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Abstract In this review article, the state-of-the-art of

calcium orthophosphate-based biocomposites and hybrid

biomaterials suitable for biomedical applications is pre-

sented. This subject belongs to a rapidly expanding area of

science and research, because these types of biomaterials

offer many significant and exciting possibilities for hard

tissue regeneration. Through the successful combinations

of the desired properties of matrix materials with those of

fillers (in such systems, calcium orthophosphates might

play either role), innovative bone graft biomaterials can be

designed. The review starts with an introduction to locate

the reader. Further, general information on composites and

hybrid materials including a brief description of their major

constituents are presented. Various types of calcium

orthophosphate-based bone-analogue biocomposites and

hybrid biomaterials those are either already in use or being

investigated for various biomedical applications are then

extensively discussed. Many different formulations in

terms of the material constituents, fabrication technologies,

structural and bioactive properties, as well as both in vitro

and in vivo characteristics have been already proposed.

Among the others, the nano-structurally controlled bio-

composites, those with nanosized calcium orthophosphates,

biomimetically fabricated formulations with collagen,

chitin and/or gelatin, as well as various functionally graded

structures seem to be the most promising candidates for

clinical applications. The specific advantages of using

calcium orthophosphate-based biocomposites and hybrid

biomaterials in the selected applications are highlighted.

As the way from a laboratory to a hospital is a long one and

the prospective biomedical candidates have to meet many

different necessities, the review also examines the critical

issues and scientific challenges that require further research

and development.

Abbreviations

EVOH Ethylene-vinyl alcohol copolymer

IBS Injectable bone substitute

HDPE High-density polyethylene

HPMC Hydroxypropylmethylcellulose

PAA Polyacrylic acid

PBT Polybutyleneterephthalate

PCL Poly(e-caprolactone)

PDLLA Poly-DL-lactic acid

PEEK Polyetheretherketone

PEG Polyethylene glycol

PGA Polyglycolic acid

PHB Polyhydroxybutyrate

PHBHV Poly(hydroxybutyrate-co-hydroxyvalerate)

PHEMA Polyhydroxyethyl methacrylate

PHV Polyhydroxyvalerate

PLA Polylactic acid

PLGA Poly(lactic-co-glycolic) acid

PLLA Poly(L-lactic acid)

PMMA Polymethylmethacrylate

PPF Poly(propylene-co-fumarate)

PS Polysulfone

PSZ Partially stabilized zirconia

PTFE Polytetrafluoroethylene

PVA Polyvinyl alcohol

PVAP Polyvinyl alcohol phosphate

SEVA Starch/ethylene vinyl alcohol copolymer
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Introduction

The fracture of bones due to various traumas or natural

aging is a typical type of a tissue failure. An operative

treatment frequently requires implantation of a temporary

or a permanent prosthesis, which still is a challenge for

orthopedic surgeons, especially in the cases of large bone

defects. A fast aging of the population and serious draw-

backs of natural bone grafts make the situation even worse;

therefore, there is a high clinical demand for bone substi-

tutes. Unfortunately, a medical application of xenografts

(e.g., bovine bone) is generally associated with potential

viral infections. In addition, xenografts have a low oste-

ogenicity, an increased immunogenicity and, usually,

resorb more rapidly than autogenous bone. Similar limi-

tations are also valid for human allografts (i.e., tissue

transplantation between individuals of the same species but

of non-identical genetic composition), where the concerns

about potential risks of transmitting tumor cells, a variety

of bacterial and viral infections, as well as immunological

and blood group incompatibility are even stronger [1–3].

Moreover, harvesting and conservation of allografts

(exogenous bones) are additional limiting factors. Auto-

grafts (endogenous bones) are still the ‘‘golden standard’’

among any substitution materials because they are osteo-

genic, osteoinductive, osteoconductive, completely

biocompatible, non-toxic, and do not cause any immuno-

logical problems (non-allergic). They contain viable

osteogenic cells, bone matrix proteins, and support bone

growth. Usually, autografts are well accepted by the body

and rapidly integrated into the surrounding bone tissues.

Due to these reasons, they are used routinely for a long

period with good clinical results [3, 4]; however, it is fair to

say on complication cases, those frequently happened in

the past [5, 6]. Unfortunately, a limited number of donor

sites restrict the quantity of autografts harvested from the

iliac crest or other locations of the patient’s own body.

Also, their medical application is always associated with

additional traumas and scars resulting from the extraction

of a donor tissue during a superfluous surgical operation,

which requires further healing at the donation site and can

involve long-term postoperative pain [1, 6–9]. Thus, any

types of a biologically derived transplant appear to be

imperfect solutions, mainly due to a restricted quantity of

donor tissues, donor site morbidity, as well as potential

risks of an immunological incompatibility and disease

transfer [7, 9, 10]. In this light, man-made materials

(alloplastic or synthetic bone grafts) stand out as a rea-

sonable option because they are easily available, might

be processed and modified to suit the specific needs of

a given application [11, 12]. What’s more, there are

no concerns about potential infections, immunological

incompatibility, sterility, and donor site morbidity.

Therefore, investigations on artificial materials for bone

tissue repair appear to be one of the key subjects in the field

of biomaterials research for clinical applications [13].

Currently, there are several classes of synthetic bone

grafting biomaterials for in vivo applications [14–17]. The

examples include natural coral, coral-derived materials,

bovine porous demineralized bone, human demineralized

bone matrix, bioactive glasses, glass–ceramics, and cal-

cium orthophosphates [9]. All of these biomaterials are

biocompatible and osteoconductive, guiding bone tissue

from the edges toward the center of the defect, and aim to

provide a scaffold of interconnected pores with pore

dimensions ranging from 200 [18, 19] to 2 mm [20], to

facilitate tissue and vessel ingrowths. Among them, porous

bioceramics made of calcium orthophosphates appear to be

very prominent due to both the excellent biocompatibility

and bonding ability to living bone in the body. This is

directly related to the fact that the inorganic material of

mammalian calcified tissues, i.e., of bone and teeth, con-

sists of calcium orthophosphates [21–23]. Due to this

reason, other artificial materials are normally encapsulated

by fibrous tissue, when implanted in body defects, while

calcium orthophosphates are not [24]. Several types of

calcium orthophosphate-based bioceramics with different

chemical composition are already on the market [9, 25].

Unfortunately, as for any ceramic material, calcium

orthophosphate bioceramics by itself lack the mechanical

and elastic properties of the calcified tissues; namely,

scaffolds made of calcium orthophosphates only suffer

from a low elasticity, a high brittleness, a poor tensile

strength, a low mechanical reliability, and fracture tough-

ness, which leads to the concerns about their mechanical

performance after implantation [26–28]. Besides, in many

cases, it is difficult to form calcium orthophosphate

bioceramics into the desired shapes.

The superior strength and partial elasticity of biological

calcified tissues (e.g., bones) are due to the presence of

bioorganic polymers (mainly, collagen type I fibers1) rather

than to a natural ceramic (mainly, a poorly crystalline ion-

substituted calcium-deficient hydroxyapatite, often referred

to as ‘‘biological apatite’’) phase [30, 31]. The elastic

collagen fibers are aligned in bone along the main stress

directions. The biochemical composition of bone is given

in Table 1 [32]. A decalcified bone becomes very flexible

being easily twisted, whereas a bone without collagen is

very brittle; thus, the inorganic nanocrystals of biological

apatite provide with the hardness and stiffness, whereas the

bioorganic fibers are responsible for the elasticity and

1 One molecule of collagen type I is a triple helix with 338 repetitions

of amino acid residues and is about 300 nm in length [29].

Additionally, bone contains small quantities of other bioorganic

materials, such as proteins, polysaccharides, and lipids, as well as

bone contains cells and blood vessels.
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toughness [22, 33]. In bones, both types of materials inte-

grate each other into a nanometric scale in such a way that

the crystallite size, fibers orientation, short-range order

between the components, etc. determine its nanostructure

and therefore the function and mechanical properties of the

entire composite [29, 34–38]. From the mechanical point of

view, bone is a tough material at low strain rates but

fractures more like a brittle material at high strain rates;

generally, it is rather weak in tension and shear, particu-

larly along the longitudinal plane. Besides, bone is an

anisotropic material because its properties are directionally

dependent [21, 22, 28].

It remains a great challenge to design the ideal bone

graft that emulates nature’s own structures or functions.

Certainly, the successful design requires an appreciation of

the structure of bone. According to expectations, the ideal

bone graft should be benign, available in a variety of forms

and sizes; all with sufficient mechanical properties for use

in load-bearing sites form a chemical bond at the bone/

implant interface, as well as be osteogenic, osteoinductive,

osteoconductive, biocompatible, completely biodegradable

at the expense of bone growth and moldable to fill and

restore bone defects [26, 36, 39]. Further, it should

resemble the chemical composition of bones (thus, the

presence of calcium orthophosphates is mandatory), exhibit

contiguous porosity to encourage invasion by the live host

tissue, as well as possess both viscoelastic and semi-brittle

behavior, as bones do [40–43]. Moreover, the degradation

kinetics of the ideal implant should be adjusted to the

healing rate of the human tissue with absence of any

chemical or biological irritation and/or toxicity caused by

substances, which are released due to corrosion or degra-

dation. Ideally, the combined mechanical strength of the

implant and the ingrowing bone should remain constant

throughout the regenerative process. Furthermore, the

substitution implant material should not disturb signifi-

cantly the stress environment of the surrounding living

tissue [44]. Finally, there is an opinion, that in the case of a

serious trauma, bone should fracture rather than the implant

[26]. A good sterilizability, storability, and processability,

as well as a relatively low cost are also of a great impor-

tance to permit a clinical application. Unfortunately, no

artificial biomaterial is yet available, which embodies all

these requirements and unlikely it will appear in the nearest

future. Until now, most of the available biomaterials appear

to be either predominantly osteogenic or osteoinductive or

else purely osteoconductive [2].

Careful consideration of the bone type and mechanical

properties are needed to design bone substitutes. Indeed, in

high load-bearing bones such as the femur, the stiffness of

the implant needs to be adequate, not too stiff to result in

strain shielding, but rigid enough to present stability.

However, in relatively low load-bearing applications such

as cranial bone repairs, it is more important to have sta-

bility and the correct three-dimensional shapes for esthetic

reasons. One of the most promising alternatives is to apply

materials with similar composition and nanostructure to

that of bone tissue [36]. Mimicking the structure of calci-

fied tissues and addressing the limitations of the individual

materials, development of organic–inorganic hybrid bio-

materials provides excellent possibilities for improving the

conventional bone implants. In this sense, suitable bio-

composites of tailored physical, biological, and mechanical

properties with the predictable degradation behavior can

be prepared by combining biologically relevant calcium

orthophosphates with bioresorbable polymers [45, 46]. As

a rule, the general behavior of these bioorganic/calcium

orthophosphate composites is dependent on nature, struc-

ture, and relative contents of the constitutive components,

although other parameters such as the preparation condi-

tions also determine the properties of the final materials.

Currently, biocomposites with calcium orthophosphates

incorporated as either a filler or a coating (or both) either

into or onto a biodegradable polymer matrix, in the form of

particles or fibers, are increasingly considered for using as

bone tissue engineering scaffolds due to their improved

physical, biological, and mechanical properties [47–53].

In addition, such biocomposites could fulfill general

Table 1 The biochemical

composition of bone [32]

The composition is varied from

species to species and from

bone to bone

Inorganic phases wt% Bioorganic phases wt%

Calcium orthophosphates

(biological apatite)

*60 Collagen type I *20

Water *9 Non-collagenous proteins: osteocalcin, osteonectin,

osteopontin, thrombospondin, morphogenetic

proteins, sialoprotein, serum proteins

*3

Carbonates *4 Other traces: polysaccharides, lipids, cytokines Balance

Citrates *0.9 Primary bone cells: osteoblasts, osteocytes, osteoclasts Balance

Sodium *0.7

Magnesium *0.5

Other traces: Cl-, F-, K?

Sr2?, Pb2?, Zn2?, Cu2?,

Fe2?

Balance
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requirements to the next generation of biomaterials, those

should combine the bioactive and bioresorbable properties

to activate in vivo mechanisms of tissue regeneration,

stimulating the body to heal itself and leading to the

replacement of the implants by the regenerating tissue [46,

54, 55]. Thus, through the successful combinations of

ductile polymer matrixes with hard and bioactive particu-

late bioceramic fillers, optimal materials can be designed

and, ideally, this approach could lead to a superior con-

struction to be used as either implants or posterior dental

restorative material [56].

A lint-reinforced plaster was the first composite used in

clinical orthopedics as an external immobilizer (bandage)

in the treatment of bone fracture by Mathijsen in 1852 [57],

followed by Dreesman in 1892 [58]. A great progress in the

clinical application of various types of composite materials

has been achieved since then. Based on the previous

experience and newly gained knowledge, various com-

posite materials with tailored mechanical and biological

performance can be manufactured and used to meet various

clinical requirements [59]. However, this review presents

only a brief history and advances in the field of calcium

orthophosphate-based biocomposites and hybrid biomate-

rials suitable for biomedical application. The majority of

the reviewed literature is restricted to the recent publica-

tions; a limited number of papers published in the 20th

century have been cited. Various aspects of the material

constituents, fabrication technologies, structural and bio-

active properties, and phase interaction have been

considered and discussed in details. Finally, several critical

issues and scientific challenges that are needed for further

advancement are outlined.

General information on composites and biocomposites

According to Wikipedia, the free encyclopedia, ‘‘composite

materials (or composites for short) are engineered materials

made from two or more constituent materials with signif-

icantly different physical or chemical properties and which

remain separate and distinct on a macroscopic level within

the finished structure’’ [60]. Thus, composites are always

heterogeneous. Following the point of view of some pre-

decessors, we also consider that ‘‘for the purpose of this

review, composites are defined as those having a distinct

phase distributed through their bulk, as opposed to modular

or coated components’’ [61, p. 1329]. For this reason, with

a few important exceptions, the structures obtained by

soaking of various materials in supersaturated solutions

containing ions of calcium and orthophosphate (e.g., Refs.

[62–67]), those obtained by coating of various materials by

calcium orthophosphates (e.g., Refs. [68–73]), as well as

calcium orthophosphates coated by other compounds [74]

have not been considered; however, composite coatings

have been considered. Occasionally, porous calcium

orthophosphate scaffolds filled by cells inside the pores

[75, 76], as well as calcium orthophosphates impregnated

by biologically active substances [77] are also defined as

composites; nevertheless, such structures have not been

considered in this review either.

In any composite, there are two major categories of

constituent materials: a matrix (or a continuous phase) and

(a) dispersed phase(s). In order to create a composite, at

least one portion of each type is required. General infor-

mation on the major fabrication and processing techniques

might be found elsewhere [61]. The continuous phase is

responsible for filling the volume, as well as it surrounds,

and supports the dispersed material(s) by maintaining their

relative positions. The dispersed phase(s) is(are) usually

responsible for enhancing one or more properties of the

matrix. Most of the composites target an enhancement

of mechanical properties of the matrix, such as stiffness

and strength; however, other properties, such as erosion

stability, transport properties (electrical or thermal), radi-

opacity, density, or biocompatibility, might also be of a

great interest. This synergism produces the properties,

which are unavailable from the individual constituent

materials [78]. What’s more, by controlling the volume

fractions and local and global arrangement of the dispersed

phase, the properties and design of composites can be

varied and tailored to suit the necessary conditions. For

example, in the case of ceramics, the dispersed phase

serves to impede crack growth. In this case, it acts as

reinforcement. A number of methods, including deflecting

crack tips, forming bridges across crack faces, absorbing

energy during pullout and causing a redistribution of

stresses in regions adjacent to crack tips, can be used to

accomplish this [79]. Other factors to be considered in

composites are the volume fraction of (a) dispersed pha-

se(s), its(their) orientation and homogeneity of the overall

composite. For example, higher volume fractions of rein-

forcement phases tend to improve the mechanical

properties of the composites, while continuous and aligned

fibers best prevent crack propagation with the added

property of anisotropic behavior. Furthermore, the uniform

distribution of the dispersed phase is also desirable, as it

imparts consistent properties to the composite [60, 78].

In general, composites might be simple, complex, gra-

ded, and hierarchical. The term ‘‘a simple composite’’ is

referred to the composites those result from the homoge-

neous dispersion of one dispersed phase throughout a

matrix. The term ‘‘a complex composite’’ is referred to the

composites those result from the homogeneous dispersion

of several dispersed phases throughout one matrix.

The term ‘‘a graded composite’’ is referred to the com-

posites those result from the intentionally structurally
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inhomogeneous dispersion of one or several dispersed

phases throughout one matrix. The term ‘‘a hierarchical

composite’’ is referred to the cases, when fine entities of

either a simple or a complex composite is somehow

aggregated to form coarser ones (e.g., granules or particles)

which afterwards are dispersed inside another matrix to

produce the second hierarchical scale of the composite

structure. Another classification type of the available

composites is based on either the matrix materials (metals,

ceramics and polymers) or the reinforcement dimensions/

shapes (particulates, whiskers/short fibers, and continuous

fibers) [59].

In most cases, three interdependent factors must be

considered in designing of any composite: (i) selection of

the suitable matrix and dispersed materials, (ii) choice of

appropriate fabrication and processing methods, (iii)

internal and external designs of the device itself [61].

Besides, any composite must be formed to shape. To do

this, the matrix material can be added before or after the

dispersed material has been placed into a mold cavity or

onto the mold surface. The matrix material experiences a

melding event, depending upon the nature of the matrix

material, that can occur in various ways such as chemical

polymerization, setting, curing, or solidification from a

melted state. Due to a general inhomogeneity, the physical

properties of many composite materials are not isotropic,

but rather orthotropic (i.e., there are different properties or

strengths in different orthogonal directions) [60, 78].

Biocomposites are defined as the composites able to

interact well with the human body in vivo and, ideally,

contain one or more component that stimulates the healing

process and uptake of the implant. Thus, for biocomposites

the biological compatibility appears to be more important

than any other type of compatibility [59]. The most com-

mon properties from the bioorganic and inorganic domains

to be combined in biocomposites have been summarized in

Table 2 [36]. In 1990, Williams summarized the major

types of biocomposites that were used in orthopedic

applications that time [80]. In 2003, Wang published an

excellent update [81]. For general advantages of the

modern calcium orthophosphate-based biocomposites over

calcium orthophosphate bioceramics and bioresorbable

polymers individually, the interested readers are advised to

get through ‘‘Composite materials strategy’’ chapter of Ref.

[46].

The major constituent materials of biocomposites

for biomedical applications

Calcium orthophosphates

The main driving force behind the use of calcium ortho-

phosphates as bone substitute materials is their chemical

similarity to the mineral component of mammalian bones

and teeth [21–23]. As a result, in addition to being non-

toxic, they are biocompatible, not recognized as foreign

materials in the body and, most importantly, both exhibit

bioactive behavior and integrate into living tissue by the

same processes active in remodeling healthy bone. This

leads to an intimate physicochemical bond between the

implants and bone, termed osteointegration [81]. More to

the point, calcium orthophosphates are also known to

support osteoblast adhesion and proliferation [82, 83].

Even so, the major limitations to use calcium orthophos-

phates as load-bearing biomaterials are their mechanical

properties; namely, they are brittle with poor fatigue

resistance [26–28]. The poor mechanical behavior is even

more evident for highly porous ceramics and scaffolds

because porosity[100 lm is considered as the requirement

for proper vascularization and bone cell colonization [84–

86], i.e., why, in biomedical applications calcium ortho-

phosphates are used primarily as fillers and coatings [23].

