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Abstract It is known that the thermal effect (thermal

inertia) in differential scanning calorimetry causes signifi-

cant error of measuring the martensite finish temperature

(Mf) in shape memory alloy, while the start temperature

(Ms) is virtually unaffected. This article shows that the

error can be avoided by accounting for the thermal effect

quantitatively by mathematical modeling, if the kinetics of

the martensitic transformation is properly prescribed. In

common with two representative shape memory alloys,

Cu–Al–Ni and Ni–Ti alloys, exponential decay is appro-

priate for expressing the kinetics. The model analysis is

extended to the two methods of extrapolation which aims at

excluding the thermal effect from DSC data. One is the

extrapolation of the cooling rate to zero, and the other is

that of the mass of sample to zero. It is shown that both

extrapolations construct a temperature between the Ms and

Mf. Typically, the temperature is below the Ms by one-

third of the interval between the two temperatures.

Introduction

When martensite transformation occurs in a sample of

shape memory alloy (SMA), the heat of transformation

should be removed from the sample to keep the tempera-

ture constant or lowering it at constant rate. The heat

transfer occurs from the sample to surroundings and may

cause some time-dependent phenomena in shape memory

effect. Note that the martensite of SMA shows the typical

thermoelasticity, which is characterized by the time-inde-

pendence of its transformation kinetics [1]. It follows that

the temperature is the only variable of the kinetics, as it has

been verified by carefully temperature-controlled X-ray

diffraction measurements, for example, in [2]. Thus, most

of the time-dependent phenomena observed might have

originated from the heat transfer, except for a few cases

involving the relaxation in microstructure [3] and diffu-

sional processes [4]. In fact, the strain-rate dependence of

mechanical properties was observed in some respects,

which were explained in terms of the local disturbance of

temperature due to the heat transfer; see the examples

[5–9].

In most of thermal measurements, the heat effect is

observed as thermal inertia (thermal effect) [10–13]. This

effect can be realized according to the Newton’s law of

cooling. Namely, let us consider a substance being heated

up/cooled down at constant rate by means of a heat res-

ervoir in contact with it. When phase transformation occurs

in the substance, the heat of transformation is generated,

and thus the temperature shows the delay in reaching that

of the heat reservoir owing to the existence of thermal

resistance between them.

As a result, when the latent heat of transformation of

SMA is measured with differential scanning calorimetry

(DSC), the heat flow versus temperature curve shows

apparent cooling-rate dependence. Kwarciak and Mora-

wiec [14] first pointed out the effect in Nickel–Titanium

(Ni–Ti) and Copper–Zinc–Aluminum (Cu–Zn–Al) SMAs

such that the Mf appeared to be decreased with increasing

the cooling rate, while the Ms was unaffected. It was

concluded that the great part of the dependence should be

caused by thermal inertia, since the kinetics was rate-

independent. In this way, the possibility of DSC for the

purpose of determining the Mf is substantially limited.
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Now that DSC is widely used as a rapid technique for

determining the transformation temperatures of SMA

[15–17]; see the industrial standards [18, 19]. The inertia

effect is, however, still an unresolved problem. In fact,

recently Benke et al. [20, 21] applied an empirical rule of

excluding the inertia effect from the Mf measured with

DSC. Eventually, they discarded the tangent line method

[15, 16], which has been used as the standard method of

dealing with the data of DSC [18, 19]. Though the method

they proposed on the basis of the empirical rule may be

quite useful for practical purposes, its physical meaning is

not clear.

A similar problem was formerly studied by Kempen

et al. [22]. They determined the isothermal kinetics of

Fe–Mn alloy martensite by differential thermal analysis

(DTA) [13]. This technique includes, however, no thermal

inertia. Details of the difference between DSC and DTA is

described in references [10, 11, 14]. Besides the method-

ology, the kinetics of transformation is quite different

between the ferrous alloy and SMAs; the isothermal

transformation of ferrous martensite is typically time-

dependent. It follows that their analysis cannot be applied

directly to the present problem.

