Skip to main content
Log in

Selective hydrobromination of metallurgical-grade silicon in a flow reactor system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reactions of metallurgical-grade silicon (MG-Si) with gaseous hydrogen bromide (HBr) has been monitored by means of online gas chromatography in a flow reactor system. The formation of tri-bromosilane started to occur at 380 °C, accompanied by the consumption of HBr. The conversion of HBr into bromosilanes increased with an increase in reaction temperature and reached a maximum at 440 °C. An increase of the HBr concentration in a HBr-N2 mixed gas led to an increase in the consumption of MG-Si, while it reduced the selectivity of the tri-bromosilane formation. An increase in total flow rate of the reaction gas caused a dramatic decrease in the HBr conversion and enhanced the selectivity of the tri-bromosilane formation. The rate constant for overall bromination reaction at 400 °C was measured to be 0.46 s−1. Concentrations of impurities in the product were much less than those in MG-Si. Moreover, kerf loss silicon was subjected to the bromination reaction under the optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chapin DM, Fuller CS, Pearson GL (1954) J Appl Phys 25:676

    Article  CAS  Google Scholar 

  2. Kamerski LL (2006) J Electron Spectrosc 150:105

    Article  Google Scholar 

  3. Coletti G, Bronsveld PCP, Hahn G, Warta W, Macdonald D, Ceccaroli B, Wambach K, Quang NL, Fernandez JM (2011) Adv Funct Mater 21:879

    Article  CAS  Google Scholar 

  4. Pizzini S (2009) Appl Phys A 96:171

    Article  CAS  Google Scholar 

  5. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) Sol Eng Mater Sol Cells 92:418

    Article  CAS  Google Scholar 

  6. Woditsch P, Koch W (2002) Sol Eng Mater Sol Cells 72:11

    Article  CAS  Google Scholar 

  7. Sarti D, Einhaus R (2002) Sol Eng Mater Sol Cells 72:27

    Article  CAS  Google Scholar 

  8. Moller HJ (2004) Adv Eng Mater 6:501

    Article  Google Scholar 

  9. Dhamrin M, Saitoh T, Kamisako K, Mori T, Iwamoto N (2010) In: Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, pp 1600–1603

  10. Pires JCS, Otubo J, Braga AFB, Mei PR (2005) J Mater Process Technol 169:16

    Article  CAS  Google Scholar 

  11. Wang TY, Lin YC, Tai CY, Sivakumar R, Rai DK, Lan CW (2008) J Crystal Growth 310:3403

    Article  CAS  Google Scholar 

  12. Mukashev BN, Abdullin KA, Tamendarov MF, Turmagambetov TS, Beketov BA, Page MR, Kline DM (2009) Sol Eng Mater Sol Cells 93:1785

    Article  CAS  Google Scholar 

  13. Martinez AM, Osen KS, Kongstein OE, Sheridan E, Ulyashin A, Haarberg GM (2010) ECS Trans 25:107

    Article  CAS  Google Scholar 

  14. Lin YC, Wang TY, Lan CW, Tai CY (2010) Powder Technol 200:216

    Article  CAS  Google Scholar 

  15. Kong MS, Jung HC, Hong HS, Kim GS, Chung HS (2011) Current Appl Phys 11:554

    Article  Google Scholar 

  16. Uesawa N, Shen P, Inasawa S, Miyoshi A, Yamaguchi Y (2011) Chem Eng J 114:4291

    Google Scholar 

  17. Schumacher J, Woerner L, Moore E, Newman C (1979) Final Report, D.O.E./J.P.L. Contract no. 954,914, John C. Schumacher Co., USA. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology by agreement between NASA and D.O.E

  18. Schumb WC, Young RC (1930) J Am Chem Soc 52:1464

    Article  CAS  Google Scholar 

  19. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, vol 14, 3rd edn. J Phys Chem Ref Data Suppl 1

  20. Ingel WM, Peffley MS (1985) J Electrochem Soc 1236

  21. Levenspiel O (1999) In: Anderso W, Santor K (eds) Chemical reaction engineering, Chap 5, 3rd edn. Wiley, New York, pp 101–110

    Google Scholar 

  22. Rodriguez H, Guerrero I, Koch W, Endros AL, Franke D, Haßler C, Kalejs JP, Moller HJ (2011) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering, Chap 6, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This research was supported by Yamaguchi Green Materials Cluster Initiative from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We are very grateful to Prof. S. Sakuragi, Prof. Y. Sakata, and Prof. M. Yoshimoto for their comments and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Tomono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomono, K., Okamura, Y., Furuya, H. et al. Selective hydrobromination of metallurgical-grade silicon in a flow reactor system. J Mater Sci 47, 3227–3232 (2012). https://doi.org/10.1007/s10853-011-6160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6160-x

Keywords

Navigation