The complete list of known calcium orthophosphates,

including their standard abbreviations and the major

properties, is given in Table 3, while the detailed infor-

mation on calcium orthophosphates, their synthesis,

structure, chemistry, other properties, and biomedical

application have been comprehensively reviewed recently

[23], where the interested readers are referred to. Even

thorough more information might be found in various

books and monographs [87–93].

Polymers

Polymers are a class of materials consisting of large mol-

ecules, often containing many thousands of small units, or

monomers, joined together chemically to form one giant

chain, thus creating very ductile materials. In this respect,

polymers are comparable with major functional compo-

nents of the biological environment: lipids, proteins,

and polysaccharides. They differ from each other in

chemical composition, molecular weight, polydispersity,

Table 2 General respective properties from the bioorganic and

inorganic domains, to be combined in various composites and hybrid

materials [36]

Inorganic Bioorganic

Hardness, brittleness Elasticity, plasticity

High density Low density

Thermal stability Permeability

Hydrophilicity Hydrophobicity

High refractive index Selective complexation

Mixed valence slate (red-ox) Chemical reactivity

Strength Bioactivity
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crystallinity, hydrophobicity, solubility, and thermal tran-

sitions. Besides, their properties can be fine-tuned over a

wide range by varying the type of polymer, chain length, as

well as by copolymerization or blending of two or more

polymers [94, 95]. Opposite to ceramics, polymers exhibit

substantial viscoelastic properties and can easily be fabri-

cated into complex structures, such as sponge-like sheets,

gels, or complex structures with intricate porous networks

and channels [96]. X-ray transparent and non-magnetic

polymeric materials are fully compatible with the modern

diagnostic methods such as computed tomography and

magnetic resonance imaging. Unfortunately, most of them

are unable to meet the strict demands of the in vivo

physiological environment. Namely, the main requirements

to polymers suitable for biomedical applications are that

they must be biocompatible, not eliciting an excessive or

chronic inflammatory response upon implantation and, for

those that degrade, that they breakdown into non-toxic

products only. Unfortunately, polymers, for the most part,

lack rigidity, ductility, and ultimate mechanical properties

required in load-bearing applications. Moreover, the ster-

ilization processes (autoclave, ethylene oxide, and 60Co

irradiation) may affect the polymer properties [97].

There is a variety of biocompatible polymers suitable for

biomedical applications. For example, polyacrylates,

poly(acrylonitrile-co-vinylchloride) and polylysine have

been investigated for cell encapsulation and immunoiso-

lation [98, 99]. Polyorthoesters and poly(e-caprolactone)

(PCL) have been investigated as drug-delivery devices, the

latter for long-term sustained release because of their slow

degradation rates [100]. PCL is a hydrolytic polyester

having appropriate resorption period and releases non-toxic

byproducts upon degradation [101]. Other polyesters and

polytetrafluoroethylene (PTFE) are used for vascular tissue

replacement. Polyurethanes are in use as coatings for

pacemaker lead insulation and have been investigated for

reconstruction of the meniscus [102, 103]. Polymers con-

sidered for orthopedic purposes include polyanhydrides,

which have also been investigated as delivery devices (due

to their rapid and well-defined surface erosion), for bone

Table 3 Existing calcium orthophosphates and their major properties

Ca/P ionic

ratio

Compound Chemical formula Solubility

at 25 �C,

-log(Ks)

Solubility at 37 �C,

-log(Ks)

pH stability range

in aqueous

solutions at 25 �C

0.5 Monocalcium phosphate

monohydrate (MCPM)

Ca(H2PO4)2 � H2O 1.14 Data not found 0.0–2.0

0.5 Monocalcium phosphate

anhydrous (MCPA)

Ca(H2PO4)2 1.14 Data not found a

1.0 Dicalcium phosphate dihydrate

(DCPD), mineral brushite

CaHPO4 � 2H2O 6.59 6.63 2.0–6.0

1.0 Dicalcium phosphate anhydrous

(DCPA), mineral monetite

CaHPO4 6.90 7.02 a

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4 � 5H2O 96.6 95.9 5.5–7.0

1.5 a-Tricalcium phosphate (a-TCP) a-Ca3(PO4)2 25.5 25.5 b

1.5 b-Tricalcium phosphate (b-TCP) b-Ca3(PO4)2 28.9 29.5 b

1.2–2.2 Amorphous calcium phosphate

(ACP)

CaxHy(PO4)z � nH2O,

n = 3–4.5; 15–20% H2O

c c *5–12d

1.5–1.67 Calcium-deficient hydroxyapatite

(CDHA)e
Ca10-x(HPO4)x

(PO4)6-x(OH)2-x
f (0 \ x \ 1)

*85.1 *85.1 6.5–9.5

1.67 Hydroxyapatite (HA) Ca10(PO4)6(OH)2 116.8 117.2 9.5–12

1.67 Fluorapatite (FA) Ca10(PO4)6F2 120.0 119.2 7–12

2.0 Tetracalcium phosphate (TTCP),

mineral hilgenstockite

Ca4(PO4)2O 38–44 37–42 b

The solubility is given as the logarithm of the ion product of the given formulae (excluding hydrate water) with concentrations in mol/L [23]
a Stable at temperatures above 100 �C
b These compounds cannot be precipitated from aqueous solutions
c Cannot be measured precisely. However, the following values were found: 25.7 ± 0.1 (pH = 7.40), 29.9 ± 0.1 (pH = 6.00), 32.7 ± 0.1

(pH = 5.28)
d Always metastable
e Occasionally, CDHA is named as precipitated HA
f In the case x = 1 (the boundary condition with Ca/P = 1.5), the chemical formula of CDHA looks as follows: Ca9(HPO4)(PO4)5(OH)
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augmentation or replacement since they can be photopo-

lymerized in situ [100, 104, 105]. To overcome their poor

mechanical properties, they have been copolymerized with

imides or formulated to be crosslinkable in situ [105].

Other polymers, such as polyphosphazenes, can have their

properties (e.g., degradation rate) easily modified by

varying the nature of their side groups and have been

shown to support osteoblast adhesion, which makes them

candidate materials for skeletal tissue regeneration [105].

PPF has emerged as a good bone replacement material,

exhibiting good mechanical properties (comparable to

trabecular bone), possessing the capability to crosslink in

vivo through the C=C bond and being hydrolytically

degradable. It has also been examined as a material for

drug-delivery devices [100, 104–107]. Polycarbonates have

been suggested as suitable materials to make scaffolds for

bone replacement and have been modified with tyrosine-

derived amino acids to render them biodegradable [100].

Polydioxanone has been also tested for biomedical appli-

cations [108]. Polymethylmethacrylate (PMMA) is widely

used in orthopedics, as a bone cement for implant fixation,

as well as to repair certain fractures and bone defects, for

example, osteoporotic vertebral bodies [109]. However,

PMMA sets by a polymerization of toxic monomers, which

also evolves significant amounts of heat that damages tis-

sues. Moreover, it is neither degradable nor bioactive, it

does not bond chemically to bones and might generate

particulate debris leading to an inflammatory foreign body

response [104, 110]. A number of other non-degradable

polymers applied in orthopedic surgery include PE in its

different modifications such as low density PE, high-den-

sity polyethylene (HDPE), and Ultrahigh molecular weight

polyethylene (used as the articular surface of total hip

replacement implants [111, 112]), polyethylene tereptha-

late, polypropylene, and PTFE, which are applied to repair

knee ligaments [113]. PolyactiveTM, a block copolymer of

polyethylene glycol (PEG) and polybutyleneterephthalate

(PBT), was also considered for biomedical application

[114–118]. Cellulose [119] and its esters [120] are also

popular. Finally yet importantly, polyethylene oxide,

polyhydroxybutyrate (PHB), and blends thereof have also

been tested for biomedical applications [46].

Nonetheless, the most popular synthetic polymers used

in medicine are the linear aliphatic poly(a-hydroxyesters)

such as PLA, polyglycolic acid (PGA) and their copoly-

mers—poly(lactic-co-glycolic) acid (PLGA) (Table 4).

These materials have been extensively studied; they appear

to be the only synthetic and biodegradable polymers with

an extensive FDA approval history [46, 105, 121–125].

They are biocompatible, mostly non-inflammatory, as well

as degrade in vivo through hydrolysis and possible enzy-

matic action into products that are removed from the body

by regular metabolic pathways [45, 100, 105, 125–130].

Besides, they might be used for drug-delivery purposes

[131]. Poly(a-hydroxyesters) have been investigated as

scaffolds for replacement and regeneration of a variety of

tissues, cell carriers, controlled delivery devices for drugs

or proteins (e.g., growth factors), membranes or films,

screws, pins, and plates for orthopedic applications [100,

103, 105, 122, 125, 132–134]. Additionally, the degrada-

tion rate of PLGA can be adjusted by varying the amounts

of the two component monomers (Table 4), which in

orthopedic applications can be exploited to create materials

that degrade in concert with bone ingrowth [129, 135].

Furthermore, PLGA is known to support osteoblast

migration and proliferation [55, 105, 126, 136], which is a

necessity for bone tissue regeneration. Unfortunately, such

polymers on their own, though they reduce the effect of

stress-shielding, are too weak to be used in load-bearing

situations and are only recommended in certain clinical

indications, such as ankle and elbow fractures [125, 130].

In addition, they exhibit bulk degradation, leading to both a

loss in mechanical properties and lowering of the local

solution pH that accelerates further degradation in an

Table 4 Major properties of several FDA approved biodegradable polymers [121]

Polymer Thermal propertiesa (�C) Tensile

modulus (GPa)

Degradation

time (months)

Polyglycolic acid (PGA) tg = 35–40, tm = 225–230 7.06 6–12 (strength loss

within 3 weeks)

L-polylactic acid (LPLA) tg = 60–65, tm = 173–178 2.7 [24

D,L-polylactic acid (DLPLA) tg = 55–60 amorphous 1.9 12–16

85/15 D,L-polylactic-co-glycolic acid (85/15 DLPLGA) tg = 50–55 amorphous 2.0 5–6

75/25 D,L-polylactic-co-glycolic acid (75/25 DLPLGA) tg = 50–55 amorphous 2.0 4–5

65/35 D,L-polylactic-co-glycolic acid (65/35 DLPLGA) tg = 45–50 amorphous 2.0 3–4

50/50 D,L-polylactic-co-glycolic acid (50/50 DLPLGA) tg = 45–50 amorphous 2.0 1–2

PCL tg = (–60)–(–65), tm = 58–63 0.4 [24

a tg glass transition temperature, tm melting point
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autocatalytic manner. As the body is unable to cope with

the vast amounts of implant degradation products, this

might lead to an inflammatory foreign body response [105,

125, 132]. Finally, poly(a-hydroxyesters) do not possess

the bioactive and osteoconductive properties of calcium

orthophosphates [122, 137].

Several classifications of the biomedically relevant

polymers are possible. For example, some authors distin-

guish between synthetic polymers like PLA and PGA or

their copolymers with PCL, and polymers of biological

origin like polysaccharides (starch, alginate, chitin/chito-

san2 [138–140], gelatin, cellulose, hyaluronic acid

derivatives), proteins (soy, collagen, fibrin [9], silk), and a

variety of biofibers, such as lignocellulosic natural fibers

[8, 141, 142]. Other authors differentiate between resorb-

able or biodegradable (e.g., poly(a-hydroxyesters), polysac-

charides and proteins) and non-resorbable (e.g., PE,

PMMA, and cellulose) polymers [56, 142]. As synthetic

polymers can be produced under the controlled conditions,

they in general exhibit predictable and reproducible

mechanical and physical properties such as tensile strength,

elastic modulus, and degradation rate. Control of impurities

is a further advantage of synthetic polymers. The list of

synthetic biodegradable polymers used for biomedical

application as scaffold materials is available as Table 1 in

Ref. [142], while further details on polymers suitable for

biomedical applications are available in the literatures

[97, 134, 143–151] where the interested readers are referred.

Good reviews on the synthesis of different biodegradable

polymers [152], as well as on the experimental trends in

polymer nanocomposites [153] are available elsewhere.

Inorganic materials and compounds (metals, ceramics,

glass, oxides, carbon, etc.)

Titanium (Ti) is one of the best biocompatible metals and

used most widely as implant [13, 154]. Besides, there are

other metallic implants made of pure Zr, Hf, V, Nb, Ta, Re

[154], Ni, Fe, Cu [155–157], Ag, stainless steels, and

various alloys [157] suitable for biomedical application.

Recent studies revealed even a greater biomedical potential

of porous metals [158–160]. The metallic implants provide

the necessary strength and toughness that are required in

load-bearing parts of the body and, due to these advanta-

ges, metals will continue to play an important role as

orthopedic biomaterials in the future, even though there are

concerns with regard to the release of certain ions from and

corrosion products of metallic implants. Of course, neither

metals nor alloys are biomimetic3 in terms of chemical

composition because there are no elemental metals in the

human body. In addition, even biocompatible metals are

bioinert: while not rejected by the human body, any

metallic implants cannot actively interact with the sur-

rounding tissues. Nevertheless, in some cases (especially

when they are coated by calcium orthophosphates; how-

ever, that is another story) the metallic implants can show a

reasonable biocompatibility [162]. Only permanent

implants are made of metals and alloys, in which degra-

dation or corrosion is not desirable. However, during recent

years a number of magnesium alloys have been proposed,

which are aimed to degrade in the body in order to make

room for the ingrowing bone [160, 163].

Special types of glasses and glass ceramics are also

suitable materials for biomedical applications [164–166]

and a special Na2O–CaO–SiO2–P2O5 glass named Bio-

glass� [11, 24, 27, 28, 167, 168] is the most popular

among them. They are produced via standard glass pro-

duction techniques and require pure raw materials.

Bioglass� is a biocompatible and osteoconductive bio-

material. It bonds to bone without an intervening fibrous

connective tissue interface and, due to these properties, it

has been widely used for filling bone defects [169]. The

primary shortcoming of Bioglass� is mechanical weak-

ness and low fracture toughness due to an amorphous

two-dimensional glass network. The bending strength of

most Bioglass� compositions is in the range of 40 to

60 MPa, which is not suitable for major load-bearing

applications. Making porosity in Bioglass�-based scaf-

folds is beneficial for even better resorption and bio-

activity [170].

By heat treatment, a suitable glass can be converted into

glass–crystal composites containing crystalline phase(s) of

controlled sizes and contents. The resultant glass ceramics

can have superior mechanical properties to the parent glass

as well as to sintered crystalline ceramics. The bioactive

apatite–wollastonite (A-W) glass ceramics is made from

the parent glass in the pseudoternary system 3CaO � P2O5–

CaO � SiO2–MgO � CaO � 2SiO2, which is produced by a

conventional melt-quenching method. The bioactivity of

A-W glass ceramics is much higher than that of sintered

HA. It possesses excellent mechanical properties and has

therefore been used clinically for iliac and vertebrae

prostheses and as intervertebral spacers [13, 171, 172].

Metal oxide ceramics, such as alumina (Al2O3, high

purity, polycrystalline, fine grained), zirconia (ZrO2), and

some other oxides (e.g., TiO2), have been widely studied

due to their bioinertness, excellent tribological properties,

2 Chitosan is a biodegradable and semicrystalline polysaccharide

obtained from N-deacetylation of chitin, which is harvested from the

exoskeleton of marine crustaceans.

3 The term biomimetic can be defined as a processing technique that

either mimics or inspires the biological mechanism, in part or whole

[161].
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high wear resistance, fracture toughness and strength, as

well as a relatively low friction [13, 173]. Unfortunately,

due to transformation from the tetragonal to the monoclinic

phase, a volume change occurs when pure zirconia is

cooled down, which causes cracking of the zirconia

ceramics. Therefore, additives such as calcia (CaO), mag-

nesia (MgO), and yttria (Y2O3) must be mixed with

zirconia to stabilize the material in either the tetragonal or

the cubic phase. Such material is called PSZ [174–176].

However, the brittle nature of any ceramics has limited

their scope of clinical applications and hence more research

needs to be conducted to improve their properties.

Calcium orthophosphate-based biocomposites

and hybrid biomaterials

Generally, the use of calcium orthophosphate-based

biocomposites and hybrid biomaterials for clinical appli-

cations has included several (partly overlapping) broad

areas:

• biocomposites with polymers,

• cement-based biocomposites and concretes,

• nano-calcium orthophosphate-based biocomposites and

nanocomposites,

• biocomposites with collagen,

• biocomposites with other bioorganic compounds and

biological macromolecules,

• injectable bone substitutes (IBS),

• biocomposites with glasses, inorganic compounds, and

metals,

• functionally graded biocomposites,

• biosensors.

The details of each subject are given below.

Biocomposites with polymers

Typically, the polymeric components of biocomposites and

hybrid biomaterials comprise polymers that both have

shown a good biocompatibility and are routinely used in

surgical applications. In general, since polymers have a low

modulus (2–7 GPa, as the maximum) as compared with

that of bone (3–30 GPa), calcium orthophosphate bioce-

ramics need to be loaded at a high-weight-percent ratio.

Besides, general knowledge on composite mechanics sug-

gests that any high-aspect-ratio particles, such as whiskers

or fibers, significantly improve the modulus at a lower

loading [147]. Thus, some attempts have been already

performed to prepare biocomposites containing whisker-

like [177–180] or needle-like [181–183] calcium ortho-

phosphates, as well as calcium orthophosphate fibers [45,

184].

The history of implantable polymer–calcium ortho-

phosphate biocomposites and hybrid biomaterials started in

19814 from the pioneering study by Prof. William Bonfield

and colleagues performed on HA/PE composites [186,

187]. That initial study introduced a bone-analogue con-

cept, when proposed biocomposites comprised a polymer

ductile matrix of PE and a ceramic stiff phase of HA, and

was substantially extended and developed in further

investigations by that research group [94, 188–205]. More

recent studies included investigations on the influence of

surface topography of HA/PE composites on cell prolifer-

ation and attachment [206–212]. The material is composed

of a particular combination of HA particles at a volume

loading of *40% uniformly dispensed in a HDPE matrix.

The idea was to mimic bone by using a polymeric matrix

that can develop a considerable anisotropic character

through adequate orientation techniques reinforced with a

bone-like ceramics that assures both a mechanical rein-

forcement and a bioactive character of the composite.

Following FDA approval in 1994, in 1995 this material has

become commercially available under the trade name

HAPEXTM (Smith and Nephew, Richards, USA), and until

now remains the only clinically successful bioactive com-

posite that appeared to be a major step in the implant field

[28, 213]. The major production stages of HAPEXTM

include blending, compounding, and centrifugal milling. A

bulk material or device is then created from this powder by

compression and injection molding [59]. Besides, HA/

HDPE biocomposites might be prepared by a hot rolling

technique that facilitated uniform dispersion and blending

of the reinforcements in the matrix [214].

A mechanical interlock between the two phases of

HAPEXTM is formed by shrinkage of HDPE onto the HA

particles during cooling [94, 215]. Both HA particle size

and their distribution in the HDPE matrix were recognized

as important parameters affecting the mechanical behavior

of HAPEXTM [197]. Namely, smaller HA particles were

found to lead to stiffer composites due to general increas-

ing of interfaces between the polymer and the ceramics;

furthermore, rigidity of HAPEXTM was found to be pro-

portional to HA volume fraction [189]. In this formulation,

HA could be replaced by other calcium orthophosphates

[216].

