Skip to main content
Log in

Ferromagnetism in Electrospun Co-doped SrTiO3 Nanofibers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

By employing electrospinning technique, subsequent calcination in air and annealing process in hydrogen, uniform Co-doped SrTiO3 nanofibers with concentrations of Co between 0 and 0.20 were successfully produced. Their morphologies and detailed structures were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction. And, the chemical states of Co were determined by X-ray photoelectron spectroscopy. It was shown that, after calcination, Co2+ was well incorporated into the perovskite structure of SrTiO3, and the nanofibers possessed smooth surface with diameters of 50–100 nm. Magnetic properties of the hydrogen-annealed and -unannealed nanofibers were both measured by physical property measurement system from 50 to 300 K. It was explored that the Co addition and the hydrogen annealing process were both very important to the generation of the observed ferromagnetism in SrTi1−x Co x O3:H2 nanofibers. In hydrogen-annealed SrTi0.80Co0.20O3:H2 nanofibers, a saturation magnetization of 0.74 emu/g and an average moment of 0.122 μB/Co were obtained. The origins of the enhanced ferromagnetism in SrTi1−x Co x O3:H2 nanofibers were analyzed according to the chemical state of Co and the mediation of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DMS:

Diluted magnetic semiconductors

FET:

Field effect transistor

PVP:

Poly(vinyl pyrrolidone)

XRD:

X-ray powder diffraction

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XPS:

X-ray photoelectron spectroscopy

PPMS:

Physical property measurement system

SAED:

Selected area electron diffraction

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488. doi:10.1126/science.1065389

    Article  CAS  Google Scholar 

  2. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Science 287:1019. doi:10.1126/science.287.5455.1019

    Article  CAS  Google Scholar 

  3. Murmu PP, Kennedy J, Ruck BJ, Williams GVM, Markwitz A, Rubanov S, Suvorova AA (2012) J Mater Sci 47:1119. doi:10.1007/s10853-011-5883-z

    Article  CAS  Google Scholar 

  4. Golmar F, Villafuerte M, Mudarra A, Navarro M, Torres CER, Barzola-Quiquia J, Esquinazi P, Heluani SP (2010) J Mater Sci 45:6174. doi:10.1007/s10853-010-4710-2

    Article  CAS  Google Scholar 

  5. Khalid M, Esquinazi P, Spemann D, Anwand W, Brauer G (2011) New J Phys 13:063017. doi:10.1088/1367-2630/13/6/063017

    Article  Google Scholar 

  6. Beltran JJ, Sanchez LC, Osorio J, Tirado L, Baggio-Saitovitch EM, Barrero CA (2010) J Mater Sci 45:5002. doi:10.1007/s10853-010-4454-z

    Article  CAS  Google Scholar 

  7. Yu L, Wang Z, Guo M, Liu D, Dai Y, Huang B (2010) Chem Phys Lett 487:251. doi:10.1016/j.cplett.2010.01.068

    Article  CAS  Google Scholar 

  8. Hwang KS, Lee HM, Lim YM (2000) J Mater Sci 35:6209. doi:10.1023/A:1026781211253

    Article  CAS  Google Scholar 

  9. Wang Y, Ganpule C, Liu BT, Li H, Mori K, Hill B, Wuttig M, Ramesh R (2002) Appl Phys Lett 80:97. doi:10.1063/1.1428413

    Article  CAS  Google Scholar 

  10. Misirlioglu IB, Vasiliev AL, Alpay SP, Aindow M (2006) J Mater Sci 41:697. doi:10.1007/s10853-006-6488-9

    Article  CAS  Google Scholar 

  11. Zhao YG, Shinde SR, Ogale SB, Higgins J, Choudhary RJ, Kulkarni VN, Lofland SE, Lanci C, Buban JP, Browning ND, Sarma SD, Millis AJ (2003) Appl Phys Lett 83:2199. doi:10.1063/1.1610796

    Article  CAS  Google Scholar 

  12. Herranz G, Ranchal R, Bibes M, Jaffres H, Jacquet E, Maurice JL, Bouzehouane K, Wyczisk F, Tafra E, Basetic M, Hamzic A, Colliex C, Contour JP, Barthelemy A, Fert A (2006) Phys Rev Lett 96:027207. doi:10.1103/PhysRevLett.96.027207

    Article  CAS  Google Scholar 

  13. Zhang SY, Lin YH, Nan CW, Zhao R (2008) J Am Ceram Soc 91:3263. doi:10.1111/j.1551-2916.2008.02602.x

    Article  CAS  Google Scholar 

  14. Zhang SX, Ogale SB, Kundaliya DC, Fu LF, Browning ND, Ramadan SDW, Higgins JS, Greene RL, Venkatesan T (2006) Appl Phys Lett 89:012501. doi:10.1063/1.2219145

    Article  Google Scholar 

  15. Lee JS, Khim ZG, Park YD, Norton DP, Budai JD, Boatner LA, Pearton SJ, Wilson RG (2003) Electrochem Solid State Lett 6:J1. doi:10.1149/1.1558353

    Article  CAS  Google Scholar 

  16. Kulkarni JS, Kazakova O, Holmes JD (2006) Appl Phys A 85:277. doi:10.1007/s00339-006-3722-x

    Article  CAS  Google Scholar 

  17. Nurfaizey AH, Stanger J, Tucker N, Buunk N, Wallace A, Staiger MP (2012) J Mater Sci 47:1156. doi:10.1007/s10853-011-5847-3

    Article  CAS  Google Scholar 

  18. Lin D, Wu H, Zhang W, Li H, Pan W (2009) Appl Phys Lett 94:172103. doi:10.1063/1.3126045

    Article  Google Scholar 

  19. Zhang G, Liu Y, Yang X, Wei Y, Ouyang S, Liu H (2006) Mater Chem Phys 99:88. doi:10.1016/j.matchemphys.2005.09.078

    Article  CAS  Google Scholar 

  20. Moudler JF, Stickle WF, Sobol PE (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  21. Tuan AC, Bryan JD, Pakhomov AB, Shutthanandan V, Thevuthasan S, McCready DE, Gaspar D, Engelhard MH, Rogers JW Jr, Krishnan K, Gamelin DR, Chambers SA (2004) Phys Rev B 70:054424. doi:10.1103/PhysRevB.70.054424

    Article  Google Scholar 

  22. Park CH, Chadi DJ (2005) Phys Rev Lett 94:127204. doi:10.1103/PhysRevLett.94.127204

    Article  CAS  Google Scholar 

  23. Shein IR, Ivanovskii AL (2007) Phys Lett A 371:155. doi:10.1016/j.physleta.2007.06.013

    Article  CAS  Google Scholar 

  24. Singhal RK, Samariya A, Kumar S, Xing YT, Jain DC, Dolia SN, Deshpande UP, Shripathi T, Saitovitch EB (2010) J Appl Phys 107:113916. doi:10.1063/1.3431396

    Article  Google Scholar 

  25. Jain AK, Acharya NK, Kulshreshtha V, Awasthi K, Singh M, Vijay YK (2008) Int J Hydrogen Energ 33:346. doi:10.1016/j.ijhydene.2007.07.036

    Article  CAS  Google Scholar 

  26. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Nat Mater 4:173. doi:10.1038/nmat1310

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 50872063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Li, HP. & Pan, W. Ferromagnetism in Electrospun Co-doped SrTiO3 Nanofibers. J Mater Sci 47, 8216–8222 (2012). https://doi.org/10.1007/s10853-012-6717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6717-3

Keywords

Navigation