We are now dealing with the problem to determine the

transformation kinetics by means of DSC. This may be

similar to the typical inverse problem in thermal physics to

estimate the magnitude of a heat source by measuring the

temperature at distance from the source [23]. Here, the heat

of transformation and the DSC curve correspond to the

source and the temperature, respectively. In general, the

difficulty in solving an inverse problem can be fairly

reduced, if the equation relating the source and the tem-

perature is prescribed in the form with a finite number of

parameters [23].

Therefore, this study will start the analysis with defining

the kinetics in the form with a few parameters. Next, the

heat equation for the heat transfer in DSC will be derived.

Since the general heat equation has been obtained by pre-

vious authors [10–13], what we have to do is just to con-

sider the kinetics of martensite transformation in the

equation. Then, this equation will be solved analytically or

numerically. Finally, these parameters will be determined

by comparing the solution with experimental results.

Model analysis

Modeling heat transfer in DSC

The DSC cell used in this study was a typical heat-flux

type, and is illustrated in Fig. 1a. There were two stages for

a sample and a reference material in close positions on the

top surface of heat reservoir, which was a solid cylinder.

The temperature of the solid cylinder was controlled to

change at any fix-rate below 50 K min-1. Two thermo-

couples connected in series measured the difference

between the temperature of the sample stage and that of the

reference stage. This study assumes that the temperature of

the sample, the sample stage, the reference stage, and the

reservoir were uniform; they are designated as T, Ts, Tr,

and Tw. The heat capacity of the sample is Cs and that of

the reference Cr.

Figure 1b is the diagram of the heat transfer occurring in

the DSC cell. The sample and the reference were thermally

insulated from ambient. Let the thermal resistance to the

heat flux between the sample stage and the reservoir be

R (W-1 K).

The temperature of sample T (K) may be different from

that of the stage Ts owing to the heat resistance. This study

deals with the austenite to martensite transformation by

lowering the temperature of the heat reservoir Tw at con-

stant rate: _Tw ¼ �a ðK s�1Þ: The measurement begins at

t = 0. When t0 (s) is elapsed, the temperature of sample

T is decreased to T0 (K). Then, the temperature at arbitrary

time t [ t0 is:

T � T0 ¼ �aðt � t0Þ: ð1Þ

This relation is discussed more in detail in Appendix 1.

sample

heating element

T   s rT

rTT   s

Tw heat reservoir

reference

Qs Qr

stages

(a)

(b)

Tw
heat  reservoir

Ts Tr
referencesample

Fig. 1 A schematic drawing of the sample’s cell of the present DSC

instrument (a), and the heat transfer diagram (b). The temperature of

the sample stage, the reference stage, and the heat reservoir is denoted

as Ts, Tr, and Tw, respectively
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Let us consider the latent heat of transformation, of which

amount is ‘ (J) and its time derivative _L (J s-1). The former is

a numerical value, while the latter is a function of time.

‘ ¼
Z1

0

_Ldt [ 0: ð2Þ

A DSC measures the difference in the temperatures between

the sample stage and the reference stage Tr - Ts as a function

of the duration of cooling (or heating), and outputs the

difference in the heat flow between the two stages:

Tr � Ts

R
½W �: ð3Þ

Let us set a new variable u : Tr - Ts ? constant. By

taking appropriate constant, see Appendix 1, we obtain the

equation of the continuity in a simple form:

s _uþ u� R _L ¼ 0; ð4Þ

where the time constant s is defined as s = RCs (s). This

expression is essentially the same to those derived by

previous authors [10–13, 22].

Before discussing Eq. 4 in this general form, we shall

examine the trivial solution; in case that the transformation

is absent, _L ¼ 0; thus Eq. 4 becomes a homogeneous dif-

ferential equation. Suppose that the initial value of u is 0 at

t = 0 and the stationary value �u at t ¼ 1; the solution is:

u ¼ �u 1� e�t=s
� �

; ð5Þ

which expresses a relaxation process with the delay con-

stant s (s).