Initial clinical applications of HAPEXTM came in orbital

reconstruction [217] but since 1995, the main uses of this

composite have been in the shafts of middle ear implants

for the treatment of conductive hearing loss [218, 219]. In

both applications, HAPEXTM offers the advantage of in

situ shaping, so a surgeon can make final alterations to

optimize the fit of the prosthesis to the bone of a patient

4 However, a more general topic ‘‘ceramic–plastic material as a bone

substitute’’ is, at least, 18 years older [185].
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and subsequent activity requires only limited mechanical

loading with virtually no risk of failure from insufficient

tensile strength [94, 167]. As compared with cortical bones,

HA/PE composites have a superior fracture toughness for

HA concentrations below 40% and similar fracture

toughness in the 45–50% range. Their Young’s modulus is

in the range of 1 to 8 GPa, which is quite close to that of

bone. The examination of the fracture surfaces revealed

that only mechanical bond occurs between HA and PE.

Unfortunately, the HA/PE composites are not biodegrad-

able, the available surface area of HA is low and the

presence of bioinert PE decreases the ability to bond to

bones. Furthermore, HAPEXTM has been designed with a

maximized density to increase its strength but the resulting

lack of porosity limits the ingrowth of osteoblasts when the

implant is placed into the body [26, 168]. Further details on

HAPEXTM are available elsewhere [94]. Except of HAP-

EXTM, other types of HA/PE biocomposites are also known

[220–224].

Both linear and branched PE was used as a matrix and

the biocomposites with the former were found to give a

higher modulus [221]. The reinforcing mechanisms in

calcium orthophosphate/polymer biocomposites have yet to

be convincingly disclosed. Generally, if a poor filler choice

is made, the polymeric matrix might be affected by the

filler through reduction of molecular weight during com-

posite processing, formation of an immobilized shell of

polymer around the particles (transcrystallization, surface-

induced crystallization, or epitaxial growth) and changes in

conformation of the polymer due to particle surfaces and

inter-particle spacing [94]. On the other hand, the rein-

forcing effect of calcium orthophosphate particles might

depend on the molding technique employed: a higher ori-

entation of the polymeric matrix was found to result in a

higher mechanical performance of the composite [225,

226].

Many other blends of calcium orthophosphates with

various polymers are possible, including rather unusual

formulations with dendrimers [227]. The list of the

appropriate calcium orthophosphates is shown in Table 3

(except of MCPM and MCPA—both are too acidic and,

therefore, are not biocompatible [23]), while many biom-

edically suitable polymers have been listed above. The

combination of calcium orthophosphates and polymers into

biocomposites has a twofold purpose. The desirable

mechanical properties of polymers compensate for a poor

mechanical behavior of calcium orthophosphate bioce-

ramics, while in turn the desirable bioactive properties of

calcium orthophosphates improve those of polymers,

expanding the possible uses of each material within the

body [127–129, 228–231]. Namely, polymers have been

added to calcium orthophosphates in order to improve

their mechanical strength [127, 228] and calcium

orthophosphate fillers have been blended with polymers to

improve their compressive strength and modulus, in addi-

tion to increase their osteoconductive properties [48, 129,

137, 232–236]. Furthermore, biocompatibility of such

biocomposites is enhanced because calcium orthophos-

phate fillers induce an increased initial flash spread of

serum proteins compared with the more hydrophobic

polymer surfaces [237]. What’s more, experimental results

of these biocomposites indicate favorable cell–material

interactions with increased cell activities as compared with

each polymer alone [230]. As a rule, with increasing of

calcium orthophosphate content, both Young’s modulus

and bioactivity of the biocomposites increase, while the

ductility decreases [26, 232]. Furthermore, such formula-

tions can provide a sustained release of calcium and

orthophosphate ions into the milieus, which is important

for mineralized tissue regeneration [229]. Indeed, a com-

bination of two different materials draws on the advantages

of each one to create a superior biocomposite with respect

to the materials on their own.

It is logical to assume that the proper biocomposite of a

calcium orthophosphate (for instance, CDHA) with a bio-

organic polymer (for instance, collagen) would yield the

physical, chemical, and mechanical properties similar to

those of human bones. Different ways have been already

realized to bring these two components together into

composites, like mechanical blending, ball milling, dis-

persion of ceramic fillers into a polymer–solvent solution, a

melt extrusion of a ceramic/polymer powder mixture,

coprecipitation, and electrochemical codeposition [32, 59,

238–240]. Besides, there is an in situ formation, which

involves either synthesizing the reinforcement inside a

preformed matrix material or synthesizing the matrix

material around the reinforcement [59, 241]. For example,

several papers have reported this method to produce vari-

ous composites of apatites with carbon nanotubes [242–

247]. Another example comprises using amino acid-capped

gold nanoparticles as scaffolds to grow CDHA [248]. In

certain cases, a mechano-chemical route [249], emulsions

[250–253], freeze-drying [254] and freeze-thawing tech-

niques [255], flame-sprayed technique [256], or gel-

templated mineralization [257] might be applied to produce

calcium othophosphates-based biocomposites. Various

fabrication procedures are available elsewhere [32, 59,

238], where the interested readers are referred.

The interfacial bonding between a calcium orthophos-

phate and a polymer is an important issue of any

biocomposite. If adhesion between the phases is poor, the

mechanical properties of a biocomposite suffer. In order to

solve the problem, various approaches have been already

introduced. For example, a diisocyanate coupling agent

was used to bind PEG/PBT (Polyactive
TM

) block copoly-

mers to HA filler particles. Using surface-modified HA
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particles as a filler in a PEG/PBT matrix significantly

improved the elastic modulus and strength of the polymer

as compared with the polymers filled with ungrafted HA

[234, 258]. Another group used processing conditions to

achieve a better adhesion of the filler to the matrix.

Ignjatovic et al. [127, 128, 259] prepared poly(L-lactic

acid) (PLLA)/HA composites by pressing blends of vary-

ing PLLA and HA content at different temperatures and

pressures. They found that maximum compressive strength

was achieved at *15 wt% of PLLA. Using blends with

20 wt% of PLLA, the authors also established that

increasing the pressing temperature and pressure improved

the mechanical properties. The former was explained by

decrease in viscosity of the PLLA associated with a tem-

perature increase, hence leading to improved wettability of

HA particles. The latter was explained by increased com-

paction and penetration of pores at higher pressure, in

conjunction with a greater fluidity of the polymer at higher

temperatures. The combination of high pressures and

temperatures was found to decrease porosity and guarantee

a close apposition of a polymer to the particles, thereby

improving the compressive strength [228] and fracture

energy [260] of the biocomposites. The PLLA/HA bio-

composites scaffolds were found to improve cell survival

over plain PLLA scaffolds [261].

It is also possible to introduce porosity into calcium

orthophosphate-based biocomposites, which is advanta-

geous for most applications as bone substitution material.

The porosity facilitates the migration of osteoblasts from

surrounding bones to the implant site [129, 262, 263].

Various material processing strategies to prepare compos-

ite scaffolds with interconnected porosity comprise

thermally induced phase separation, solvent casting, and

particle leaching, solid freeform fabrication techniques,

microsphere sintering, and coating [142, 264–266]. A

supercritical gas foaming technique might be used as well

[238, 267, 268].

Apatite-based biocomposites

A biological apatite is known to be the major inorganic

phase of mammalian calcified tissues [21, 22]. Conse-

quently, CDHA, HA, carbonateapatite (both with and

without dopants) and, occasionally, FA have been applied

to prepare biocomposites with other compounds, usually

with the aim to improve the bioactivity. For example, PS

composed with HA can be used as a starting material for

long-term implants [269–271]. Retrieved in vivo, HA/PS

biocomposite-coated samples from rabbit distal femurs

demonstrated direct bone apposition to the coatings, as

compared with the fibrous encapsulation that occurred

when uncoated samples were used [269]. The resorption

time of such biocomposites is a very important factor,

which depends on polymer’s microstructure and the pres-

ence of modifying phases [270].

Various apatite-containing biocomposites with PVA

[255, 272–278], polyvinyl alcohol phosphate (PVAP)

[280], and several other polymeric components [279, 281–

292] have already been developed. Namely, PVA/CDHA

biocomposite blocks were prepared by precipitation of

CDHA in aqueous solutions of PVA [255]. An artificial

cornea consisted of a porous nano-HA/PVA hydrogel skirt

and a transparent center of PVA hydrogel has been

prepared as well. The results displayed a good biocom-

patibility and interlocking between artificial cornea and

host tissues [276, 277]. PVAP has been chosen as a poly-

mer matrix, because its phosphate groups can act as a

coupling/anchoring agent, which has a higher affinity

toward the HA surface [280]. Greish and Brown [283–285]

developed HA/Ca poly(vinyl phosphonate) biocomposites.

A template-driven nucleation and mineral growth process

for the high-affinity integration of CDHA with polyhydr-

oxyethyl methacrylate (PHEMA) hydrogel scaffold have

been developed as well [292].

Polyetheretherketone (PEEK) [177, 179, 293–299] and

high-impact polystyrene [300] were applied to create bio-

composites with HA having a potential for clinical use in

load-bearing applications. The study on reinforcing PEEK

with thermally sprayed HA particles revealed that the

mechanical properties increased monotonically with the

reinforcement concentration, with a maximum value in the

study of 40% volume fraction of HA particles [295–297].

The reported ranges of stiffness within 2.8–16.0 GPa and

strength within 45.5–69 MPa exceeded the lower values

for human bone (7–30 GPa and 50–150 MPa, respectively)

[296]. Modeling of the mechanical behavior of HA/PEEK

biocomposites is available elsewhere [298].

Biodegradable poly(a-hydroxyesters) are well estab-

lished in clinical medicine. Currently, they provide with a

good choice when a suitable polymeric filler material is

sought. For example, HA/PLGA composites were devel-

oped, which appeared to possess a cellular-compatibility

suitable for bone tissue regeneration [301–308]. Zhang and

Ma [48, 233] seeded highly porous PLLA foams with HA

particles in order to improve the osteoconductivity of

polymer scaffolds for bone tissue engineering. They pointed

out that hydration of the foams prior to incubation in sim-

ulated body fluid increased the amount of carbonated CDHA

material due to an increase in COOH and OH groups on the

polymer surface, which apparently acted as nucleation sites

for apatite. The following values of Young’s modulus,

compressive, bending, and tensile strengths for PLLA/HA

composites have been achieved: 5–12 GPa, 78–137 MPa,

44–280 MPa, and 10–30 MPa, respectively [309]. How-

ever, these data do not appear to be in a good agreement with

HA/PLLA biocomposite unit cell model predictions [310].
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On their own, PGA and PLA are known to degrade

to acidic products (glycolic and lactic acids, respectively)

that both catalyze polymer degradation and cause inflam-

matory reactions of the surrounding tissues [311]. Thus,

in biocomposites of poly(a-hydroxyesters) with calcium

orthophosphates, the presence of slightly basic compounds

(HA, TTCP) to some extent neutralizes the acid molecules,

provides with a weak pH-buffering effect at the polymer

surface and, therefore, more or less compensates these

drawbacks [137, 312–314]. However, additives of even

more basic chemicals (e.g., CaO, CaCO3) might be nec-

essary [142, 313, 315, 316]. Extensive cell culture

experiments on pH-stabilized composites of PGA and

carbonateapatite were reported, which afterwards were

supported by extensive in vitro pH-studies [317]. A con-

sequent development of this approach has led to designing

of functionally graded composite skull implants consisting

of polylactides, carbonateapatite, and CaCO3 [318, 319].

Besides the pH-buffering effect, inclusion of calcium or-

thophosphates was found to modify both surface and bulk

properties of the biodegradable poly(a-hydroxyesters) by

increasing the hydrophilicity and water absorption of the

polymer matrix, thus altering the scaffold degradation

kinetics. For example, polymer biocomposites filled with

HA particles was found to hydrolyze homogeneously due

to water penetrating into interfacial regions [320].

Biocomposites of poly(a-hydroxyesters) with calcium

orthophosphates are mainly prepared by incorporating the

inorganic phase into a polymeric solution, followed by

drying under vacuum. The resulting solid composites might

be shaped using different processing techniques. One can

also prepare these biocomposites by mixing HA particles

with L-lactide prior the polymerization [312] or by a

combination of slip-casting technique and hot-pressing

[321]. A surfactant might be useful to keep the suspension

homogeneity [322]. Besides, HA/PLA [251, 252] and HA/

PLGA [253] microspheres might be prepared by a micro-

emulsion technique. More complex carbonated-FA/PLA

porous biocomposite scaffolds are also known [323]. An

interesting list of references, assigned to the different ways

of preparing HA/poly(a-hydroxyesters) biodegradable

composites, might be found in publications by Durucan and

Brown [49, 324, 325]. The authors prepared CDHA/PLA

and CDHA/PLGA composites by solvent casting technique

with a subsequent hydrolysis of a-TCP to CDHA in

aqueous solutions. The presence of both polymers was

found to inhibit a-TCP hydrolysis, if compared with that of

single-phase a-TCP; what is more, the inhibiting effect of

PLA exceeded that of PLGA [49, 324, 325]. The physical

interactions between calcium orthophosphates and poly(a-

hydroxyesters) might be easily seen in Fig. 1 [49]. Nev-

ertheless, it should not be forgotten that typically non-melt-

based routes lead to the development of composites with

lower mechanical performance and many times require the

use of toxic solvents and intensive hand labor [146].

The mechanical properties of poly(a-hydroxyesters)

could be substantially improved by the addition of cal-

cium orthophosphates [326, 327]. Shikinami and Okuno

[137] developed CDHA/PLLA composites of very high

mechanical properties; mini-screws and mini-plates made

of these composites have been manufactured and tested

[320]. They have shown easy handling and shaping

according to the implant site geometry, total resorbability,

good ability to bond directly to the bone tissue without

Fig. 1 SEM micrographs

of a a-TCP compact;

b a-TCP-PLGA biocomposite

(bars = 5 lm). Reprinted from

Ref. [49] with permission
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interposed fibrous tissue, osteoconductivity, biocompati-

bility and high stiffness retainable for the period necessary

to achieve bone union [320]. The initial bending strength of

280 MPa exceeded that of cortical bone (120–210 MPa),

while the modulus was as high as 12 GPa [137]. The

strength could be maintained above 200 MPa up to

25 weeks in phosphate-buffered saline solution. Such bio-

composites were obtained from precipitation of a PLLA/

dichloromethane solution, where small granules of uni-

formly distributed CDHA microparticles (average size of

3 lm) could be prepared [136]. Porous scaffolds of poly-

DL-lactic acid (PDLLA) and HA have been manufactured

as well [268, 328, 329]. Upon implantation into rabbit

femora, a newly formed bone was observed and biodeg-

radation was significantly enhanced if compared with

single-phase HA bioceramics. This might be due to a local

release of lactic acid, which in turn dissolves HA. In other

studies, PLA and PGA fibers were combined with porous

HA scaffolds. Such reinforcement did not hinder bone

ingrowth into the implants, which supported further

development of such biocomposites as bone graft substi-

tutes [47, 48, 309, 330, 331].

Recently, blends (named as SEVA-C) of ethylene-vinyl

alcohol copolymer (EVOH) with starch filled with 10–

30 wt% HA have been fabricated to yield biocomposites

with modulus up to *7 GPa with a 30% HA loading [332–

337]. The incorporation of bioactive fillers such as HA in

SEVA-C aimed to assure the bioactive behavior of the

composite and to provide the necessary stiffness within the

typical range of human cortical bone properties. These

biocomposites exhibited a strong in vitro bioactivity that

was supported by the polymer’s water-uptake capability

[338]. However, the reinforcement of SEVA-C by HA

particles was found to affect the rheological behavior of the

blend. A degradation model of these biocomposites is

available [339].

Higher homologues poly(3-hydroxybutyrate), 3-PHB,

and poly(3-hydroxyvalerate), 3-PHV, show almost no

biodegradation. Nevertheless, biocomposites of these

polymers with calcium orthophosphates showed a good

biocompatibility both in vitro and in vivo [94, 340–345].

Both bioactivity and mechanical properties of these bio-

composites can be tailored by varying the volume

percentage of calcium orthophosphates. Similarly, bio-

composites of poly(hydroxybutyrate-co-hydroxyvalerate)

(PHBHV) with both HA and amorphous carbonated apatite

(almost ACP) appeared to have a promising potential for

repair and replacement of damaged bones [346–349].

Along this line, PCL is used as a slowly biodegradable, a

but well-biocompatible polymer. PCL/HA composites have

been already discussed as suitable materials for substitu-

tion, regeneration, and repair of bone tissues [264, 350–

357]. For example, biocomposites were obtained by

infiltration of e-caprolactone monomer into porous apatite

blocks and in situ polymerization [353]. The composites

were found to be biodegradable and might be applied as

cancellous or trabecular bone replacement material or for

cartilage regeneration. Both the mechanical performance

and biocompatibility in osteoblast cell culture of PCL were

shown to be strongly increased when HA was added [358].

Several preparation techniques of PCL/HA composites are

known. For example, to make composite fibers of PCL/

nano-HA, the desired amount of nano-HA powder was

dispersed in a solvent using magnetic stirrer followed by

ultrasonication for 30 min. Then, PCL was dissolved in this

suspension, followed by the solvent evaporation [359]. The

opposite preparation order is also possible: PCL was ini-

tially dissolved in chloroform at room temperature (7–10%

weight/volume), then HA (*10 lm particle size) was

suspended in the solution, sonicated for 60 s, followed by

the solvent evaporation [129] or salt-leaching [360]. The

mechanical properties obtained by this technique were

about one-third that of trabecular bone. In a comparative

study, PCL and biological apatite were mixed in the ratio

19:1 in an extruder [361]. At the end of the preparation, the

mixture was cooled in an atmosphere of nitrogen. The

authors observed that the presence of biological apatite

improved the modulus while concurrently increasing the

hydrophilicity of the polymeric substrate. Besides, an

increase in apatite concentration was found to increase both

the modulus and yield stress of the composite, which

indicated to good interfacial interactions between the bio-

logical apatite and PCL. It was also observed that the

presence of biological apatite stimulated osteoblasts

attachment to the biomaterial and cell proliferation [361].

In another study, a PCL/HA biocomposite was prepared by

blending in melt form at 120 �C until the torque reached

equilibrium in the rheometer that was attached to the

blender [362]. Then the sample was compression-molded

and cut into specimens of appropriate size for testing. It

was observed that the composite containing 20 wt% HA

had the highest strength [362]. However, a direct grafting

of PCL on the surface of HA particles seems to be the most

interesting preparation technique [350]. HA porous scaf-

folds were coated by a PCL/HA composite coating [50]. In

this system, PCL, as a coating component, was able to

improve the brittleness and low strength of the HA scaf-

folds, whereas the particles in the coating were to improve

the osteoconductivity and bioactivity of the coating layer.

More complex PDLLA/PCL/HA biocomposites have been

prepared as well [363]. Further details on both PCL/HA

biocomposites and processing methodologies thereof might

be found elsewhere [264].

The spread of attached human osteoblasts onto PLA and

PCL films reinforced with CDHA and sintered HA was

shown to be higher than for the polymers alone [152].
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Moreover, biochemical assays relating cell activity to DNA

content allowed concluding that cell activity was more

intense for the composite films [152]. Kim et al. [50]

coated porous HA blocks with PCL from dichloromethane

solution and performed drug-release studies. The antibiotic

tetracycline hydrochloride was added into this layer,

yielding a bioactive implant with drug release for longer

than a week.

Yoon et al. [364] investigated the highest mechanical

and chemical stability of FA by preparing FA/collagen

biocomposites and studied their effect in osteoblast-like

cell culture. The researchers found an increased cellular

activity in FA composites compared with HA composites.

