. This further sub-

stantiates that stresses in the material are not affected by

the shear forces induced during spin-coating, but are

inherent to thin films of this sulfonated polymer. This

conclusion is in agreement with literature. It is known that

molecular orientations can originate from the self-align-

ment of polymeric chains, due to specific chemical prop-

erties (e.g., polarity) that cause interactions between

molecules [28, 49]. These interactions drive polymeric

chains to align in a specific manner. For SPEEK, the spe-

cific orientations are due to polar sulfonic acid groups. This

is in line with the recent research of Krishnan et al., who

found sulfonated polyimide thin films to be inherently

anisotropic with the orientation along the in-plane direction

[50].
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Analysis of the anisotropy of the SPEEK samples that

have been aged for 1 year shows that slow polymer

relaxations do not lead to disappearance of the anisotropy

in the thin films. The slow relaxations do affect the

homogeneity of the films. Fresh films derived from a 7 wt%

solution cannot be accurately modeled (MSE [20), but

after 372 days of aging the MSE is significantly decreased

(\10). The aged 7 wt% films have values for Dn that are of

the same order as these of films derived from 5 wt%

solutions. The inherent self-alignment orientations can only

be irreversibly affected by chemical modifications [51],

and, as we have shown, reversibly by plasticizing agents.

Conclusions

Molecular orientations in SPEEK thin films have been

investigated using spectroscopic ellipsometry. The thin

films exhibit a uniaxial optical anisotropy that implies

preferred orientations of the polymer chains, which are for

SPEEK in the in-plane direction. In turn, the preferred

molecular orientations lead to internal stresses in the films.

The molecular orientations do not originate from film

formation conditions: different solvents, different film

formation methods, and different hydrodynamic forces

acting on the polymer chains during film formation,

essentially, do not change the extent of anisotropy. The

internal stresses, coupled with the density, can be varied to

some extent when solutions with higher polymer concen-

trations are used for the spin-coating synthesis. The

presence of molecular orientations in thin SPEEK films are

inherent to this polymer, and are not removed by elevated

temperatures. The associated internal stresses can be

released by the presence of water or organic solvents.

Subsequent removal of such penetrants is accompanied by

a full reestablishment of the internal stresses.
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