Latent heat of martensitic transformation

Now we shall consider the nonhomogeneous term _L in

Eq. 4 when R = 0. We can rewrite this term by chain rule:

_L ¼ _T
dL

dT
: ð6Þ

Let us denote the temperature profile of the volume fraction

of martensite:

n ¼ nðTÞ s.t. 0� n� 1: ð7Þ

Here, n = 0 means the 100% austenite phase and n = 1 the

100% martensite. Since the derivative of latent heat with

respect to temperature is:

dL

dT
¼ ‘ dn

dT
; ð8Þ

the nonhomogeneous term becomes

_L ¼ ‘ _T
dn
dT

: ð9Þ

An expression similar to this was seen in a previous article

[13]. Substituting it into Eq. 4, we obtain the heat equation:

s _uþ uþ a‘R � dn
dT
¼ 0: ð10Þ

Kinetics of martensitic transformation and simulation

of DSC curve

This differential equation can be solved if the transforma-

tion kinetics n = n(T) is given in explicit form. Several

mathematical functions were proposed for the kinetics [24–

28]. Among the functions proposed so far we define the

three trial functions, type I, II, and III:

(1) Type I is the step function,

n ¼ 1; T � T0;
0; T [ T0:

�
ð11Þ

This profile has no hysteresis. The transformation starts and

finishes at a temperature T0.

(2) Type II is an exponential decay function [24, 27],

n ¼ 1� ecðT�T0Þ; T � T0;
0; T [ T0:

�
ð12Þ

This profile has hysteresis. Obviously, the temperature T0 is

equal to the Ms temperature. The parameter c is the decay

constant. A fast decay means a large c. In the limit of

c!1; this profile becomes the step function of type I.

(3) Type III is the linear function of temperature

connecting the Ms and Mf temperatures [25–27].

n ¼
1; T\Mf;

ðMs� TÞ=ðMs�MfÞ; Mf� T �Ms;
0; T [ Ms:

8<
: ð13Þ

This study defines these simple functions because of the

simplicity and the usefulness for the application to form

more complicated functions. Namely, they can be used as

the basis functions to express arbitrary function by the

linear combination of them. If the simulation could not

provide satisfactory result, then the linear combination of

the function probably yields more successful simulation.

Taking the derivatives, substituting these into Eq. 10,

and exchanging the variable from temperature T to time

t according to Eq. 1, we obtain the first-order ordinary

differential equation with respect to time. The solution of

this equation can be obtained in an analytic form, which is

described in Appendix 2. The solutions are:

(1) The model DSC curve for type I in the absence of

martensite transformation is:

Tr � Ts

R
¼ a Cr � Csð Þ 1� e�t=s

� �
; 0\t� t0: ð14Þ
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The right hand side of this equation represents the baseline.

All the model curves have this term in common. If the

reference material is absent, it is equal to Eq. 5 by letting

�u ¼ �aCs:The curve during martensitic transformation is:

Tr � Ts

R
¼ a Cr � Csð Þ 1� e�t=s

� �
� a‘

s
e�ðt�t0Þ=s; t� t0:

ð15Þ

The second term expresses the peak due to the heat of

transformation. The minus sign means it is an exothermic

reaction (upward peak). According to Eq. 1, this term can

be expressed as a function of temperature:

� a‘
s

eðT�T0Þ=ðasÞ; T � T0; ð16Þ

and 0 for T [ T0. Hereafter, the baseline will not be shown.

(2) The peak term for type II is:

� ac‘
1� acs

ecðT�T0Þ � eðT�T0Þ=ðasÞ
h i

; T � T0; ð17Þ

and 0 for T [ T0.

(3) For type III:

� a‘
Ms�Mf

�eðT�MsÞ=ðasÞ þ eðT�MfÞ=ðasÞ� �
; T\Mf

� a‘
Ms�Mf

1� eðT�MsÞ=ðasÞ� �
; Mf�T�Ms

0; T [Ms

8<
:

ð18Þ

Figure 2 illustrates the three trial functions, the

derivatives with respect to temperature, and the model

DSC curves of Eqs. 16–18. Note that the baselines are not

shown. The three types have the following characteristics

in common:

(1) if the inertia effect was absent, the peak should have

the same shape that of the derivative of the trial

function.