This finding was confirmed in another study by means of

variations in the fluoride content for FA-HA/PCL com-

posites [365]. An interesting phenomenon of fractal growth

of FA/gelatin composite crystals (Fig. 2) was achieved by

diffusion of calcium- and orthophosphate ? fluoride-solu-

tions from the opposite sides into a tube filled with a gelatin

gel [366–374]. The reasons of this phenomenon are not

quite clear yet; besides, up to now nothing has yet been

reported on a possible biomedical application of such very

unusual structural composites.

TCP-based biocomposites

Both a-TCP and b-TCP have a higher solubility than HA

(Table 3). Besides, they are faster resorbed in vivo.5

Therefore, these calcium orthophosphates were used

instead of HA to prepare completely biodegradable bio-

composites [376–394]. For example, a biodegradable and

osteoconductive biocomposite made of b-TCP particles

and gelatin was proposed [385]. This material was tested in

vivo with good results. It was found to be biocompatible,

osteoconductive, and biodegradable with no need for a

second surgical operation to remove the device after

healing occurred. Herbal extracts might be added to this

biocomposite [386]. Another research group prepared

biocomposites of crosslinked gelatin with b-TCP; they

found both a good biocompatibility and bone formation

upon subcutaneous implantation in rats [387]. Yang et al.

[392] extended this to porous (porosity about 75%) b-TCP/

gelatin biocomposites those also contained BMP-4.

Besides, cell-compatible and possessive some osteoinduc-

tive properties porous b-TCP/alginate-gelatin hybrid

scaffolds were prepared and successfully tested in vitro

[389]. More to the point, biocomposites of b-TCP with

PLLA [382, 383] and copolyester lactide-co-glycolide-co-

e-caprolactone [384] were prepared. Although b-TCP was

able to counter the acidic degradation of the polyester to

some extent, it did not prevent a pH drop down to *6.

Nevertheless, implantation of this biocomposite in beagles’

mandibular bones was successful [384].

Based on the self-reinforcement concept, biocomposites

of TCP with polylactides were prepared and studied using

conventional mechanical testing [395]. Bioresorbable

scaffolds were fabricated from such biocomposites [396].

Chitosan was also used as the matrix for the incorporation

of b-TCP by a solid/liquid phase separation of the polymer

solution and subsequent sublimation of the solvent. Due to

complexation of the functional groups of chitosan with

calcium ions of b-TCP, these biocomposites had a better

compressive modulus and strength [397]. PCL/b-TCP

biocomposites were developed as well [398–401] and their

in vitro degradation behavior was systematically monitored

by immersion in simulated body fluid at 37 �C [400]. To

extend this topic further, the PCL/b-TCP biocomposites

might be loaded by drugs [401].

Cell culture tests on b-TCP/PLLA biocomposites were

reported; the biocomposites showed no cytotoxicity and

evidenced good cell attachment to its surface [376]. An in

vitro study with primary rat calvarial osteoblasts showed an

increased cellular activity in the BMP-loaded samples

[392]. Other researchers investigated BMP-2-loaded por-

ous b-TCP/gelatin biocomposites (porosity 95%, average

pore size 180–200 lm) [402] and confirmed the precious

study. Biocomposites of b-TCP and glutaraldehyde cross-

linked gelatin were manufactured and tested in vitro to

measure the material cytotoxicity [388]. The experimental

results revealed that the amount of glutaraldehyde cross-

linking agent should be less than 8% to decrease the

toxicity on the osteoblasts and to avoid inhibition of cel-

lular growth caused by the release of residual or

uncrosslinked glutaraldehyde.

Fig. 2 A biomimetically grown aggregate of FA that was crystallized

in a gelatin matrix. Its shape can be explained and simulated by a

fractal growth mechanism. Scale bar: 10 lm. Reprinted from Ref.

[366] with permission

5 However, there are some reports about a lack of TCP biodegra-

dation after implantation in calvarial defects [375].
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A long-term implantation study of PDLLA/a-TCP

composites in a loaded sheep implant model showed good

results after 12 months, but a strong osteolytic reaction

after 24 months. This was ascribed to the almost complete

dissolution of a-TCP to this time and an adverse reaction of

the remaining PDLLA [403].

More complex calcium orthophosphate-based biocom-

posites are known as well. For example, there is a

composite consisting of three interpenetrating networks:

TCP, CDHA, and PLGA [404]. Firstly, a porous TCP

network was produced by coating a polyurethane foam by

hydrolysable a-TCP slurry. Then, a CDHA network was

derived from a calcium orthophosphate cement filled in the

porous TCP network. Finally, the remaining open pore

network in the CDHA/a-TCP structures was infiltrated with

PLGA. This biocomposite consists of three phases with

different degradation behavior. It was postulated that bone

would grow on the fastest degrading network of PLGA,

while the remaining calcium orthophosphate phases would

remain intact thus maintaining their geometry and load-

bearing capability [404].

Other calcium orthophosphate-based biocomposites

The number of research papers devoted to biocomposites

based on other calcium orthophosphates is substantially

lesser than those devoted to apatites and TCP. Biphasic

calcium phosphate (BCP)6 appears to be the most popular

among the remaining calcium orthophosphates. Collagen-

coated BCP ceramics was studied and the biocompatibility

toward osteoblasts was found to increase upon coating with

collagen [405]. Another research group created porous

PDLLA/BCP scaffolds and coated them with a hydrophilic

PEG/vancomycin composite for both drug-delivery pur-

poses and surface modification [406]. More to the point,

PLGA/BCP composites were fabricated [407, 408] and

their cytotoxicity and fibroblast properties were found to be

acceptable for natural bone tissue reparation, filling, and

augmentation [409, 410]. PCL/BCP biocomposites are

known as well [411].

A choice of DCPD-based biocomposites of DCPD,

albumin, and duplex DNA was prepared by water/oil/water

interfacial reaction method [250]. Core-shell type DCPD/

chitosan biocomposite fibers were prepared by a wet

spinning method in another study [412]. The energy-dis-

persive X-ray spectroscopy analysis indicated that Ca and

P atoms were mainly distributed on the outer layer of the

composite fibers; however, a little amount of P atoms

remained inside the fibers. This indicated that the com-

posite fibers formed a unique core-shell structure with shell

of calcium orthophosphate and core of chitosan [412].

Although, this is not to the point, it is interesting to mention

that some DCPD/polymer composites could be used as

proton conductors in battery devices [413, 414]. Nothing

has been reported on their biocompatibility but, perhaps,

sometime the improved formulations will be used to fab-

ricate biocompatible batteries for implantable electronic

devices.

Various ACP-based biocomposites for dental applica-

tions were developed [415–418]. Besides, several ACP-

based formulations were investigated as potential bio-

composites for bone grafting [349, 419–421]. Namely,

ACP/PPF biocomposites were prepared by in situ precipi-

tation [420], while PHB/carbonated ACP and PHBHV/

carbonated ACP biocomposites appeared to be well suited

as slowly biodegradable bone substitution material [349].

Another example comprises hybrid nano-capsules of *50–

70 nm in diameter which were fabricated by ACP miner-

alization of shell crosslinked polymer micelles and

nanocages [421]. These nano-capsules consisted of a con-

tinuous ultrathin inorganic surface layer that infiltrated the

outer crosslinked polymeric domains. They might be used

as structurally robust, pH-responsive biocompatible hybrid

nanostructures for drug delivery, bioimaging, and thera-

peutic applications [421].

Calcium orthophosphate cement-based biocomposites

and concretes

Inorganic self-setting calcium orthophosphate cements,

which harden in the body, were introduced by LeGeros

et al. [422] and Brown and Chow [423, 424] in the early

1980s.7 Since then, these cements have been broadly

studied and many formulations have been proposed [427].

The cements set and harden due to various chemical

interactions among calcium orthophosphates that finally

lead to formation of a monolithic body consisting of either

CHDA or DCPD with possible admixtures of other phases.

Unfortunately, having the ceramic nature, calcium ortho-

phosphate cements are brittle after hardening and the

setting time is sometimes unsuitable for clinical procedures

[427]. Therefore, various attempts have been performed to

transform the cements into biocomposites, e.g., by adding

hydroxylcarboxylic acids, to control the setting time [428],

gelatin to improve both the mechanical properties and the

setting time [391, 429–431] or osteocalcin/collagen to

increase the bioactivity [432]. More to the point, various

reinforcement additives of different shapes and nature are

6 BCP is a solid composite of HA and b-TCP; however, similar

composites of HA and a-TCP are possible as well [23].

7 There is an opinion [425] that the self-setting calcium orthophos-

phate cements for orthopedic and dental restorative applications have

first been described in the early 1970s by Driskell et al. [426] in US

Patent No. 3913229.
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widely used to improve the mechanical properties of cal-

cium orthophosphate cements [427]. Even carbon

nanotubes were used for this purpose [433]! Although the

biomaterials community does not use this term, a sub-

stantial amount of the reinforced cement formulations

might be defined as calcium orthophosphate-based con-

cretes.8 The idea behind the concretes is simple: if a strong

filler is present in the matrix, it might stop crack

propagation.

Various apatite-containing biocomposite formulations

based on PMMA [435–445] and PEMA [94, 446, 447]

have been already developed. Such biocomposites might be

prepared by dispersion of apatite powder into a PMMA

viscous fluid [448] and used for drug-delivery purposes

[449]. When the mechanical properties of the biocomposite

concretes composed of PMMA matrix and HA particles of

various sizes were tested, the tensile results showed that

strength was independent on particle sizes. In addition, up

to 40 wt% HA could be added without impairing the

mechanical properties [438, 439]. After immersion into

Ringer’s solution, the tensile strength was not altered,

whereas the fatigue properties were significantly reduced.

The biocompatibility of PMMA/HA biocomposites was

tested in vivo and enhanced osteogenic properties of the

implants compared with single-phase PMMA were

observed [436, 440–443]. It was shown that not only the

mechanical properties of PMMA were improved but the

osteoblast response of PMMA was also enhanced with the

addition of HA [440]. Thereby, by adding calcium ortho-

phosphates, a non-biodegradable PMMA was made more

bioactive and osteoconductive, yielding a well-processable

biocomposite concrete. As a drawback, the PMMA/HA

formulations possess a low flexural, compressive, and

tensile strength.

A biocomposite made from HA granules and bis-phe-

nol-a-glycidylmethacrylate-based resin appeared to possess

comparable mechanical and biological properties to typical

PMMA cement, leading to potential uses for implant fix-

ation [450]. In order to improve the mechanical properties

of calcium orthophosphate cements and stabilize them at

the implant site, various researchers have resorted to for-

mulations that set in situ, primarily through crosslinking

reactions of the polymeric matrix. For example, TTCP was

reacted with polyacrylic acid (PAA), forming a crosslinked

CDHA/calcium polyacrylate biocomposite [451]. In aque-

ous solutions, TTCP hydrolyzes to CDHA [23] and the

liberated calcium cations react with PAA, forming the

crosslinked network [451]. Reed et al. [452] synthesized a

dicarboxy polyphosphazene that can be crosslinked by

calcium cations and cement-based (TTCP ? DCPD)

CDHA/polyphosphazene biocomposites with a compres-

sive strength *10 MPa and of *65% porosity were

prepared as a result. To mimic PMMA cements, PFF/

b-TCP biocomposites were prepared with the addition of

vinyl monomer to crosslink PPF. As a result, quick setting

and degradable biocomposite cements with a low-heat

output and compressive strengths in the range of 1 to

12 MPa were prepared by varying the molecular weight of

PPF, as well as the contents of the monomer, b-TCP, ini-

tiator, and porogen (NaCl) [453, 454]. An acrylic cement

with Sr-containing HA as a filler [110] and an injectable

polydimethylsiloxane/HA cement [455] have been pre-

pared as well.

In order to improve the mechanical properties of cal-

cium orthophosphate cements, numerous researchers

blended various polymers with the cements. For example,

gelatin might be added to calcium orthophosphate cement

formulations, primarily to stabilize the paste in aqueous

solution before it develops adequate rigidity and, secondly,

to improve the compressive strength [391, 429, 456].

Adding rod-like fillers to the cement formulations also

caused an improvement in the mechanical properties [456].

For example, PAA and PVA were successfully used to

improve the mechanical properties of a TTCP ? DCPD

cement but, unfortunately, with an inevitable and unac-

ceptable reduction of both workability and setting time

[457, 458]. Similar findings were reported in the presence

of sodium alginate and sodium polyacrylate [459]. Other

polymers, such as polyphosphazene, might be used as well

[460–462]. Other examples of polymer/calcium ortho-

phosphate cement formulations might be found elsewhere

[463, 464].

Porous calcium orthophosphate scaffolds with inter-

connected macropores (*1 mm), micropores (*5 lm),

and of high porosity (*80%) were prepared by coating

polyurethane foams with a TTCP ? DCPA cement, fol-

lowed by firing at 1200 �C. In order to improve the

mechanical properties of the scaffolds, the open micropores

of the struts were then infiltrated by a PLGA solution to

achieve an interpenetrating bioactive ceramic/biodegrad-

able polymer composite structure. The PLGA-filled struts

were further coated with a 58S bioactive glass/PLGA

composite coating. The obtained complex porous bio-

composites could be used as tissue engineering scaffolds

for low-load-bearing applications [465]. A more compli-

cated construction, in which the PLGA macroporous phase

has been reinforced with a bioresorbable TTCP ? DCPA

cement, followed by surface coating of the entire construct

by a non-stoichiomentic CDHA layer, has been designed as

8 According to Wikipedia, the free encyclopedia: ‘‘Concrete is a

construction material that consists of a cement (commonly Portland

cement), aggregates (generally gravel and sand) and water. It

solidifies and hardens after mixing and placement due to a chemical

process known as hydration. The water reacts with the cement, which

bonds the other components together, eventually creating a stone-like

material’’ [434].
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well [466]. The latter approach has culminated in a unique,

three-phase biocomposite that is simple to fabricate,

osteoconductive, and completely biodegradable.

A porosity level of 42 to 80% was introduced into calcium

orthophosphate cement/chitosan biocomposites by the

addition of the water-soluble mannitol [467]. Chitosan sig-

nificantly improved the mechanical strength of the entire

biocomposite [468]. A similar approach was used by other

researchers who studied the effect of the addition of PLGA

microparticles [469–472] (which can also be loaded with

drugs or growth factors [473–475]) to calcium orthophos-

phate cements. These biocomposites were implanted into

cranial defects of rats and a content of *30 wt% of the

microparticles was found to give the best results [469], while

the addition of a growth factor to the biocomposites signif-

icantly increased bone contact at 2 weeks and enhanced new

bone formation at 8 weeks [475]. The in vivo rabbit femur

implant tests showed that PLGA/calcium orthophosphate

cement formulations exhibited outstanding biocompatibility

and bioactivity, as well as a better osteoconduction and de-

gradability than pure calcium orthophosphate cements [470].

Further details on calcium orthophosphate cement-based

biocomposites and concretes might be found in Ref. [427,

chapter ‘‘Reinforced calcium orthophosphate cements’’].

Nano-calcium orthophosphate-based biocomposites

and nano-biocomposites

Nanophase materials are the materials that have grain sizes

under *100 nm. They have different mechanical and

optical properties if compared with the large-grained

materials of the same chemical composition. Namely,

nanophase materials have the unique surface properties,

such as an increased number of atoms, grain boundaries,

and defects at the surface, huge surface area and altered

electronic structure, if compared with the conventional

micron-sized materials. For example, nano-HA (size

*67 nm) has a higher surface roughness of 17 nm if

compared with 10 nm for the conventional submicron size

HA (*180 nm), while the contact angles (a quantitative

measure of the wetting of a solid by a liquid) are signifi-

cantly lower for nano-HA (6.1) if compared with the

conventional HA (11.51). Additionally, the diameter of

individual pores in a nano-HA compact is five times

smaller (pore diameter *6.6 Å) than that in the conven-

tional grain-sized HA compacts (pore diameter within

19.8–31.0 Å) [476–478]. Besides, nano-HA promotes

osteoblast cells adhesion, differentiation, and proliferation,

osteointegration and deposition of calcium containing

minerals on its surface better than microcrystalline HA;

thus enhancing formation of a new bone tissue within a

short period [476–478]. More to the point, nano-HA was

found to cause apoptosis of the leukemia P388 cells [479].

Composites of two or more materials, in which at least

one of the materials is of a nanometer-scale, are defined as

nanocomposites [32]. Natural bone mineral is a hierarchical

nanocomposite of biological origin, because it consists of

nano-sized blade-like crystals of biological apatite grown in

intimate contact with an organic matrix rich in collagen

fibers and organized in a complicated hierarchical structure

[21, 22, 38]. Given the fact that the major organic phase of

bone is collagen, i.e., a natural polymer (Table 1), it is

obvious that a composite of a nanophase calcium ortho-

phosphate with a biodegradable polymer should be

advantageous as bone substitution material. The inorganic

nanophase would be responsible for the mechanical strength

(hardness) and bioactivity, while the polymer phase would

provide the elasticity. In addition, the solubility of calcium

orthophosphates depends on their crystallite size (smaller

crystals have a higher solubility) and on their carbonate

content (higher carbonate content increases the solubility)

[480]. To the author’s best knowledge, among calcium

orthophosphates listed in Table 3, before very recently only

apatites (CDHA, HA and, perhaps, FA) have been available

in the nanocrystalline state. However, very recently, nano-

DCPA [481–483] and nano-MCPM [484] have been syn-

thesized and applied to prepare nano-biocomposites with

strong ionic release to combat tooth caries.

A number of investigations have been conducted recently

to determine the mineralization, biocompatibility, and

mechanical properties of the nano-biocomposites based on

various (bio)polymers and nano-HA.9 These studies covered

nano-HA/PLA [268, 485–492] and its copolymer with PGA

[493–495], nano-HA/collagen [496–508], nano-HA/colla-

gen/PLA [508–516], nano-HA/collagen/PVA [517], nano-

HA/collagen/alginate [518, 519], nano-HA/gelatin [520–

525], nano-HA/poly(hexamethylene adipamide) [526],

nano-HA/PPF [527], nano-HA/polyamide [528–539], nano-

HA/PVA [276, 277, 540–542], nano-HA/PVAP [280],

nano-HA/poly(ethylene-co-acrylic) acid [543, 544], nano-

HA/chitosan [545–548], nano-HA/konjac glucomannan/

chitosan [549], nano-HA/PHEMA/PCL [550], nano-HA/

PCL [322, 359, 551, 552], nano-HA/Ti [553, 554], PCL

semi-interpenetrating nanocomposites [555], and many

other biocompatible hybrid formulations [223, 257, 271,

347, 556–574]. Several nano-biocomposites were found to

be applicable as carriers for growth factors delivery [34, 575,

576]. Besides, the data are available on the excellent bio-

compartibility of such nano-biocomposites [507]. The

dispersion state of nanoparticles appears to be the critical

parameter in controlling the mechanical properties of

9 Unfortunately, in the majority of the already published papers it

often remained unclear whether ‘‘nano-HA’’ represented the stoichi-

ometric nano-HA or a non-stoichiometric nano-CDHA.
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nano-biocomposites, as nanoparticles always tend to

aggregate owing to their high surface energy [347].

Porous (porosity *85%) biocomposites of nano-HA

with collagen and PLA have been prepared by precipitation

and freeze-drying; the nano-biocomposites did not show a

pH drop upon in vitro degradation [509–511]. They were

implanted in the radius of rabbits and showed a high bio-

compatibility and partial resorption after 12 weeks. Nano-

HA/chitosan biocomposites with improved mechanical

stability were prepared from HA/chitosan nanorods [577].

