Skip to main content
Log in

Micromechanical multiscale model for alkali activation of fly ash and metakaolin

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The process of alkali activation of fly ash and metakaolin is examined in the view of micromechanics. Elasticity is predicted via semi-analytical homogenization methods, using a combination of intrinsic elastic properties obtained from nanoindentation, evolving volume fractions and percolation theory. A new quantitative model for volume fraction is formulated, distinguishing the evolution of unreacted aluminosilicate material, solid gel particles of N-A-S-H gel, and open porosity, which is partially filled with the activator. The stiffening of N-A-S-H gel is modeled by increasing the fraction of solid gel particles. Their packing density and intrinsic elasticity differ in N-A-S-H gels synthesized from both activated materials. Percolation theory helps to address the quasi-solid transition at early ages and explains a long setting time and the beneficial effect of thermal curing. The low ability of N-A-S-H gel to bind water chemically explains the high porosity of Ca-deficient activated materials. Micromechanical analysis matches well the elastic experimental data during the activation and elucidates important stages in the formation of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42(9):2917. doi:https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  2. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Constr Build Mater 22(7):1305

    Article  Google Scholar 

  3. van Deventer JSJ (eds) (2009) Geopolymers: structures, processing, properties and industrial applications, 1st edn. Woodhead Publishing Ltd, Cambridge

  4. Fernández-Jiménez A, Palomo A (2005) Cem Concr Res 35:1984

    Article  Google Scholar 

  5. Hardjito D, Rangan BV (2005) Research report gc 1. Faculty of Engineering, Curtin University of Technology, Perth

  6. Wallah SE, Rangan BV (2006) Research Report GC 2. Curtin University of Technology, Perth

  7. Kovalchuk G, Fernandez-Jimenez A, Palomo A (2007) Fuel 86(3):315

    Article  CAS  Google Scholar 

  8. Škvára F, Kopecký L, Šmilauer V, Bittnar Z (2009) J Hazard Mater 168:711

    Article  Google Scholar 

  9. Davidovits J (2001) In: Metha PK (ed) Concrete technology, past, present and future, Proceedings of V. Mohan Malhotra Symposium, ACI, p 383

  10. van Jaarsveld JGS, van Deventer JSJ, Lorenzen L (1997) Miner Eng 10(7):659

    Article  Google Scholar 

  11. Criado M, Fernández-Jiménez A, Palomo A (2010) Fuel 89(11):3185

    Article  CAS  Google Scholar 

  12. Fernández-Jiménez A, Palomo A, Criado M (2004) Cem Concr Res 35:1204

    Article  Google Scholar 

  13. Chen C, Gong W, Lutze W, Pegg I, Zhai J (2011) J Mater Sci 46(3):590. doi:https://doi.org/10.1007/s10853-010-4997-z

    Article  CAS  Google Scholar 

  14. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309

    Article  CAS  Google Scholar 

  15. Powers TC, Brownyards TL (1948) Studies of physical properties of hardened portland cement paste. Bulletin 22, Research Laboratories of the Portland Cement Association, Chicago

  16. Bernard O, Ulm FJ, Lemarchand E (2003) Cem Concr Res 33(9):1293

    Article  CAS  Google Scholar 

  17. Šmilauer V, Bittnar Z (2006) Cem Concr Res 36(9):1708

    Article  Google Scholar 

  18. Pichler C, Lackner R, Mang HA (2007) Eng Fract Mech 74:34

    Article  Google Scholar 

  19. Grassl P, Jirásek M (2010) Int J Solids Struct 47(7–8):957

    Article  Google Scholar 

  20. Šejnoha M, Zeman J (2008) Int J Eng Sci 46(6):513; special Issue: Micromechanics of Materials. doi:https://doi.org/10.1016/j.ijengsci.2008.01.006

    Article  Google Scholar 

  21. Němeček J, Šmilauer V, Kopecký L (2011) Cem Concr Compos 33(2):163

    Article  Google Scholar 

  22. Perera D, Uchida O, Vance E, Finnie K (2007) J Mater Sci 42(9):3099. doi:https://doi.org/10.1007/s10853-006-0533-6

    Article  CAS  Google Scholar 

  23. Zaoui A (2002) J Eng Mech 128(8):808

    Article  Google Scholar 

  24. Mori T, Tanaka K (1973) Acta Metall 21(5):1605

    Article  Google Scholar 

  25. Hill R (1965) J Mech Phys Solids 13:189

    Article  Google Scholar 

  26. Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323

    Article  CAS  Google Scholar 

  27. Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2318

    Article  CAS  Google Scholar 

  28. Rodríguez E, de Gutiérrez RM, Bernal S, Gordillo M (2009) Rev Fac Ing 49:30

    Google Scholar 

  29. Strnad T (2011) PhD thesis, Faculty of Civil Engineering, Czech Technical University (in Czech)

  30. Rahier H, Denayer JF, van Mele B (2003) J Mater Sci 38:3131. doi:https://doi.org/10.1023/A:1024733431657

    Article  CAS  Google Scholar 

  31. Powers TC (1958) J Am Ceram Soc 41(1):1

    Article  CAS  Google Scholar 

  32. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47

    Article  CAS  Google Scholar 

  33. Scherer GW (1999) Cem Concr Res 29(8):1149

    Article  CAS  Google Scholar 

  34. Constantinides G, Ulm FJ (2007) J Mech Phys Solids 55:64

    Article  CAS  Google Scholar 

  35. Jennings HM (2008) Cem Concr Res 38(3):275

    Article  CAS  Google Scholar 

  36. Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P (2010) Mater Des 31(10):4748

    Article  CAS  Google Scholar 

  37. Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Mater Sci Eng A 325(1–2):333

    Article  Google Scholar 

  38. van Deventer J, Provis J, Duxson P, Lukey G (2007) J Hazard Mater 139(3):506

    Article  Google Scholar 

  39. Neubauer CM, Jennings HM, Garboczi EJ (1997) Cem Concr Res 27(10):1603

    Article  CAS  Google Scholar 

  40. Neville AM (1997) Properties of concrete. Wiley, New York

    Google Scholar 

  41. Šmilauer V (2011) Multiscale hierarchical modeling of hydrating concrete. Saxe-Coburg Publications, Stirling

    Google Scholar 

  42. Chen C, Gong W, Lutze W, Pegg I (2011) J Mater Sci 46(9):3073. doi:https://doi.org/10.1007/s10853-010-5186-9

    Article  CAS  Google Scholar 

  43. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) Colloids Surf A 292(1):8

    Article  CAS  Google Scholar 

  44. Kirschner AV, Harmuth H (2004) Ceram-Silik 48(3):117

    CAS  Google Scholar 

  45. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2(4):309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Czech Science Foundation under the grant GAP104/10/2344, GA103/09/1748 and MSM 6046137302. M. Vokáč from Klokner Institute, CTU in Prague is greatly acknowledged for conducting precise measurements of elastic moduli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Šmilauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šmilauer, V., Hlaváček, P., Škvára, F. et al. Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J Mater Sci 46, 6545–6555 (2011). https://doi.org/10.1007/s10853-011-5601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5601-x

Keywords

Navigation