(2) with decreasing the cooling rate a, the height of peak

is decreased. In the limit of a! 0, the peak height

becomes zero.

(3) with increasing a, the Mf is decreased, while the Ms

is unaffected. Namely, the hysteresis becomes wider

as a becomes larger.

(4) if the curve is drawn as a function of the duration of

measurement, the area of the peak is ‘ (J), which is

unaffected by the rate.

As these model curves are compared with those

observed in this study and also those by previous authors

[14–16, 20], it is concluded that the model curve of type II

is most appropriate for the present purpose. Both type I

showing the k-type peak and type III showing peak with a

plateau were seldom observed in experiments.

The model curve of Eq. 17 has the three parameters, the

scanning rate a, the delay constant s, and the decay con-

stant c. The influence of these parameters on the shape of

the model curve for the Cu–Al–Ni alloy is shown in Fig. 3.

The upper, the middle, and the lower figure shows the

effect of a, s, and c, respectively. It is seen that

(1) the peak height is increased with increasing a,

decreasing s or increasing c,

(2) the Mf is decreased with increasing a, increasing s or

decreasing c,

(3) the Ms is virtually unaffected by these parameters.

Determining the Mf temperature in DSC curves

The Ms and Mf temperatures were measured in the DSC

curves with the tangent line method [14–16]; drawing two

tangent lines having the largest slopes on both side of a

DSC peak, and taking the crossing points with the extended

baseline. This method was proposed in early works [29],

examined by several researchers and has been adopted in

some industrial standards [18, 19]. Since the Mf measured

with this method in DSC may include the error due to

thermal inertia, we hereafter use the symbol Mf* to dis-

tinguish it from the real value of the Mf.

As the tangent line method is applied to the model curve

of Eq. 17, the Mf* is calculated as:

Mf� ¼ Ms� 1

c
þ as 1� 2lnðcasÞ

1� cas

� �	 

: ð19Þ

The first term in the parenthesis is left after taking the limit

of a! 0: This term can also be obtained by drawing the

tangent line to the exponential decay function of Eq. 12, as

illustrated in Fig. 2. The second term in the parenthesis

represents the inertia effect in the DSC peak. Letting the

non-dimensional number v : cas be a variable, the above

relation becomes:

cðMs�Mf�Þ � 1 ¼ v 1� 2lnv
1� v

� �
: ð20Þ

The right hand side of this expression is plotted against v in

the range 0 B v B 3 in Fig. 4. It is a monotonic increasing

function for v[0. Thus, the Mf* is a monotonic decreasing

function of v. The parameter v can represent the combined

effect of the three parameters on thermal inertia.

As long as the kinetics is expressed by exponential

decay, the Ms is well defined at the starting point of the

peak, while the Mf cannot be distinctly located in the wake

of the peak. If we define the cut-off by the volume fraction

of martensite f, s.t. 0 B f B 1, then we can define the Mf

according to Eq. 12:
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Mf ¼ Msþ lnð1� fÞ
c

: ð21Þ

Formerly Tanaka [24] thought that the volume fraction of

martensite was 99% at the Mf. If so, the interval between

the Ms and Mf is 4.6/c (K). If it is 95% in volume, then the

interval is 3.0/c (K).

Experimental

A / 3 rod of Copper–27at.%Aluminum–4at.%Nickel alloy

nearly [001] oriented single crystal grown by the Bridgman

Fig. 2 Three trial functions, I,

II, and III, their time

derivatives, and the model DSC

curves at cooling rates,

a1 [ a2 [ a3. Note that the

baselines are not drawn
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method [30] was used, since single crystal is a pre-requisite

for good mechanical properties in this SMA. The DSC

samples having a disk shape of 3 mm in diameter and

1–2 mm in thickness were cut from the ingot, solution

treated for 1 h at 1223 K (950 �C) in air and quenched in

water. The as-quenched samples were annealed at 573 K

(300 �C) for 3 min to reduce possible short time aging

effect and the cycling effect in case measurements were

repeated for a few times [31].