Nano-HA/PLLA biocomposites of high porosity (*90%)

were prepared using thermally induced phase separation

[578]. Besides, nano-HA was used to prepare biocompos-

ites with PAA and the nanostructure of the resulting

nanocrystals exhibited a core-shell configuration [579,

580].

Nano-HA crystals appeared to be suitable for intraos-

seous implantation and offered a potential to formulate

enhanced biocomposites for clinical applications [581].

Thus, the biocompatibility of chitosan in osteoblast cell

culture was significantly improved by addition of nano-HA

[582]. Similar finding is valid for nano-HA/polyamide

biocomposites [531]. Further details on nano-HA-based

biocomposites might be found in an excellent review [32].

More to the point, a more general review on nanobioma-

terial applications in orthopedics is also available [583],

where the interested readers are referred.

Biocomposites with collagen

The main constituent of the bioorganic matrix of bones is

type I collagen10 (Table 1) with molecules about 300 nm in

length. This protein is conducive to crystal formation in the

associated inorganic matrix. It is easily degraded and re-

sorbed by the body and allows good attachment to cells.

Collagen alone is not effective as an osteoinductive

material, but it becomes osteoconductive in combination

with calcium orthophosphates [585]. Both collagen type I

and HA were found to enhance osteoblast differentiation

[586] but combined together, they were shown to accel-

erate osteogenesis. However, this tendency is not so

straightforward: the data are available that implanted HA/

collagen biocomposites enhanced regeneration of calvaria

bone defects in young rats but postponed the regeneration

of calvaria bone in aged rats [587]. Finally, the addition of

calcium orthophosphates to collagen sheets was found to

give a higher stability and an increased resistance to 3D

swelling compared with the collagen reference [588].

Therefore, a bone-analogue based on these two constituents

should possess the remarkable properties. Furthermore, the

addition of bone marrow constituents gives osteogenic and

osteoinductive properties to calcium orthophosphate/col-

lagen biocomposites [1].

The unique characteristics of bones are the spatial ori-

entation between the calcium orthophosphate nanophase

and collagen macromolecules at the nanolevel [35], where

nanocrystals (about 50-nm-length) of biological apatite are

aligned parallel to the collagen fibrils [21, 22, 31, 38],

which is believed to be the source of the mechanical

strength of bones. The collagen molecules and the nano-

crystals of biological apatite assembled into mineralized

fibrils are approximately 6-nm-diameter and 300-nm-long

[31, 35, 38, 510, 589]. Although the complete mechanisms

involved in the bone building strategy are still unclear, the

strengthening effect of apatite nanocrystals in calcified

tissues might be explained by the fact that the collagen

matrix is a load transfer medium and thus transfers the load

to the intrinsically rigid inorganic nanocrystals. Further-

more, nanocrystals of biological apatite located in between

tangled fibrils crosslink the fibers either through a

mechanical interlocking or by forming calcium ion bridges,

thus increasing deformation resistance of the collagenous

fiber network [590].

When calcium orthophosphates are combined with col-

lagen in a laboratory, the biocomposites appear to be

substantially different from natural bone tissue due to a

lack of real interaction between the two components, i.e.,

interactions that are able to modify the intrinsic charac-

teristics of the singular components themselves. The main

characteristics of the route, by which the mineralized hard

tissues are formed in vivo, are that the organic matrix is

laid down first and the inorganic reinforcing phase grows

within this organic matrix [21, 22, 31, 38]. Although to

date, neither the elegance of the biomineral assembly

mechanisms nor the intricate composite nano-architectures

have been duplicated by non-biological methods, the best

way to mimic bone is to copy the way it is formed, namely

by nucleation and growth of CDHA nanocrystals from a

supersaturated solution both onto and within the collagen

fibrils [591–593]. Such syntheses were denoted as ‘‘bio-

logically inspired’’ which means they reproduce an ordered

pattern and an environment very similar to natural ones

[594–596]. The biologically inspired biocomposites of

collagen and calcium orthophosphates (mainly, apatites)

for bone substitute have a long history [29, 364, 499, 597–

615] and started from the pioneering study by Mittelmeier

and Nizard [616], who mixed calcium orthophosphate

granules with a collagen web. Such combinations were

found to be bioactive, osteoconductive, osteoinductive [29,

585, 617–619] and, in general, artificial grafts manufac-

tured from this type of the biocomposites are likely to

behave similarly to bones and be of more use in surgery

10 The structural and biochemical properties of collagens have been

widely investigated and over 25 collagen subtypes have been

identified [584].
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than those prepared from any other materials. Indeed, some

data are available on the superiority of calcium ortho-

phosphate/collagen biocomposite scaffolds over the artifi-

cial polymeric and calcium orthophosphate bioceramic

scaffolds individually [620].

It has been found that calcium orthophosphates may be

successfully precipitated onto a collagen substrate of

whatever form or source [29, 36, 499, 621, 622]. However,

adherence of calcium orthophosphate crystals to collagen

did depend on how much the collagen had been denatured:

the more fibrillar the collagen, the greater attachment.

Clarke et al. [602] first reported the production of a bio-

composite produced by precipitation of DCPD onto a

collagen matrix with the aid of phosphorylated amino acids

commonly associated with fracture sites. Apatite cements

(DCPD ? TTCP) have been mixed with a collagen sus-

pension, hydrated, and allowed to set. CDHA crystals were

found to nucleate on the collagen fibril network, giving a

material with the mechanical properties weaker than those

reported for bone. More to the point, these biocomposites

were without the nanostructure similar to that of bone [599,

623]. The oriented growth of OCP crystals on collagen was

achieved by an experimental device in which Ca2? and

PO4
3- ions diffused into a collagen disk from the opposite

directions [622, 624, 625]. Unfortunately, these experi-

ments were designed to simulate the mechanism of in vivo

precipitation of biological apatite only; due to this reason,

the mechanical properties of the biocomposites were not

tested [626].

Conventionally, collagen/calcium orthophosphate bio-

composites can be prepared by blending or mixing of

collagen and calcium orthophosphates, as well as by bio-

mimetic methods [29, 32, 34, 37, 496, 499, 510, 576, 589,

594–596, 599, 621, 627–633]. Besides, collagen might be

incorporated into calcium orthophosphate cements [599,

623, 634]. Typically, the type I collagen sponge is pres-

oaked in PO4
3--containing a highly basic aqueous solution

and then is immersed into a Ca2?-containing solution to

allow mineral deposition. Also, collagen I fibers might be

dissolved in acetic acid and then this solution is added to

phosphoric acid, followed by the neutralization synthesis

(performed at 25 �C and solution pH within 9–10) between

an aqueous suspension of Ca(OH)2 and the H3PO4/collagen

solution [594, 595]. In order to ensure the quality of the

final product, it is necessary to control the Ca/P ionic ratio

in the reaction solution. One way to do this is to dissolve a

commercial calcium orthophosphate in an acid; another is

to add Ca2? and PO4
3- ions in a certain ratio to the solu-

tion and after that induce the reaction [35]. Biomimetically,

one can achieve an oriented growth of CDHA crystals onto

dissolved collagen fibrils in aqueous solutions via a self-

organization mechanism [628]. A number of authors pro-

duced calcium orthophosphate/collagen biocomposites by

mixing preformed ceramic particles with a collagen sus-

pension [635–637]. However, in all blended composites,

the crystallite sizes of calcium orthophosphates were not

uniform and the crystals were often aggregated and ran-

domly distributed within a fibrous matrix of collagen.

Therefore, no structural similarity to natural bone was

obtained, and only a compositional similarity to that of

natural bone was achieved. Crystallization of CDHA in

aqueous solutions might be performed in the presence of a

previously dispersed collagen [29, 499]. More to the point,

collagen might be first dispersed in an acidic solution,

followed by addition of calcium and orthophosphate ions

and then coprecipitation of collagen and CDHA might be

induced by either increasing the solution pH or adding

mixing agents [37]. Although it resulted in biocomposites

with poor mechanical properties, pressing of the HA/col-

lagen mixtures at 40 �C under 200 MPa for several days is

also known [638]. Attempts have been performed for a

computer simulation of apatite/collagen composite forma-

tion process [639]. It is interesting to note, that collagen/

HA biocomposites were found to possess some piezo-

electric properties [640].

As the majority of the collagen/HA, biocomposites are

conventionally processed by anchoring micro-HA particles

into collagen matrix, it makes quite difficult to obtain a

uniform and homogeneous composite graft. Besides, such

biocomposites have inadequate mechanical properties;

over and above, the proper pore sizes have not been

achieved either. Further, microcrystalline HA, which is in

contrast to nanocrystalline natural bone apatite, might take

a longer time to be remodeled into a new bone tissue upon

the implantation. In addition, some of the biocomposites

exhibited very poor mechanical properties, probably due to

a lack of strong interfacial bonding between the constitu-

ents. The aforementioned data clearly demonstrate that the

chemical composition similar to bone is insufficient for

manufacturing the proper bone grafts; both the mechanical

properties and mimetic of the bone nanostructure are nec-

essary to function as bone in recipient sites. There is a

chance for improving osteointegration by reducing the

grain size of HA crystals by activating ultrafine apatite

growth into the matrix. This may lead to enhance the

mechanical properties and osteointegration with improved

biological and biochemical affinity to the host bone.

Besides, the unidirectional porosity was found to have a

positive influence on the ingrowth of the surrounding tis-

sues into the pores of collagen/HA biocomposites [641].

Bovine collagen might be mixed with HA and such

biocomposites are marketed commercially as bone-graft

substitutes those further can be combined with bone mar-

row aspirated from the iliac crest of the site of the fracture.

Application of these materials was compared with auto-

grafts for the management of acute fractures of long bones
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with defects, which had been stabilized by internal or

external fixation [642, 643]. These biocomposites are

osteogenic, osteoinductive, and osteoconductive; however,

they lack the structural strength and require harvest of the

patient’s bone marrow. Although no transmission of dis-

eases has been recorded yet, the use of bovine collagen

might be a source of concern [2].

Collagen sponges with an open porosity (30–100 lm)

were prepared by a freeze-drying technique and then their

surface was coated by a 10-lm layer of biomimetic apatite

precipitated from simulated body fluid [644]. The

researchers found a good in vitro performance with fibro-

blast cell culture. Collagen/HA microspheres or gel beads

have been prepared in the intention of making injectable

bone fillers [645, 646]. Liao et al. [647] succeeded in

mimicking the bone structure by blending carbonateapatite

with collagen. A similar material (mineralized collagen)

was implanted into femur of rats and excellent clinical

results were observed after 12 weeks [648]. Collagen/HA

biocomposites were prepared and their mechanical per-

formance was increased by crosslinking the collagen fibers

with glutaraldehyde [500, 502, 503]. These biocomposites

were tested in rabbits and showed a good biological per-

formance, osteoconductivity, and biodegradation. A similar

approach was selected to prepare HA/collagen micro-

spheres (diameter *5 lm) by a water–oil emulsion

technique in which the surface was also crosslinked by

glutaraldehyde [646]. That material showed a good in vitro

performance with osteoblast cell culture. A porous bone-

graft substitute was formed from a nano-HA/collagen

biocomposite combined with PLA by a freeze-drying

method; the resulting material was found to mimic natural

bone at several hierarchical levels [510]. Subsequent in

vitro experiments confirmed a good adhesion, proliferation,

and migration of osteoblasts into this composite [509]. A

further increase in biocompatibility might be achieved by

the addition of silicon; thus, to enhance bone substitution,

Si-substituted HA/collagen composites have been devel-

oped with silicon located preferentially in the collagen

phase [501]. Porous (porosity level *95% with intercon-

nected pores of 50–100 lm) biocomposites of collagen

(crosslinked with glutaraldehyde) and b-TCP have been

prepared by a freeze-drying technique, followed by subli-

mation of the solvent; the biocomposites showed a good

biocompatibility upon implantation in the rabbit jaw [649].

Biocomposites of calcium orthophosphates with colla-

gen were found to be useful for drug-delivery purposes

[519, 607, 650–652]. Namely, an HA/collagen–alginate

(20 lL) with the rh-BMP2 (100 lg/mL, 15 lL) showed

bone formation throughout the implant 5 weeks after

implantation without obvious deformation of the material

[519]. Gotterbarm et al. [651] developed a two-layered

collagen/b-TCP implant augmented with chondral inductive

growth factors for the repair of osteochondral defects in the

trochlear groove of minipigs. This approach might be a new

promising option for the treatment of deep osteochondral

defects in joint surgery.

To conclude this part, one should note that biocom-

posites of apatites with collagen are a very hot topic of the

research and up to now, just a few papers are devoted to

biocomposites of other calcium orthophosphates with col-

lagen [651, 653]. These biomaterials mimic natural bones

to some extent, while their subsequent biological evalua-

tion suggests that they are readily incorporated into the

bone metabolism in a way similar to bone remodeling,

instead of acting as permanent implant [510, 616]. Colla-

graft�, Bio-Oss�, and Healos� are the several examples of

the commercially available calcium orthophosphate/colla-

gen bone grafts for clinical use [32]. However, the

performance of these biocomposites depends on the source

of collagen from which it was processed. Several attempts

have been made to simulate the collagen–HA interfacial

behavior in real bone by means of crosslinking agents such

as glutaraldehyde [500, 502, 503, 621, 646, 649] with the

purpose to improve the mechanical properties of these

biocomposites. Unfortunately, a further progress in this

direction is restricted by a high cost, difficulty to control

cross-infection, a poor definition of commercial sources of

collagens, as well as by a lack of an appropriate technology

to fabricate bone-resembling microstructures. Further details

on calcium orthophosphate/collagen composites, including

the list of the commercially available products, might be

found elsewhere [32, 611].

Biocomposites with other bioorganic compounds

and biological macromolecules

Besides collagen, both human and mammalian bodies

contain dozens types of various bioorganic compounds,

proteins, and biological macromolecules. The substantial

amounts of them potentially might be used to prepare

biocomposites with calcium orthophosphates. For example,

a biologically strong adhesion (to prevent invasion of

bacteria) between teeth and the surrounding epithelial tis-

sues is attributed to a cell-adhesive protein, laminin [654].

In order to mimic the nature, a laminin/apatite biocom-

posite layer was successfully created on the surface of both

titanium [655] and EVOH [656, 657] using the biomimetic

approach.

Calcium orthophosphate/gelatin biocomposites are

widely investigated as potential bone replacement bioma-

terials [254, 272–274, 366–374, 385–392, 402, 429–431,

456, 520–525, 658–669]. For example, gelatin foams were

successfully mechanically reinforced by HA and then

crosslinked by a carbodiimide derivative [254]. Such foams

were shown to be a good carrier for antibiotic tetracycline
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[662]. Several biocomposites of calcium orthophosphates

with alginates11 have been prepared [389, 518, 519, 523,

595, 670]. For example, porous HA/alginate composites

based on hydrogels were prepared both biomimetically

[595] and by using a freeze-drying technique [670].

Another research group succeeded in preparation of

biphasic but monolithic scaffolds using a similar prepara-

tion route [671]. Their biocompatibility in cell culture

experiments and in vitro biodegradability were high;

however, a mechanical strength could be better.

Various biocomposites of calcium orthophosphates with

chitosan [239, 397, 412, 419, 435, 467, 545–549, 566, 567,

577, 582, 663, 669, 672–683] and chitin [183, 394, 513,

684–688] are also very popular. For example, a solution-

based method was developed to combine HA powders with

chitin, in which the ceramic particles were uniformly dis-

persed [684, 685]. Unfortunately, it was difficult to obtain

the uniform dispersions. The mechanical properties of the

final biocomposites were not very good; due to a poor

adhesion between the filler and the matrix both the tensile

strength and modulus were found to decrease with the

increase in the HA amount. Microscopic examination

revealed that HA particles were intervened between the

polymer chains, weakening their interactions, and

decreasing the entire strength [684, 685].

Biocomposites of CDHA with water-soluble proteins,

such as bovine serum albumin (BSA), might be prepared

by a precipitation method [463, 689–692]. In such bio-

composites, BSA is not strongly fixed to solid CDHA,

which is useful for a sustained release. However, this is not

the case if a water/oil/water interfacial reaction route has

been used [250]. To extend this subject, inclusion of DNA

into CDHA/BSA biocomposites was claimed [250, 693–

695]. Besides, bionanocomposites of an unspecified cal-

cium orthophosphate with DNA were prepared as well

[696].

Akashi and co-workers [697] developed a procedure to

prepare calcium orthophosphate-based biocomposites by

soaking hydrogels in supersaturated by Ca2? and PO4
3-

ions solutions in order to precipitate CDHA in the hydro-

gels (up to 70 wt% of CDHA could be added to these

biocomposites). This procedure was applied to chitosan;

the 3D shape of the resulting biocomposite was controlled

by the shape of the starting chitosan hydrogel [698].

Another research group developed biocomposites based on

in situ calcium orthophosphate mineralization of self-

assembled supramolecular hydrogels [699].

Various biocomposites of CDHA with glutamic and

aspartic amino acids, as well as poly-glutamic and

poly-aspartic amino acids have been prepared and inves-

tigated by Bigi et al. [279, 281, 700–703]. These

(poly)amino acids were quantitatively incorporated into

CDHA crystals, provoking a reduction of the coherent

length of the crystalline domains and decreasing the

crystal sizes. The relative amounts of the (poly)amino

acid content in the solid phase, determined through HPLC

analysis, increased with their concentration in solution up

to a maximum of about 7.8 wt% for CDHA/aspartic acid

and 4.3 wt% for CDHA/glutamic acid biocomposites. The

small crystal dimensions, which implied a great surface

area, and the presence of (poly)amino acids were sug-

gested to be relevant for possible application of these

biocomposites for hard tissues replacement [279, 281,

700–703].

Recently, BCP (HA ? b-TCP)/agarose macroporous

scaffolds with controlled and complete interconnection,

high porosity, thoroughly open pores, and tailored pore size

were prepared for tissue engineering application [704,

705]. Agarose, a biodegradable polymer, was selected as

the organic matrix, because it was a biocompatible

hydrogel, which acted as gelling agent leading to strong

gels and fast room temperature polymerization. Porous

scaffolds with the designed architecture were manufactured

by combining a low-temperature shaping method with

stereo-lithography and two drying techniques. The bio-

compatibility of this BCP/agarose system was tested with

mouse L929 fibroblast and human Saos-2 osteoblast during

different colonization times [704].

Fibrin sealants are non-cytotoxic, fully resorbable, bio-

logical matrices that simulate the last stages of a natural

coagulation cascade, forming a structured fibrin clot similar

to a physiological clot [706]. Biocomposites of calcium

orthophosphates with fibrin sealants might develop the

clinical applications of bone substitutes. The 3D mesh of

fibrin sealant interpenetrates the macro- and micro-porous

structure of calcium orthophosphate ceramics [9]. The

physical, chemical, and biological properties of calcium

orthophosphate bioceramics and the fibrin glue might be

cumulated in biocomposites, suitable for preparation of

advanced bone grafts [707–718].

Furthermore, there are biocomposites of calcium

orthophosphates with bisphosphonates [719], silk fibroin

(that is a hard protein extracted from silk cocoon) [249,

562–564, 569, 570, 720–725], chitosan ? silk fibroin

[726], fibronectin [727], and casein phosphopeptides [728].

Besides, the reader’s attention is pointed out to an inter-

esting approach to crystallize CDHA inside poly(allyl-

amine)/poly(styrene sulfonate) polyelectrolyte capsules

resulting in empty biocomposite spheres of micron size

[729]. Depending on the amount of precipitated CDHA, the

thickness of the shell of biocomposite spheres can be

varied between 25 and 150 nm. These biocomposite

11 Alginates are a family of unbranched binary copolymers with a

structure comprising 1–4 glycosidically linked b-D-mannuronic acid

and its C-5 epimer a-Lguluronic acid [595].
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capsules might find application as medical agents for bone

repairing and catalytic microreactors [729].

Injectable bone substitutes

IBS represent ready-to-use suspensions of calcium ortho-

phosphate powder(s) in a liquid carrier phase. They look

like viscous pastes with the rheological properties, suffi-

cient to inject them into bone defects by means of surgical

syringes and needles. Usually, the necessary level of vis-

cosity is created by the addition of water-soluble polymers

[104, 730, 731]. Therefore the majority of calcium ortho-

phosphate-based IBS formulations might be considered as

a subgroup of calcium orthophosphate/polymer biocom-

posites. For example, an IBS was described that involved a

silanized hydroxyethylcellulose carrier with BCP, consist-

ing of HA and b-TCP [732]. The suspension is liquid at pH

within 10–12, but gels quickly at pH \ 9. Injectable

composites can be formed with b-TCP to improve

mechanical integrity [453]. Similarly, Bennett et al. [733]

showed that a polydioxanone-co-glycolide-based biocom-

posite reinforced with HA or b-TCP can be used as an

injectable or moldable putty. During the crosslinking

reaction following injection, carbon dioxide is released

allowing the formation of interconnected pores.

Daculsi et al. [84, 731, 734–740] developed viscous IBS

biocomposites based on BCP (60% HA ? 40% b-TCP)

and 2% aqueous solution of hydroxypropylmethylcellulose

(HPMC) that was said to be perfectly biocompatible,

resorbable, and easily fitted bone defects (due to an initial

plasticity). The best ratio BCP/HPMC aqueous solution

was found to be at *65/35 w/w. To extend this subject

further, this type of IBS might be loaded by cells [741] or

by microparticles [742].

The advanced characteristics of IBS come from their

good mechanical properties and biocompatibility and the

ease of tissue regeneration. Although the fabrication of IBS

biocomposites in most cases improved the mechanical

properties of the system and provided the material with

resistance to fluids penetration, these achievements were

limited by the amount of polymer that can be added to the

paste. For instance, Mickiewicz et al. [463] reported that

after a critical concentration (that depended on the type and

molecular weight of the polymer, but was always around

10%), the polymer started forming a thick coating on the

crystal clusters, preventing them from interlocking, origi-

nating plastic flow and, as a consequence, decreasing

mechanical properties. More to the point, Fujishiro et al.

[456] reported a decrease in mechanical properties with

higher amounts of gel, which was attributed to the for-

mation of pores due to leaching of gelatin in solution.

Therefore, it seems that mechanical properties, although

improved by the addition of polymers, are still a limitation

for the application of calcium orthophosphate-based IBS

formulations in load-bearing sites [146].

Biocomposites with glasses, inorganic materials,

and metals

In order to overcome the problem of poor mechanical

properties of calcium orthophosphate bioceramics, suitable

biocomposites of calcium orthophosphates reinforced by

various inorganic materials, glasses, and metals have been

developed. Such biocomposites are mainly prepared by the

common ceramic processing techniques such as thermal

treatment after kneading [743–745], powder slurry coating

[746], and metal–sol mixing [747]. For example, HA was

combined with Bioglass� (Novabone Products, Alachua,

FL) [748, 749] and with other glasses [750] to form glass–

ceramics biocomposites. Other reinforcement materials for

calcium orthophosphates are differentiated by either shape

of the fillers, namely, particles [751, 752], platelets [753,

754], whiskers [484, 755, 756], fibers [757–759], or their

chemical composition: zirconia and/or PSZ [250, 743–746,

755, 760–793], alumina [250, 751, 754, 793–802], titania

[307, 747, 752, 803–817], other oxides [818–821], silica

and/or glasses [822–829], wollastonite [171, 830–837],

various metals and alloys [759, 794, 817, 838–851], cal-

cium sulfate [852–854], silicon carbide [756], barium

titanate [855], zeolite [856], and several other materials

[271, 857–859]. All these materials have been added to

calcium orthophosphate bioceramics to improve its reli-

ability. Unfortunately, significant amounts of the rein-

forcing phases are needed to achieve the desired properties

and, as these materials are either bioinert, significantly less

bioactive than calcium orthophosphates or not bioresorb-

able, the ability of the biocomposites to form a stable

interface with bone is poorer if compared with calcium

orthophosphate bioceramics alone. Due to the presence of

bioinert compounds, such formulations might be called

bioinert/bioactive composites [822]. The ideal reinforce-

ment material would impart mechanical integrity to a

biocomposite at low loadings, without diminishing its

bioactivity. As clearly seen from the amount of the refer-

ences, apatite/zirconia biocomposites are most popular

ones among the researchers.

There are several types of HA/glass biocomposites. The

first one is also called bioactive glass–ceramics. A dense

and homogeneous biocomposite was obtained after a heat

treatment of the parent glass, which comprised *38 wt%

oxy-FAP (Ca10(PO4)6(O,F)2) and *34 wt% b-wollastonite

(CaO � SiO2) crystals, 50–100 nm in size in a MgO–CaO–

SiO2 glassy matrix [171, 830–837]. A-W glass–ceramics is

an assembly of small apatite particles effectively reinforced

by wollastonite. The bending strength, fracture toughness,

and Young’s modulus of A-W glass–ceramics are the

2364 J Mater Sci (2009) 44:2343–2387

123



highest among bioactive glass and glass ceramics, enabling

it to be used in some major compression load-bearing

applications, such as vertebral prostheses and iliac crest

replacement. It combines a high bioactivity with the suit-

able mechanical properties [860]. b-TCP/wollastonite

biocomposites are also known [861–863]. More compli-

cated biocomposites have been developed as well. For

example, (A-W)/HDPE composite (AWPEX) biomaterials

have been designed to match the mechanical strength of

human cortical bone and to provide favorable bioactivity,

with potential use in many orthopedic applications [864–

867]. Other examples comprise wollastonite-reinforced

HA/Ca polycarboxylate [868] and glass-reinforced HAP/

polyacrylate [869] biocomposites.

HA/glass biocomposites can be prepared by simple

sintering of appropriate HA/glass powder mixtures [870–

873]. If sintering is carried out below 1000 �C, HA does

not react with the bioactive glass [871, 872] or this reaction

is limited [873]. Besides, reaction between HA and glasses

depends on the glass composition. In another approach,

small quantities of bioactive glass have been added to HA

bioceramics in order to improve densification and/or

mechanical properties [26]. In addition, biocomposites

might be sintered from HA and silica [822]. In general,

bioactive glass–ceramics maintain a high strength for a

longer time than HA bioceramics under both the in vitro

and in vivo conditions [829, 834].

Carbon nanotubes with their small dimensions, a high-

aspect-ratio (length-to-diameter) as well as the exceptional

mechanical properties, including extreme flexibility and

strength, significant resistance to bending, high resilience

and the ability to reverse any buckling of the tube, have the

excellent potential to accomplish necessary mechanical

properties [874]. Recent studies have even suggested that

they may possess some bioactivity [875–878]. However,

due to a huge difference in shapes, it is a challenge to

prepare homogeneous mixtures of calcium orthophosphates

and carbon nanotubes: ‘‘one can imagine something similar

to achieving a homogeneous mixture of peas and spa-

ghetti’’ [874, p. 7]. Additionally, non-functionalized carbon

nanotubes tend to agglomerate and form bundles; besides,

they are soluble in neither water nor organic solvents.

Chemical functionalization allows carbon nanotubes to be

dispersed more easily, which can improve interfacial

bonding with calcium orthophosphates [247, 874].

Different strategies might be employed to prepare cal-

cium orthophosphate/carbon nanotubes biocomposites. For

example, apatites might be chemically synthesized using

carboxyl-functionalized carbon nanotubes as a matrix

[242–247]. Physico-chemical characterization of these

biocomposites showed that nucleation of CDHA initiates

through the carboxyl group [247]. Hot-pressing [879],

plasma spraying [880], and laser surface alloying [881–883]

techniques might be applied as well. The research on

calcium orthophosphate (up to now, only apatites)/carbon

nanotube biocomposites is in its early stages, with the first

papers published in 2004 [246, 433]. Due to this reason, the

mechanical property data for such biocomposites have

been reported only in few papers; however, these results

are encouraging. For example, Chen et al. [883] performed

nanoindentation tests on biocomposite coatings to give

hardness and Young’s modulus values. They found that the

higher the loading of nanotubes, the better the properties.

Namely, at 20 wt% loading, hardness was increased by

43% and Young’s modulus by 21% over a single-phase HA

coating [883]. Scratching test results indicated that as

alloyed HA biocomposite coatings exhibited improved

wear resistance and lower friction coefficient with

increasing the amount of carbon nanotubes in the precursor

material powders [882]. Additionally, measurements of the

elastic modulus and hardness of the biocomposite coatings

indicated that the mechanical properties were also affected

by the amount of carbon nanotubes [881]. Another research

group performed compression tests on bulk HA/nanotubes

biocomposites and found an increase in strength over sin-

gle-phase HA [246]. However, the highest compressive

strength they achieved for any material was only 102 MPa,

which is similar to that of cortical bone but much lower

than the typical values for dense HA [874]. More complex

formulations, such as poly-L-lysine/HA/carbon nanotube

hybrid nanocomposites, have also been developed [884].

Unfortunately, carbon nanotubes are very stable sub-

stances; they are neither bioresorbable nor biodegradable.

Therefore, during the in vivo bioresorption, the nanotubes

will get into the human body from the biocomposite matrix

and might cause uncertain health problems. Except of

carbon nanotubes, carbon fibers of microscopic dimensions

are also used to reinforce HA bioceramics [885–887].

The main disadvantage of HA reinforced by PSZ is

degradation of zirconia in wet environments [755, 760,

761, 783]. Transformation of the tetragonal ZrO2 to the

monoclinic phase on the surface results in formation of

microcracks and consequently lowers the strength of the

implant [888, 889].

An HA-based biocomposite reinforced with 20 vol.% of

Ti particles was fabricated by hot-pressing [840]. Besides,

calcium orthophosphates/Ti biocomposites might be pre-

pared by powder metallurgy processing [842–844]. At high

temperatures, the presence of Ti metal phase was found to

promote dehydration and decomposition of HA into b-TCP

and TTCP [840, 842] or partial formation of b-TCP and

calcium titanate instead of HA [554, 843, 844]. Comparing

with pure HA bioceramics manufactured under the same

conditions, the HA/Ti biocomposites possessed a higher

fracture toughness, bending strength, work of fracture,

porosity, and lower elastic modulus, which is more suitable
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for biomedical applications. However, the mechanical

properties appeared to be not high enough to use HA/Ti

biocomposites in load-bearing applications. Luckily, the

histological evaluations revealed that HA/Ti biocomposites

could be partially integrated with newborn bone tissues

after 3 weeks and fully osteointegrated at 12 weeks in vivo

[840]. Similar findings had been earlier made for HA

bioceramics reinforced by addition of silver particulates

(5–30 vol.%) and subsequent sintering of the HA/Ag

powder compacts [838, 839]. Other studies on calcium

orthophosphate/Ti biocomposites are available elsewhere

[845–848].

To conclude this part, biocomposites consisting of cal-

cium orthophosphates only should be briefly described.

First of all, BCP itself, consisting of HA and a- or b-TCP,

should be mentioned [23]. In the 1980s, BCP was called as

‘‘TCP ceramics complexed with HA’’ [890]. More to the

point, 70% HA-powder ? 30% HA-whisker biocomposites

have been fabricated by pressureless sintering, hot-press-

ing, and hot-isostatic pressing. These biocomposites were

found to exhibit an improved toughness, attaining the lower

fracture-toughness limit of bone without a decrease of

bioactivity and biocompatibility [891, 892]. Besides, a dual

HA biocomposite that combined two HA materials with

different porosities: HA with 75% porosity, for bone

ingrowth and HA with 0% porosity, for load-bearing was

manufactured. This dual HA biocomposite appeared to be

suitable for use as an implant material for spinal interbody

fusion as a substitute for iliac bone grafts, which could

eliminate the disadvantages associated with autograft har-

vesting [893]. A biodegradable nanocomposite porous

scaffold comprising a b-TCP matrix and HA nanofibres

was developed and studied for load-bearing bone tissue

engineering. HA nanofibres were prepared by a biomimetic

precipitation method, the inclusion of which significantly

enhanced the mechanical property of the scaffold, attaining

a compressive strength of 9.87 MPa, comparable to the

high-end value (2–10 MPa) of cancellous bone [894].

Functionally graded biocomposites

Although, in most cases, the homogeneous distribution of

filler(s) inside a matrix is required [355], there are com-

posites, where this is not the case. For example,

functionally graded materials (commonly referred to as

FGM) might be characterized by the intentional variations

in composition and/or structure gradually over volume,

resulting in corresponding changes in the properties of the

composite. The main feature of such materials is the

almost continuously graded composition that results in

two different properties at the two ends of the structure.

Such composites can be designed for specific function

and applications. Various approaches based on the bulk

(particulate processing), preform processing, layer pro-

cessing, and melt processing are used to fabricate the

functionally graded materials.

Bone is a biologically formed composite with variable

density ranging from very dense and stiff (the cortical

bone) to a soft and foamed structure (the trabecular bone).

Normally the outer part of long bones consists of cortical

bone with the density decreasing toward the core, where

the trabecular bone is found. The trabecular bone is porous

and the porosity is filled with osseous medulla [21, 22].

This brief description clearly indicates that bones are nat-

ural functionally graded composites.

The concept of FGM has been increasingly used for

biomaterial design and currently it remains to be an

important area of the research. For example, powder met-

allurgy methods have been used to fabricate HA/Ti

functionally graded biocomposite dental implants offering

the biocompatible HA on the tissue side and titanium on

the outer side for mechanical strength [895–897]. The

graded structure in the longitudinal direction contains more

Ti in the upper section and more HA in the lower section.

Actually, in the upper section the occlusal force is directly

applied and Ti offers the required mechanical performance;

in the lower part, which is implanted inside the bone, the

HA confers the bioactive and osteoconductive properties to

the material [895]. Since the optimum conditions of sin-

tering for Ti and HA are very different, HA/Ti functionally

graded biocomposites are difficult to fabricate and the

sintering conditions for their mixtures are obliged to

compromise. The expected properties of this implant are

shown in Fig. 3 [896]. Functionally graded HA/Ti bio-

composite coatings might be prepared by rf-plasma

spraying [898]. A functionally graded HA/PMMA bio-

composite was developed based on sedimentary HA

distributions in a PMMA viscous fluid, using a centrifuge

to avoid stress convergence on the interface. The stress–

strain curves of this biocomposite showed sufficient

strength for medical application along with the relaxation

of brittleness and fragility [448]. A three-layered graded

biocomposite membrane, with one face of 8% nano-car-

bonated CDHA/collagen/PLGA porous membrane, the

opposite face of pure PLGA non-porous membrane, the

middle layer of 4% nano-carbonated CDHA/collagen/

PLGA as the transition, was prepared through the layer-by-

layer casting method [512]. HA/glass FGM layers were

coated on titanium alloy (Ti–6Al–4V) substrates. The

design of these layers and the use of the glass were for

achieving a strong bonding between the FGM-layered

coatings and the substrates [899, 900]. More to the point, Ti

alloy substrate has been combined with HA granules spread

over the surface [901].

Functionally graded b-TCP/FA biocomposites combine

the biostability of FA with bioresorbable properties of
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b-TCP [902]. An interesting multilayered (each layer of

1-mm-thick) structure consisting of b-TCP/FA biocom-

posites with different molar ratios has been prepared,

giving rise to formation of an FGM (Fig. 4). After

implantation, the preferential dissolution of b-TCP phase

would result in functionally gradient porosity for bone

ingrowth [903]. HA/zirconia-graded biocomposites were

fabricated to enhance the mechanical properties of HA

while retaining its bone bonding property [791]. TiO2 and

HA were found to be a good combination for FGM pro-

viding both a gradient of bioactivity and a good mechanical

strength [903]. Besides, graded HA/CaCO3 biocomposite

structures for bone ingrowth have been developed as well

[904]. Functionally graded composite skull implants con-

sisting of polylactides, carbonateapatite, and CaCO3 are

known as well [318, 319]. The research in this field is quite

promising but currently the mechanical properties of the

available biocomposites are clearly in excess of the prop-

erties of bone [147].

Biosensors

A biosensor is a device for detection of an analyte that

combines a biological component with a physicochemical

detector component. Very briefly, it consists of three parts:

a sensitive biological element; a transducer or a detector

element that transforms the signal resulting from the

interaction of the analyte with the biological element into

another signal; and associated electronics that is primarily

responsible for the display of the results in a user-friendly

way [905].

The surface of biologically relevant calcium orthophos-

phates (CDHA, HA, a-TCP, b-TCP) has an excellent ability

of adsorption for functional biomolecules such as proteins,

albumins, DNA, and so on. Therefore, some calcium

orthophosphate-based biocomposites and hybrid biomate-

rials were found to be applicable for biosensor

manufacturing [288, 542, 851, 884]. For example, forma-

tion of poly-L-lysine/HA/carbon nanotube hybrid nano-

particles was described, and a general design strategy for an

immunosensing platform was proposed based on adsorption

of antibodies onto this nanocomposite [884]. In another

article, a hybrid material formed by assembling of gold

nanoparticles onto nano-HA was employed for the interface

design of piezoelectric immunosensor, on which the anti-

bodies were bound. The developed sensing interface

appeared to possess some advantages, such as activation-

free immobilization and high antigen-binding activities of

antibodies, over using either nano-HA or gold nanoparticles

alone [851]. Until now, just a few papers have been pub-

lished on biosensor application of calcium orthophosphate-

based biocomposites. Presumably, this subject will be

Fig. 3 Expected properties of functionally graded biocomposite

dental implant. For comparison, the upper drawing shows a

functionally graded implant and the lower one shows a conventional

uniform implant. The properties are shown in the middle. The implant

with the composition changed from a biocompatible metal (Ti) at one

end (left in the figure), increasing the concentration of bioceramics

(HA) toward 100% HA at the other end (right in the figure), could

control both mechanical properties and biocompatibility without an

abrupt change due to the formation of discrete boundary. This FGM

biocomposite was designed to provide more titanium for the upper

part where occlusal force is directly applied and more HA for the

lower part, which is implanted inside the jawbone. Reprinted from

Ref. [896] with permission

Fig. 4 A schematic diagram showing the arrangement of the FA/b-

TCP composite layers: a non-symmetric FGM, b symmetric FGM.

Reprinted from Ref. [902] with permission
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further developed in the future and, perhaps, sometime

implantable biosensors will be designed to perform the

continuous concentration monitoring of the important bio-

logical macromolecules. Possibly, those biocencors might

be able to use an electric power, generated by DCPD/

polymer composite-based battery devices [413, 414].

Interaction between the phases in calcium

orthophosphate-based biocomposites

An important aspect that should be addressed in details is a

mutual interaction between calcium orthophosphates and

other phases in biocomposites and hybrid biomaterials. In

general, an interaction between the phases in any com-

posite can be either mechanical, when it results from radial

compression forces exerted by the matrix on the filler

particles (e.g., developed during cooling due to thermal

contraction), or chemical, when the reactivity of the filler

toward the matrix has an important role. In the latter case,

it is important to distinguish a physical interaction from

chemical bonding [225]. According to Wypych [906],

physical interaction is more or less temporary, implicating

hydrogen bonding or van der Waals forces, whereas

chemical bonding is stronger and more permanent,

involving covalent bond formation. Thus, a chemical

interfacial bond between the phases is preferred to achieve

a higher strength of a composite. The magnitude of the

interfacial bond between the phases determines how well a

weak matrix transmits stress to the strong fibers. However,

while a bond between the matrix and reinforcement must

exist for the purpose of stress transfer, it should not be so

strong that it prevents toughening mechanisms, such as

debonding and fiber pullout [874].