A Titanium–50.5at.%Nickel alloy cold drawn wire was

supplied by Furukawa Techno Material Co. Ltd., Japan.

Two different heat treatments were applied. One was

annealed at 773 K (500 �C) for 1 h (aged sample), and the

other was annealed at 1173 K (900 �C) for 1 h and quen-

ched in ice water (quenched sample). The aged sample

showed the austenite (B2) to the R phase transformation at

high temperature, and the R-phase to the B190 martensite

transformation at low temperature [16]. The quenched

sample showed only the martensitic transformation [32].

We shall call the aged alloy the R-phase Ni–Ti alloy,

and the quenched alloy the martensitic Ni–Ti alloy,

respectively.

Calorimetric study was carried out using a Shimadzu

DSC-60 heat-flux type DSC [10, 14]. The reading of

temperature and latent heat was calibrated by those in the

melting reaction of a 99.999% Indium. The instrument was

operated at constant rate in the range between 2 and

30 K min-1 (0.033–0.5 K s-1). In conformity with the

previous reports [14–16, 20], we shall use the unit of

K min-1 in dealing with DSC data, and K s-1 in the model

analysis.

As the reference method for the transformation tem-

peratures, the electrical resistance [29] was measured with

four-point method. The dimension of the Cu–Al–Ni sample

was a rectangle of 40 mm in length and 2.5 mm in width

and 0.5 mm in thickness, and that of Ni–Ti alloy a wire of

40 mm in length and 0.6 mm in diameter. Copper lead

wires were spot welded to both ends and a K-type ther-

mocouple to the center of gauge part. Therefore, no thermal

effect should be involved in the measurement [10, 14, 22,

29]. The rate of heating/cooling was below 0.2 K min-1.

Results and discussion

The Ms and Mf temperatures measured by resistance

and DSC method

The electrical resistance versus temperature curves of the

Cu–Al–Ni alloy, the martensitic Ni–Ti, and the R-phase

Ni–Ti alloys are shown in Fig. 5a, b, and c, respectively.

The martensitic transformation temperatures (Ms, Mf,

As, and Af) are indicated by arrows in the figures. They

were determined in the same way as in the previous studies

using those alloys [16, 29, 30, 32–36]. The present results

are listed in Table 1.

The heat flow versus temperature curves (DSC curves)

of these alloys are shown in Fig. 6. These curves

were measured at cooling rate of 2, 5, 10, 20, and

30 K min-1. Both the martensitic and the R-phase trans-

formation are exothermic reactions. Those are drawn as the

peaks in the upward direction [18, 19]. It is seen that both

the height and the width of the peak were increased with

increasing the rate. Figure 6a and b is taken in cooling

runs. The thermal effect was similar to those observed by
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previous authors [14, 20]. Figure 6c shows the DSC curves

of the R-phase transformation in cooling run and the

reverse R-phase transformation in heating run. The inertia

effect appeared symmetrically between heating and cooling

runs. Such symmetric appearance of inertia effect was

formerly reported in Cu–Al–Ni SMA [20].

The Ms and Mf* (or Rs and Rf*) were determined by the

tangent line method as illustrated in Fig. 6c. These tem-

peratures are plotted with respect to the cooling rate for

the Cu–Al–Ni alloy, the martensitic Ni–Ni–Ti, and the

R-phase Ni–Ti alloy, in Fig. 7a, b, and c, respectively. The

Mf determined by resistance method is indicated by arrows

in the figures. It is seen that the Mf was found within the

range of the variation of the Mf* at various cooling rates.