There is still doubt as to the exact bonding mechanism

between bone minerals (biological apatite) and collagen,

which undoubtedly plays a critical role in determining the

mechanical properties of bones. Namely, bone minerals are

not directly bonded to collagen, but through non-collage-

nous proteins that make up *3% of bones (Table 1) and

provide with active sites for biomineralization and for

cellular attachment [32]. In bones, the interfacial bonding

forces are mainly ionic bonds, hydrogen bonds, and

hydrophobic interactions, which give the bones the unique

composite behavior [49]. There is an opinion that, opposite

to bones, there is no sign of chemical bonding between

phases in conventional calcium orthophosphate/collagen

biocomposites, probably due to a lack of suitable interfa-

cial bonding during mixing [35]. However, this is not the

case for phosphorylated collagens [633]. Anyway, Fourier-

transformed infrared (FTIR) spectra of some calcium

orthophosphate-based composites and collagen films were

measured and transformed into absorption spectra using the

Kramers-Kronig equation to demonstrate energy shifts of

residues on the HA/collagen interface. After comparing

FTIR spectra of biocomposites and collagen films in detail,

red shifts of the absorption bands for C–O bonds were

observed in the spectra of the biocomposites. These red

shifts were described as a decrease in bonding energies of

C–O bonds and assumed to be caused by an interaction to

Ca2? ions located on the surfaces of apatite nanocrystals,

as shown in Fig. 5 [628]. Another proof of a chemical

interaction between CDHA and collagen fibers was also

evaluated in FTIR spectra of CDHA/collagen biocompos-

ites, in which a shift of the band corresponding to –COO-

stretching from 1340 to 1337 cm-1 was observed [594,

595]. More to the point, nucleation of CDHA crystals onto

collagen through a chemical interaction with carboxylate

Fig. 5 A schematic diagram of

the relation between self-

organization (directional

deposition of HA on collagen)

and interfacial interaction in

biocomposites. Direction of

interaction between HA and

collagen is restricted by

covalent bond between COO

and Ca(2) to maintain regular

coordination number of 7.

Reprinted from Ref. [628] with

permission
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groups of collagen macromolecules has been reported

[907–909].

FTIR spectroscopy seems to be the major investigation

tool of a possible chemical bonding among the phases in

calcium orthophosphate-based biocomposites and hybrid

biomaterials [220, 280, 287, 289, 382, 420, 502, 517, 526,

529, 536, 539, 541, 544, 549, 556, 565, 570, 595, 633, 666,

667, 726, 910, 911]. For example, the characteristic bands

at 2918, 2850, and 1472 cm-1 for the hydrocarbon back-

bone of PE appeared to have zero shift in an HA/PE

biocomposite. However, in the case of polyamide, some of

the FTIR-bands indicated that the polar groups shifted

apparently: the bands at 3304, 1273, and 692 cm-1 derived

from stretching of N–H, stretching of C–N–H, and

vibrating of N–H moved to 3306, 1275, and 690 cm-1 in

an HA/polyamide biocomposite, respectively. Both

stretching (3568 cm-1) and vibrating (692 cm-1) modes of

hydroxyl in HA moved to 3570 and 690 cm-1 in the HA/

polyamide buicomposite, respectively, indicating the for-

mation of hydrogen bonds. Besides, the bands at 1094 and

1031 cm-1 of PO4 modes also shifted to 1093 and

1033 cm-1 in the HA/polyamide biocomposite. The bands

shift in a fingerprint area indicated that the hydroxyl and

orthophosphate on the surface of HA might interact with

plentiful carboxyl and amino groups of polyamide through

nucleophilic addition [220]. Comparable conclusions were

made for nano-HA/PVA [541], CDHA/alginate [595],

ACP/PPF [420], HA/maleic anhydride [289], and b-TCP/

PLLA [382] biocomposites, where a weak chemical bond

was considered to form between Ca2? ions located on the

nano-HA, CDHA, ACP, HA, or b-TCP surface, respec-

tively, and slightly polarized O atoms of C=O bonds in the

surrounding bioorganic compounds. Schematically, this

chemical interaction is shown in Fig. 6 [595].

Except of FTIR spectroscopy, other measurement tech-

niques are also able to show some evidences of a chemical

interaction between calcium orthophosphates and other

compounds in biocomposites [280, 382, 536, 539, 541, 911–

913]. For example, for CDHA/alendronate nanocrystals

such evidences were observed by thermogravimetric anal-

ysis: DTG plots of the nanocrystals appeared to be quite

different from those obtained from mechanical mixtures of

CDHA and calcium alendronate with similar compositions

[912]. Analogous DTG results were obtained for nano-HA/

PVA [541]. In the case of nano-HA/polyamide biocom-

posites, a hydrogen bonding between the phases was

detected by differential scanning calorimetry technique

[536]. Another example comprises application of the

dynamic mechanical analysis to investigate softening

mechanism of b-TCP/PLLA biocomposites [382]. In the

case of nano-HA/PVAP composites, the indirect evidences

of chemical bonding between the phases were found by

X-ray diffraction and thermogravimetric analysis [280]. A

strong structural correlation between the orientation of FA

crystallites and the gelatin within the FA/gelatin composite

spheres was discovered that indicated to a substantial reor-

ganization of the macromolecular matrix within the area of a

growing aggregate [366].

By means of the X-ray photo-electronic spectroscopy

(XPS) technique, binding energies of Ca, P, and O atoms

were found to have some differences between nano-HA

(Ca, 350.5 and 345.5; O, 530.2; P, 132.5 eV) and nano-HA/

konjac glucomannan/chitosan biocomposite (Ca, 352.1 and

347.4; O, 531.2; P, 133.4 eV), respectively [549]. Further

measurements by FTIR and X-ray diffraction revealed that

nano-HA was mainly linked with konjac glucomannan and

chitosan by hydrogen bonding among OH- and PO4
3- of

nano-HA and –C=O and –NH of konjac glucomannan and

chitosan copolymer and there was a stable interface formed

between the three phases in the biocomposite. Meanwhile,

coordinate bonding might be formed between Ca2? and

–NH. Stable interfaces have been formed among the three

phases in a biocomposite [549]. In HA/collagen biocom-

posites, a covalent bond formation between Ca2? of HA

and RCOO- of collagen molecules was found by XPS

[503]. Similar XPS observations were also made for sev-

eral other calcium orthophosphate-based biocomposites

[529, 556, 565].

The interaction and adhesion between calcium ortho-

phosphate fillers and respective matrixes have a significant

effect on the properties of particulate-filled reinforced

materials, being essential to transfer the load between the

phases and thus improve the mechanical performance of

the composites [287]. However, for the substantial amount

of the biocomposites discussed in this review, the inter-

action between the phases is mechanical in nature. This is

because the matrix often consists of compounds with no

functional groups or unsaturated bonds, which can form

ionic complexes with the constituents of calcium ortho-

phosphates. Obviously, less coupling exists between non-

polar polymers and calcium orthophosphate ceramic par-

ticles. Therefore, polymers with functional groups pendant
Fig. 6 A schematic diagram of Ca2? ion binding with alginate

chains. Reprinted from Ref. [595] with permission
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to the polymer backbone, which can act as sites for

bridging to calcium orthophosphates, are more promising

in this respect [49]. Besides, the surface of calcium or-

thophosphates might be modified as well [116, 416, 417,

552, 914, 915]. In order to improve the situation, various

supplementary reagents are applied. Namely, if the primary

effect of a processing additive is to increase the interaction

between the phases, such an additive can be regarded as a

coupling agent [916]. Coupling agents establish chemical

bridges between the matrix and the fillers, promoting the

adhesion between the phases. In many cases, their effect is

not unique, influencing also the rheology of composites

[225].

Optimization of biocomposite properties with coupling

agents is currently an important area of the research. The

control and development of molecular-level associations of

polymer with calcium orthophosphates is suggested to be

significant for the resulting mechanical responses in the

composites. It appears that a fundamental molecular

understanding of interfacial behavior in biocomposite

systems is an area not sufficiently addressed in the litera-

ture. Various experimental characterization techniques

using electron microscopy, vibrational spectroscopy, X-ray

diffraction, scanning probe microscopy, and others are used

routinely to characterize these materials besides mechani-

cal property characterization. In addition, atomic scale

models for simulating the phase interaction and predicting

responses in the novel material systems, where nanostruc-

ture and nanointerfaces are included, are important to

understand and predict the load deformation behavior

[147].

A hexamethylene diisocyanate coupling agent was used

to bind PEG/PBT (PolyactiveTM) block copolymers [234]

and other polymers [910] to HA filler particles. Thermo-

gravimetric and infrared analysis demonstrated that the

polymers were chemically bonded to the HA particles

through the isocyanate groups, making it a suitable

approach to improve the adhesion [910]. Other researchers

used glutaraldehyde as a crosslinked reagent in various

calcium orthophosphate-based biocomposites [388, 392,

500, 502, 503, 520, 525, 585, 621, 646, 649, 917]. The

interfacial bonding between calcium orthophosphates and

other components might be induced by using various

coupling agents and surface modifiers, such as silanes [192,

234, 337, 540, 918–923], zirconates [225, 337, 339, 914,

924], titanates [225, 337, 924], phosphoric acid [543],

alkaline pretreatment [722, 725], polyacids [115, 116, 234],

and other chemicals. Besides, some polymers might be

grafted onto the surface of calcium orthophosphates [552].

Structural modifications of the polymeric matrices, for

instance, with the introduction of acrylic acid [195, 234,

919, 920], have also proved to be effective methods. For

example, application of polyacids as a bonding agent for

HA/PolyactiveTM composites caused the surface-modified

HA particles to maintain better contact with the polymer at

fracture and improved mechanical properties [115, 116,

234]. The use of titanate and zirconate coupling agents

appeared to be very dependent on the molding technique

employed [225]. Silane-coupled HA powders were tested

before applying them as fillers in biodegradable composites

[921–923]. This treatment allowed HA withstanding the

attack of water without impairing overall bioactivity.

Besides, chemically modified reinforcement phase–matrix

interface was found to improve the mechanical properties

of the biocomposites. Examples of such interface-modified

biocomposites include chemically coupled HA/PE [919,

920], chemically formed HA/Ca poly(vinylphosphonate)

[283], and PLA/HA fibers [184]. These biocomposites are

able to consume a large amount of energy in the fracture.

The action of some coupling agents was found to

combine two distinct mechanisms: (i) crosslinking of the

polymeric matrix (valid for zirconate and titanate coupling

agents) and (ii) improvement of the interfacial interactions

between the major phases of the composites. This interfa-

cial adhesion improvement appeared to be much dependent

on the chemical nature (pH and type of metallic center) of

the coupling agents [337]. Several studies claimed that

silanes do interact with HA [192, 919–923]. It was shown

that a silicon-containing inter-phase existed between HA

and PE, which promoted the chemical adhesion between

the HA particles and the polymer. A silane-coupling agent

also facilitated penetration of PE into cavities of individual

HA particles, which resulted in enhanced mechanical

interlocking at the matrix-reinforcement interface [919,

920].

Addition of adhesion promoting agents might be an

alternative to improve the interaction between the fillers and

the matrix. For example, Morita et al. [925] used incorpo-

ration of 4-methacryloyloxyethyl trimellitate anhydride to

promote adhesion of the polymer to HA. In another study,

phosphoric ester was added to the liquid component of the

formulation [926]. Both the strength and the affinity index of

biocomposites were found to increase, probably due to the

effects of copolymerization.

Possible interactions between BCP and HPMC have

been investigated in IBS composites [736, 737, 927]. After

mixing, there was a decrease in the mean diameter of BCP

granules and this influenced the viscosity of the paste.

Dissolution of grain boundaries of b-TCP crystals and

precipitation of CDHA on HA crystal surface was found

during the interaction between BCP and HPMC in aqueous

solutions. Both phenomena were responsible for the

observed granulometric changes [736, 737]; however,

within the sensitivity of the employed measurement tech-

niques, no chemical bonding between BCP and HPMC was

detected [927].
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A coprecipitation method was used to prepare CDHA/

chitosan biocomposites [672]. Growth of CDHA crystals

was inhibited by organic acids with more than two car-

boxyl groups, which strongly bind to CDHA surfaces via a

COO–Ca bond. Transmission electron microscopy images

revealed that CDHA-formed elliptic aggregates with

chemical interactions (probably coordination bond)

between Ca on its surface and amino groups of chitosan;

the CDHA nanocrystals were found to align along the

chitosan molecules, with the amino groups working as the

nucleation sites [672]. Formation of calcium crosslinked

polymer carboxylate salts was suggested during the setting

of calcium orthophosphate cement (TTCP ? DCPA)/

polyphosphazane biocomposites; the chemical involvement

of the polymer in the cement setting was concluded based

on the results of pH monitoring [460–462].

A chemical bond between the phases was presumed in

PCL/HA composites, prepared by the grafting technique

[350]; unfortunately, no strong experimental evidences

were provided. In another study, CDHA/poly(a-hydroxy-

ester) composites were prepared by a low-temperature

chemical route [324]. In that study, pre-composite struc-

tures were prepared by combining a-TCP with PLA, PLGA

and copolymers thereof. The final biocomposite structure

was achieved by in situ hydrolysis of a-TCP to CDHA

performed at 56 �C either in solvent cast or pressed pre-

composites. That transformation occurred without any

chemical reaction between the polymer and calcium

orthophosphates, as it was determined by FTIR spectros-

copy [324].

In nearly every study on HA/carbon nanotubes bio-

composites, the nanotubes have been functionalized before

combining them with HA. Most researchers have done this

by oxidation [242–246], although non-covalent function-

alizing with sodium dodecylsulfate [246] and coating the

nanotubes by a polymer [928] before combining them with

HA have also been reported. Several studies by transmis-

sion electron microscopy have shown evidences that the

functionalization has enhanced interaction between carbon

nanotubes and HA [245, 246, 929].

If calcium orthophosphate-based biocomposites are able

to sustain a high-temperature sintering (valid for the for-

mulations consisting of inorganic components only), an

inter-diffusion of chemical elements will take place

between the phases. Such effect has been detected by

energy-dispersive X-ray spectroscopy in HA/TiO2 bio-

composite particles with partial formation of calcium

titanates; this process was found to be favorable to

enhancing the cohesive strength of particles in the

composite coating [817]. A similar high-temperature

interaction between HA and zirconia [743, 768], as well as

between HA and Ti [554, 840, 842–844], was also detec-

ted. Besides, partial decomposition of HA and formation of

different calcium aluminates were detected in HA/Al2O3

biocomposites after sintering at 1200–1300 �C [795, 801,

802].

Bioactivity and biodegradation of calcium

orthophosphate-based biocomposites

The continuous degradation of an implant causes a gradual

load transfer to the healing tissue, preventing stress-

shielding atrophy and stimulates the healing and remodel-

ing of bones. Some requirements must be fulfilled by the

ideal prosthetic biodegradable materials, such as biocom-

patibility, adequate initial strength and stiffness, retention

of mechanical properties throughout sufficient time to

assure its biofunctionality and non-toxicity of the degra-

dation by-products [146]. Generally speaking, bioactivity

(i.e., ability of bonding to bones) of biologically relevant

calcium orthophosphates reinforced by other materials is

usually lower than that of pure calcium orthophosphates

[27, 28, 930].

In general, both bioactivity and biodegradability of any

biocomposite are determined by the same properties of the

constituents. Both processes are very multi-factorial

because, after implantation, the surface of any graft is

rapidly colonized by cells. Much more biology, than

chemistry and material science altogether, is involved into

these very complex processes and many specific details

still remain unknown. In order to simplify the task, the

biodegradability of the biologically relevant calcium

orthophosphates might be described by a chemical disso-

lution in slightly acidic media (calcium orthophosphates

are almost insoluble in alkaline solutions [87–93]), which,

in the case of CDHA, might be described as a sequence of

four successive chemical equations [427, 931, 932]:

Ca10�x HPO4ð Þx PO4ð Þ6�x OHð Þ2�xþ 2� xð ÞHþ

! Ca10�x HPO4ð Þx PO4ð Þ6�x H2Oð Þ2�x
2�xð Þþ ð1Þ

Ca10�x HPO4ð Þx PO4ð Þ6�x H2Oð Þ2�x
2�xð Þþ

! 3Ca3 PO4ð Þ2þ 1� xð ÞCa2þ þ 2� xð ÞH2O ð2Þ

Ca3 PO4ð Þ2þ 2Hþ ! Ca2þ þ 2CaHPO4 ð3Þ

CaHPO4 þ Hþ ! Ca2þ þ H2PO4
� ð4Þ

Strange enough, but the bioactivity mechanism of

calcium orthophosphates is not well described in

literature; therefore, biomaterials researchers [72] are

forced to use a modified scheme for the bioactivity

mechanism of bioactive glasses—the concept introduced

by Prof. Hench [27, 28]. The mechanism of bonding of

bioactive glasses to living tissue involves a sequence of 11

successive reaction steps. The initial five steps occurred on

the surface of bioactive glasses are ‘‘chemistry’’ only,
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whereas the remaining six steps belong to ‘‘biology’’

because the latter include colonization by osteoblasts,

followed by proliferation and differentiation of the cells to

form a new bone that had a mechanically strong bond to the

implant surface (Fig. 7).

Biodegradability of polymers generally depends on the

following factors: (1) chemical stability of the polymer

backbone, (2) hydrophobicity of the monomer, (3) mor-

phology of the polymer, (4) initial molecular weight, (5)

fabrication processes, (6) geometry of the implant, (7)

properties of the scaffold such as porosity and pore diam-

eter [264]. A summary on degradation of PLA and PGA, as

well as that of starch/ethylene vinyl alcohol copolymer

(SEVA) is available in literature [146, p. 798 and p. 803,

respectively], where the interested readers are referred to.

Biodegradation of HA/PLLA and CDHA/PLLA composite

rods in subcutis and medullary cavities of rabbits were

investigated mechanically and histologically; the degrada-

tion was found to be faster for the case of using

uncalcinated CDHA instead of calcinated HA [933]. In a

more detailed study, new bone formation was detected at

2 weeks after implantation, especially for formulations

with a high HA content [934]. More to the point, a direct

contact between bones and these composites without

intervening fibrous tissue was detected in this case [934,

935]. SEVA-C and SEVA-C/HA biocomposites were

found to exhibit a non-cytotoxic behavior [936, 937],

inducing a satisfactory tissue response when implanted as

shown by in vivo studies [937]. Furthermore, SEVA-C/HA

biocomposites induce a positive response on osteoblast-like

cells to what concerns cell adhesion and proliferation

[936].

Both in vitro (the samples were immersed into 1%

trypsin/phosphate-buffered saline solution at 37 �C) and in

vivo (implantation of samples into the posterolateral lum-

bar spine of rabbits) biodegradation have been investigated

for nano-HA/collagen/PLA biocomposites [511]. The

results demonstrated that weight loss increased continu-

ously in vitro with a reduction in mass of 19.6% after

4 weeks. During the experimental period in vitro, the rel-

ative rate of reduction of the three components in this

material was shown to differ greatly: collagen decreased

the fastest, from 40% by weight to 20% in the composite;

HA content increased from 45 to 60%, whereas PLA

changed little. In vivo, the collagen/HA ratio appeared to

be slightly higher near the transverse process than in the

central part of the intertransverse process [511]. These data

clearly demonstrate a biodegradation independence of

various components of biocomposites.