The latent heat of transformation was calculated from

the area of DSC peak plotted as a function of time,

according to the definition of Eq. 2. The calculation was

Table 1 The result of resistance and DSC measurements

Sample Resistance DSC

Ms (K) Mf (K) Latent heat (J g-1)

Cu–Al–Ni 408 394 12 ± 0.4

Martensitic Ni–Ti 286 272 24 ± 0.6

R-phase Ni–Ti 297 292 8.0 ± 0.4

The Rs and Rf of the R-phase Ni–Ti sample is listed as the Ms and

Mf, respectively
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performed numerically with the operating software of the

DSC. Although the shape of the peak was changed by the

rate, the latent heat was unaffected. The values are listed in

Table 1.

Data fitting to solve inverse problem

The two parameters c and s included in Eq. 17 has not been

determined yet. They can be determined by seeking for the

best fitting of the model DSC curves to those in experi-

ments. Let us start with fitting the height of peak, which is

the distance between the summit and its baseline. The

heights measured in Fig. 6 (Hexp) are plotted by open

symbols in the left figures of Fig. 8. As for the height of the

model curve, it is calculated as the maximum of Eq. 17:

Hmodel ¼
‘

s
ðcasÞ1=ð1�casÞ ¼ ‘

s
v1=ð1�vÞ; ð22Þ

which occurs at the temperature:

aslnðcasÞ
1� cas

¼ vlnv
cð1� vÞ : ð23Þ

The optimal values of s and c yielding the best fitting of

Hmodel to Hexp were obtained as follows:

(1) measure the latent heat of martensite transformation

‘,

(2) measure the Ms temperature in DSC curve or in

resistance curve and substitute it to T0,

(3) calculate Hmodel using the values of ‘ and Ms, and

assuming s in the range from 0.1 to 20 s at a regular

increment of 0.1 s, and c in the range from 0.01 to

5 K-1 at a regular increment of 0.01 K-1,

(4) take the difference between Hexp and Hmodel for the

same a, and calculate the sum of the square errors

over all set of data, and find s and c minimizing the

sum.X
a

jHexp � Hmodelj2 ! min: ð24Þ

The results are listed in Table 2. First, the height Hmodel

calculated using the optimal parameters are drawn as the

solid lines in the left figures of Fig. 8. Close agreement

with the experimental result is obtained. Next, substituting

the parameters into Eq. 17, the model DSC curves are

drawn in the right figures of Fig. 8. The experimental (solid

lines) and the model curves (dotted lines) for a = 5 and

20 K min-1 are compared. In this figure, the baseline of

the model curve was not that calculated from Eq. 17, but

just adjusted equal to the experimental curve.

It is seen that the temperatures of the peaks showed

disagreement of a few degree. The disagreement may

originate from the difference between the trial function and

the real kinetics. A better fitting could be obtained using

more complicated trial function as mentioned before.

In spite of the disagreement, we obtained close agreement

with respect to the temperature range of the peak, i.e., the

interval between the Ms and Mf*. Therefore, for the present

purpose of simulating the Mf* including the inertia effect,

the disagreement in the peak temperatures could be

tolerated.

Two methods of extrapolation for determining

the Mf temperature

The Mf* temperatures calculated from Eq. 19 are drawn as

the solid lines in Fig. 7. Close agreement between the

measured and the calculated Mf* is ensured. In this figure,

the extrapolation to the zero cooling rate yields a value

between the Ms and Mf determined by resistance mea-

surement. The Mf* thus extrapolated are listed in Table 2.

They are 5, 6, and 3 K below the Ms.

This result can be realized from the kinetics showing

exponential decay. As mentioned before, in the limit of

a! 0;the value of the Mf* in Eq. 19 is:

lim
a!0

Mf� ¼ Ms� 1=c: ð25Þ

According to this relation, the values of c estimated by the

extrapolation applied to Fig. 7 are 0.20, 0.17, and

0.33 K-1. These are almost equal to the c determined by

the data fitting performed in Fig. 8, see the values in

Table 2.

It should be noted that linear extrapolation, if we apply

it, may cause significant error. Instead, we have found

that the approximation by means of the fourth-order

polynomial provides result with more reasonable accu-

racy. For example, the linear extrapolation in the range of

a between 2 and 30 K min-1 in the Cu–Al–Ni sample

Table 2 Determining parameters and the Mf temperature in the present method

Sample Data fitting Extrapolation f = 0.95

c (K-1) s (s) Ms (K) Mf* (K) c (K-1) Mf (K)

Cu–Al–Ni 0.20 13.3 408 403 0.20 393

Martensitic Ni–Ti 0.18 4.8 284 278 0.17 270

R-phase Ni–Ti 0.40 4.8 298 295 0.33 290
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gives Ms - 1.53/c (K), while the forth order polynomial

Ms - 1.094/c (K). If the range of a is limited below 10 K

min-1, more accurate results can be obtained; Ms - 1.24/

c (K) by the former and Ms - 1.047/c (K) by the latter

extrapolation.

Now we shall examine how the Mf was determined in

the resistance curves of Fig. 5. According to Eq. 21, the Ms

and Mf in Table 1 and the c in Table 2 means that 94%

volume was transformed in the Cu–Al–Ni alloy, 92% in the

martensitic Ni–Ti alloy, and 97% in the R-phase Ni–Ti

alloy. Thus, in average, the resistance method determines

the Mf as the temperature when 95% volume is trans-

formed. The Mf defined for 95% transformation in Eq. 21

is listed in Table 2.

In summary, the procedure of the extrapolation method

is,

(1) measure the Ms and Mf* by taking DSC curves at

various rates,

(2) extrapolate the Mf* into a! 0,

(3) determine c through Eq. 25,

(4) estimate the Mf through the relation:

Mf ¼ Ms� 3=c; ð26Þ

which derives the temperature when 95% of the sample

becomes martensite.

The other method of extrapolation is letting the mass of

a sample to zero. Since the heat capacity Cs is in proportion
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to the mass of sample M, the delay constant s = CsR is in

the same proportion to M. Since s! 0 as M ! 0; the

extrapolation is expected to derive the temperature:

lim
M!0

Mf� ¼ Ms� 1=c: ð27Þ

In order to check if the relation holds in experiment, we

carried out DSC using a sample of the Cu–Al–Ni alloy in a

shape of round disk. The thickness was gradually reduced

by grinding the top surface while keeping the thermal

contact of the bottom surface unchanged. The result is

shown in Fig. 9. The upper figure (Fig. 9a) is the DSC

curves. It is seen that the thermal effect was decreased with

decreasing the mass of the sample.

The lower figure (Fig. 9b) is the Ms and Mf* tempera-

tures plotted against the mass. Again, the Ms was unaf-

fected, while the Mf* was decreased with increasing the

mass M (mg). The prediction of Eq. 19, which is drawn as

the solid and dotted lines, shows close agreement with the

measured Mf*. This calculation was done by assuming that

the delay constant s was equal to 13.3M/46 (s), since

s = 13.3 s in Table 2 was obtained in the Cu–Al–Ni

sample of 46 mg. This method estimates c equal to

0.2 K-1, and thus the Mf equal to Ms - 3/c = 393 K,

which is fairly close to that determined by the resistance

method in Table 1.

Conclusion

Using two representative SMAs, Cu–Al–Ni and Ni–Ti,

simulation and experiment of the thermal effect in DSC

were carried out. Exponential decay was likely appropriate

for expressing the kinetics of the martensitic transforma-

tion in these alloys. Using this kinetics, two methods of

determining the Mf temperature were proposed. One was

the extrapolation of the Mf* measured at various cooling

rates to the zero rate. The other was the extrapolation of the

Mf* measured in samples with various weights to the zero

mass. Both methods derived a temperature just below the

Ms. Letting the interval between the Ms and the tempera-

ture equal to 1/c (K), we obtained the value of decay

constant c (K-1). Then we could estimate the Mf through

the relation Ms - 3.0/c (K) as the temperature when 95%

volume was transformed. The result showed close agree-

ment with the Mf determined by electrical resistance

method.
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Appendix 1: Heat transfer equation for heat-flux type

DSC

The general discussion about DSC technique is referred to

the literatures [10, 11]. A DSC does not measure the

temperature of sample, as illustrated in Fig. 1a. The tem-

perature of a sample, the sample stage, and the heat res-

ervoir should be different with each other owing to the

thermal resistance between them. The temperature can be

known in the form of Eq. 1 by posing that:

(1) we assume the steady-state cooling process such that

the temperature of a sample and that of the heat

reservoir are decreased at the same rate,

(2) the difference of these temperatures can be corrected

with the aid of computer program.

Figure 1b is the schematic diagram of the heat flow in

the apparatus of Fig. 1a. Positive sign is assigned to the

heat flow if it flows into the sample. As Tw is decreased,

heat flow _Qs in Watt occurs from the sample to the heat

reservoir, and _Qr from the reference. The Newton’s law of

cooling can be applied to them:
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_Qs ¼
Tw � Ts

R
and _Qr ¼

Tw � Tr

R
: ð28Þ

Equation 3 is obtained by taking the difference:

_Qs � _Qr ¼
Tr � Ts

R
; ð29Þ

as long as the heat resistances of the sample and the ref-

erence are both equal to R.

The heat equation with respect to the sample stage is

Cs
_Ts ¼ _Qs � _L; ð30Þ

where Cs is the heat capacity of the sample stage including

a sample. As for the reference material it shows no heat

anomaly during the scheduled temperature change;

Cr
_Tr ¼ _Qr; ð31Þ

where Cr is the heat capacity of the reference stage plus the

reference material. By taking the difference between Eqs.

30 and 31, and using Eq. 29, we can eliminate the

temperature Tw from the relation;

Tr � Ts

R
¼ Cs

_Ts � Cr
_Tr þ _L: ð32Þ

The right hand side of this equation is written as

Csð _Ts � _TrÞ þ ðCs � CrÞ _Tr þ _L: ð33Þ

Letting new variable u such that:

u ¼ Tr � Ts þ RðCr � CsÞ _Tr; ð34Þ

we get Eq. 4.

The trivial solution of Eq. 4 in case of R = 0 is given as

Tr � Ts

R
¼ a Cr � Csð Þ; ð35Þ

which is the stationary value of the baseline in Eq. 14.

More elaborate models were provided by previous

authors [10–13]. They considered the heat resistances of

the thermocouples, heating wire, sample holder, etc. A set

of simultaneous heat equations were derived for these

components. The resistance R in this article is the sum of

the resistances of these components. The pro of the elab-

orate models is that it can evaluate the heat transfer process

in each component. The con may be the difficulty in

solving a number of simultaneous equations.

Appendix 2: Solutions of Eq. 10

The derivative of type I profile with respect to T is

expressed by the impulse function, or the delta function:

dn
dT
¼ �dðT0Þ: ð36Þ

That of type II is:

dn
dT
¼ �cecðT�T0Þ; T � T0

0; T [ T0

�
ð37Þ

That of type III is:

dn
dT
¼

0; T\Mf

�1=ðMs�MfÞ; Mf� T �Ms

0; T [ Ms

8<
: ð38Þ

Before substituting them into Eq. 10, these expressions

must be transformed into the functions of time through

Eq. 1. For example, the derivative of type II is

dn
dT
¼ 0; 0� t\t0

�ce�acðt�t0Þ; t� t0

�
ð39Þ

In order to extend the domain of the functions, we use the

step function:

Uðt0Þ ¼
0; 0� t\t0

1; t� t0:

�
ð40Þ

Then, the derivative of II is,

dn
dT
¼ �ce�acðt�t0ÞUðt0Þ; t [ 0: ð41Þ

Inputting this into Eq. 10, we get the equation in terms of t:

s _uþ uþ acs‘R � e�acðt�t0ÞUðt0Þ ¼ 0: ð42Þ

This equation can be solved by the elementary method of

Laplace transform. Convolution may be used for the

calculation.

u ¼ �aR Cr � Csð Þe�t=s � a‘
Cs

e�ðt�t0Þ=sUðt0Þ: ð43Þ

The solutions for types I and III can be obtained in the

same way.
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