Some challenges and critical issues

The scientific information summarized in this review

represents the recent developments of calcium ortho-

phosphate-based biocomposites and hybrid biomaterials

Fig. 7 The sequence of

interfacial reactions involved in

forming a bond between tissue

and bioactive glasses. The

border between ‘‘dead’’ and

‘‘alive’’ occurs approximately at

stage 6. For want of anything

better, the bioactivity

mechanism of calcium

orthophosphates should also be

described by this scheme with

omitting of several initial

stages, as it was made for HA in

Ref. [72], where three initial

chemical stages of the Hench’s

mechanism were replaced by

partial dissolution of HA.

Reprinted from Ref. [28] with

permission
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from a variety of approaches, starting from conventional

ones to tissue engineering. Such formulations combined

with osteoconductive, osteoinductive factors, and/or

osteogenic cells have gained much interest as a new and

versatile class of biomaterials, and are perceived to be

beneficial in many aspects as bone grafts [32]. However,

current applications of these biomaterials in medicine

and surgery are still remarkably less than might be

expected. In many biomedical applications, research and

testing of such formulations have been introduced and

highly developed but only in a very few cases an

industrial production and commercial distribution of

medical devices partially or entirely made of biocom-

posites have started. The medical application of

biocomposites and hybrid biomaterials requires a better

understanding of the objectives and limitations involved.

Recently, the main critical issues have been summarized

as follows [213]:

• There are not enough reliable experimental and clinical

data supporting the long-term performance of biocom-

posites with respect to monolithic traditional materials.

• The design of biocomposites and hybrid biomaterials is

far more complex than that of conventional monolithic

materials because of the large number of additional

design variables that must be considered.

• The available fabrication methods may limit the

possible reinforcement configurations, may be time

consuming, expensive, highly skilled and may require

special cleaning and sterilization processes.

• There are no satisfactory standards yet for biocompat-

ibility testing of the biocomposite implants because the

ways in which the different components of any

biocomposite interact to living tissues are not com-

pletely understood.

• There are no adequate standards for the assessment of

biocomposite fatigue performance because the fatigue

behavior of such materials is far more complex and

difficult to predict than that of traditional materials

[213].

On the other hand, in spite of an enormous progress in

biocomposite processing, to achieve the desired charac-

teristics researchers still need to develop more advanced

technologies to fabricate a bone-resembling hierarchical

organization over several length scales. Development of

novel bone repair materials depends on the progress in

research into the structure of natural bones. The key issues

are not only to understand the fundamentals of biominer-

alization, but also to translate such knowledge into

practical synthetic pathways to produce better bone grafts.

Unfortunately, when it comes to the fabrication of com-

posites mimicking natural bone from the nanometer to the

micrometer dimensions, there are many key issues,

including the control of morphology, incorporation of

foreign ions, interaction with biomolecules, and assembly

of the organic and inorganic phases, which are still not well

understood. A processing gap between the lower-level

building units and the higher-order architecture could

severely limit the practical application of current calcium

orthophosphate-based biocomposites and hybrid biomate-

rials. Therefore, further substantial research efforts have

been outlined to address the following key challenges [32,

37]:

• Optimizing biocomposite processing conditions.

• Optimization of interfacial bonding and strength equiv-

alent to natural bone.

• Optimization of the surface properties and pore size to

maximize bone growth.

• Maintaining the adequate volume of the construct in

vivo to allow bone formation to take place.

• Withstanding the load-bearing conditions.

• Matching the bioresorbability of the grafts and their

biomechanical properties while forming new bone.

• Understanding the molecular mechanisms by which the

cells and the biocomposite matrix interact with each

other in vivo to promote bone regeneration.

• Supporting angiogenesis and vascularization for the

growth of healthy bone cells and subsequent tissue

formation and remodeling [32, 37].

The aforementioned critical issues have to be solved

before a widespread commercial use of calcium ortho-

phosphate-based biocomposites and hybrid biomaterials

can be made in surgery and medicine.

Conclusions

All types of calcified tissues of humans and mammals

appear to possess a complex hierarchical composite struc-

ture. Their mechanical properties are outstanding

(considering weak constituents from which they are

assembled) and far beyond those, that can be achieved

using the same synthetic materials with present technolo-

gies. This is because biological organisms produce

biocomposites that are organized in terms of both compo-

sition and structure, containing both brittle calcium

orthophosphates and ductile bioorganic components in very

complex structures, hierarchically organized at the nano-,

micro-, and meso-levels. Additionally, the calcified tissues

are always multifunctional, e.g., bone provides structural

support for the body plus blood cell formation. The third

defining characteristic of biological systems, in contrast

with current synthetic systems, is their self-healing ability,

which is nearly universal in nature. These complex struc-

tures, which have risen from millions of years of evolution,
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inspire materials scientists in the design of novel bioma-

terials [938].

Until now, still no reasonable alternative exists to

autogenous bone grafts in surgery. However, the studies

summarized in this review have shown that the proper

combination of a ductile matrix with a brittle, hard, and

bioactive calcium orthophosphate filler offers many

advantages for biomedical applications. Namely, the

desirable properties of some components can compensate

for a poor mechanical behavior of calcium orthophosphate

bioceramics, while in turn the desirable bioactive proper-

ties of calcium orthophosphates improve those of other

phases, thus expanding the possible application of each

material within the body [94]. However, the reviewed lit-

erature clearly indicates that among possible types of

calcium orthophosphate-based biocomposites and hybrid

biomaterials only simple, complex, and graded ones (see

classification of the composites in the section ‘‘General

information on composites and biocomposites’’) have been

investigated. Presumably, a future progress in this subject

will require concentrating efforts on elaboration and

development of hierarchical biocomposites. Furthermore,

following the modern tendency of tissue engineering, a

novel generation of calcium orthophosphate-based bio-

composites and hybrid biomaterials should also contain a

biological living part.

Much study remains to be done on a long way from a

laboratory to clinics, and the success in this field depends

on the effective cooperation of clinicians, chemists, biol-

ogists, bioengineers, and materials scientists.
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rado TR (1999) J Biomed Mater Res Appl Biomater 48:150

437. Sogal A, Hulbert SF (1992) Bioceramics 5:213

438. Harper EJ, Behiri JC, Bonfield W (1995) J Mater Sci Mater Med

6:799

439. Harper EJ, Braden M, Bonfield W (2001) J Mater Sci Mater

Med 11:491

440. Moursi AM, Winnard AV, Winnard PL, Lannutti JJ, Seghi RR

(2002) Biomaterials 23:133

441. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2001) Bioma-

terials 22:1739

442. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Bioma-

terials 23:569

443. Itokawa H, Hiraide T, Moriya M, Fujimoto M, Nagashima G,

Suzuki R, Fujimoto T (2007) Biomaterials 28:4922

444. Cheang P, Khor KA (2003) Mater Sci Eng A 345:47

445. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) J Mater

Sci Mater Med 10:793

446. Deb S, Braden M, Bonfield W (1995) Biomaterials 16:1095

447. Borzacchiello A, Ambrosio L, Nicolais L, Harper EJ, Tanner

KE, Bonfield W (1998) J Mater Sci Mater Med 9:835

448. Ohgaki M, Yamashita K (2003) J Am Ceram Soc 86:1440

449. del Real RP, Padilla S, Vallet-Regi M (2000) J Biomed Mater

Res 52:1

450. Saito M, Maruoka A, Mori T, Sugano N, Hino K (1994) Bio-

materials 15:156

451. Watson KE, Ten Huisen KS, Brown PW (1999) J Mater Sci

Mater Med 10:205

452. Reed CS, Ten Huisen KS, Brown PW, Allcock HR (1996) Chem

Mater 8:440

453. Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG (1999)

J Biomed Mater Res 44:314

454. He S, Yaszemski MJ, Yasko AW, Engel PS, Mikos AG (2000)

Biomaterials 21:2389

455. Ignjatovic N, Jovanovic J, Suljovrujic E, Uskokovic D (2003)

Biomed Mater Eng 13:401

456. Fujishiro Y, Takahashi K, Sato T (2001) J Biomed Mater Res

54:230

457. Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC

(1993) Dent Mater 9:41

458. Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC

(1993) Dent Mater 9:46

459. Dos Santos LA, De Oliveira LC, Rigo ECS, Carrodeguas RG,

Boschi AO, De Arruda ACF (1999) Bone 25:99S

460. Greish YE, Brown PW, Bender JD, Allcock HR, Lakshmi S,

Laurencin CT (2007) J Am Ceram Soc 90:2728

461. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR,

Laurencin CT (2006) J Biomed Mater Res A 77A:416

462. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR,

Laurencin CT (2005) Biomaterials 26:1

463. Mickiewicz RA, Mayes AM, Knaack D (2002) J Biomed Mater

Res 61:581

464. Carey LE, Xu HHK, Simon CG, Takagi S, Chow LC (2005)

Biomaterials 26:5002

465. Miao X, Tan LP, Tan LS, Huang X (2007) Mater Sci Eng C

27:274

466. Lickorish D, Guan L, Davies JE (2007) Biomaterials 28:1495

467. Xu HHK, Simon CG (2005) Biomaterials 26:1337

468. Zhang L, Li Y, Zhou G, Lu GY, Zuo Y (2006) J Inorg Mater

21:1197

469. Ruhe PQ, Hedberg EL, Padron NT, Spauwen PHM, Jansen JA,

Mikos AG (2005) J Biomed Mater Res A 74A:533

470. Guo DG, Sun HL, Xu KW, Han Y (2007) J Biomed Mater Res B

Appl Biomater 82B:533

471. Habraken WJEM, Wolke JGC, Mikos AG, Jansen JA (2006)

J Biomater Sci Polym Edn 17:1057

472. Ruhe PQ, Hedberg-Dirk EL, Padron NT, Spauwen PHM, Jansen

JA, Mikos AG (2006) Tissue Eng 12:789

473. Ruhe PQ, Hedberg EL, Padron NT, Spauwen PHM, Jansen JA,

Mikos AG (2003) J Bone Joint Surg (Am) 85A(Suppl 3):75

474. Ruhe PQ, Boerman OC, Russel FGM, Spauwen PHM, Mikos

AG, Jansen JA (2005) J Control Release 106:162

475. Plachokova A, Link D, van den Dolder J, van den Beucken J,

Jansen JA (2007) J Tissue Eng Regen Med 1:457

476. Webster TJ, Siegel RW, Bizios R (1999) Biomaterials 20:1221

477. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000)

J Biomat Med Res 51:475

478. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000)

Biomaterials 21:1803

479. Li G, Huang J, Li Y, Zhang R, Deng B, Zhang J, Aoki H (2007)

Biomed Mater Eng 17:321

480. Tadic D, Peters F, Epple M (2002) Biomaterials 23:2553

481. Xu HHK, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC,

Peltz M (2006) J Dent Res 85:722

482. Xu HHK, Weir MD, Sun L, Takagi S, Chow LC (2007) J Dent

Res 86:378

483. Xu HHK, Weir MD, Sun L (2007) Dent Mater 23:1482

484. Xu HHK, Sun L, Weir MD, Takagi S, Chow LC, Hockey B

(2007) J Biomed Mater Res B Appl Biomater 81B:116

485. Deng XM, Hao JY, Wang CS (2001) Biomaterials 22:2867

486. Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen X,

Jing X (2005) Biomaterials 26:6296

487. Deng C, Weng J, Cheng QY, Zhou SB, Lu X, Wan JX, Qu SX,

Feng B, Li XH (2007) Curr Appl Phys 7:679

488. Deng C, Weng J, Lu X, Zhou SB, Wan JX, Qu SX, Feng B, Li

XH, Cheng QY (2008) Mater Lett 62:607

489. Kothapalli CR, Shaw MT, Wei M (2005) Acta Biomater 1:653

490. Hong Z, Qiu X, Sun J, Deng M, Chen X, Jing X (2004) Polymer

45:6699

491. Xiao Y, Li D, Fan H, Li X, Gu Z, Zhang X (2007) Mater Lett

61:59

492. Qiu X, Han Y, Zhuang X, Chen X, Li Y, Jing X (2007)

J Nanoparticle Res 9:901

493. Kim SS, Park MS, Jeon Q, Choi CY, Kim BS (2006) Bioma-

terials 27:1399

494. Hong Z, Zhang P, Liu A, Chen L, Chen X, Jing X (2007)

J Biomed Mater Res A 81A:515

495. Huang YX, Ren J, Chen C, Ren TB, Zhou XY (2008) J Biomater

Appl 22:409

496. Du C, Cui FZ, Zhu XD, de Groot K (1999) J Biomed Mater Res

44:407

497. Wang RZ, Cui FZ, Lu HB, Wen HB, Ma CL, Li HD (1995)

J Mater Sci Lett 14:490

2380 J Mater Sci (2009) 44:2343–2387

123

http://dx.doi.org/10.1007/s10853-008-2527-z
http://dx.doi.org/10.1007/s10853-008-2527-z
http://en.wikipedia.org/wiki/Concrete


498. Du C, Cui FZ, Feng QL, Zhu XD, de Groot K (1998) J Biomed

Mater Res 42:540

499. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J (2001)

Biomaterials 22:1705

500. Kikuchi M, Matsumoto HN, Yamada T, Koyama Y, Takakuda

K, Tanaka J (2004) Biomaterials 25:63

501. Lynn AK, Nakamura T, Patel N, Porter AE, Renouf AC, Laity

PR, Best SM, Cameron RE, Shimizu Y, Bonfield W (2005)

J Biomed Mater Res A 74A:447

502. Chang MC, Tanaka J (2002) Biomaterials 23:4811

503. Chang MC, Tanaka J (2002) Biomaterials 23:3879

504. Murugan R, Ramakrishna S (2006) Appl Phys Lett 88:193124

505. Wang Y, Yang C, Chen X, Zhao N (2006) Adv Eng Mater 8:97

506. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S,

Vohra YK (2007) Biomacromolecules 8:631

507. Fukui N, Sato T, Kuboki Y, Aoki H (2008) Biomed Mater Eng

18:25

508. Liao SS, Tamura K, Zhu Y, Wang W, Uo M, Akasaka T, Cui

FZ, Watari F (2006) J Biomed Mater Res A 76A:820

509. Liao SS, Cui FZ, Zhu Y (2004) J Bioact Compat Polym 19:117

510. Liao SS, Cui FZ, Zhang W, Feng QL (2004) J Biomed Mater

Res B Appl Biomater 69B:158

511. Liao SS, Cui FZ (2004) Tissue Eng 10:73

512. Liao SS, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui

FZ, Watari F (2005) Biomaterials 26:7564–7571

513. Li X, Feng Q, Cui FZ (2006) Mater Sci Eng C 26:716

514. Zhou DS, Zhao KB, Li Y, Cui FZ, Lee IS (2006) J Bioact

Compat Polym 21:373

515. Zhang C, Hu YY, Cui FZ, Zhang SM, Ruan DK (2006) Biomed

Mater 1:56

516. Liao S, Watari F, Zhu Y, Uo M, Akasaka T, Wang W, Xu G, Cui

F (2007) Dent Mater 23:1120

517. Degirmenbasi N, Kalyon DM, Birinci E (2006) Colloids Surf B

Biointerfaces 48:42

518. Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L (2003) J Mater Sci

Mater Med 14:641

519. Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J,

Tateishi T, Shinomiya K (2004) Mater Sci Eng C 24:341

520. Chang MC, Ko CC, Douglas WH (2003) Biomaterials 24:3087

521. Kim HW, Kim HE, Vehid S (2005) Biomaterials 26:5221

522. Chang MC, Ikoma T, Tanaka J (2004) J Mater Sci 39:5547. doi:

10.1023/B:JMSC.0000039284.70028.fa

523. Teng S, Shi J, Peng B, Chen L (2006) Compos Sci Technol

66:1532

524. Chang MC, Ko CC, Douglas WH (2003) Biomaterials 24:2853

525. Mobini S, Javadpour J, Hosseinalipour M, Ghazi-Khansari M,

Khavandi A, Rezaie HR (2008) Adv Appl Ceram 107:4

526. Wang XJ, Li Y, Wei J, de Groot K (2002) Biomaterials 23:4787

527. Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003)

Biomed Mater Eng 13:115

528. Wei J, Li Y, He Y (2005) J Mater Sci 40:793. doi:

10.1007/s10853-005-6326-5

529. Wei J, Li Y, Chen W, Zuo Y (2003) J Mater Sci 38:3303. doi:

10.1023/A:1025194122977

530. Wei J, Li Y (2004) Eur Polym J 40:509

531. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biomaterials

28:3338

532. Sender C, Dantras E, Dantras-Laffont L, Lacoste MH, Dandu-

rand J, Mauzac M, Lacout JL, Lavergne C, Demont P, Bernes A,

Lacabanne C (2007) J Biomed Mater Res B Appl Biomater

83B:628

533. Yang K, Wei J, Wang CY, Li Y (2007) Chin Sci Bull 52:267

534. Zhang X, Li Y, Lv GY, Zuo Y, Mu YH (2006) Polym Degrad

Stab 91:1202

535. Huang M, Feng J, Wang J, Zhang X, Li Y, Yan Y (2003)

J Mater Sci Mater Med 14:655

536. Zhang X, Li Y, Zuo Y, Lv GY, Mu YH, Li H (2007) Composites

A 38:843

537. Lan W, Li Y, Yi Z, Li Z, Mu YH, Jimei H (2006) Mater Sci

Forum 510–511:938

538. Zhang L, Li Y, Wang X, Wei J, Peng X (2005) J Mater Sci

40:107. doi:10.1007/s10853-005-5693-2

539. Zhang X, Li Y, Lv GY, Zuo Y, Mu YH, Lan W (2005) Funct

Mater 36:896

540. Yusong P, Dangsheng X, Xiaolin C (2007) J Mater Sci 42:5129.

doi:10.1007/s10853-006-1264-4

541. Xu F, Li Y, Wang X, Wei J, Yang A (2004) J Mater Sci

39:5669. doi:10.1023/B:JMSC.0000040074.64787.b3

542. Wang HS, Wang GX, Pan QX (2005) Electroanalysis 17:1854

543. Pramanik N, Mohapatra S, Pramanik P, Bhargava P (2007) J Am

Ceram Soc 90:369

544. Pramanik N, Bhargava P, Alam S, Pramanik P (2006) Polym

Compos 27:633

545. Zhang L, Li Y, Yang A, Peng X, Wang X, Zhang X (2005)

J Mater Sci Mater Med 16:213

546. Zhang YF, Cheng XR, Chen Y, Shi B, Chen XH, Xu DX, Ke J

(2007) J Biomater Appl 21:333

547. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X (2006) Eur

Polym J 42:3171

548. Lu XY, Wang XH, Qu SX, Weng J (2008) J Inorg Mater 23:332

549. Zhou G, Li Y, Zhang L, Li H, Wang M, Cheng L, Wang Y,

Wang H, Shi P (2007) J Mater Sci 42:2591. doi:

10.1007/s10853-006-1337-4

550. Huang J, Lin YW, Fu XW, Best SM, Brooks RA, Rushton N,

Bonfield W (2007) J Mater Sci Mater Med 18:2151

551. Lee HJ, Choi HW, Kim KJ, Lee SC (2006) Chem Mater 18:5111

552. Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC (2007)

Eur Polym J 43:1602

553. Pang P, Li W, Liu Y (2007) Rare Met 26:118

554. Li W, Pang P, Liu Y (2007) Trans Nonferrous Met Soc China

17(Special Issue):S1148

555. Hao JY, Liu Y, Zhou S, Li Z, Deng X (2003) Biomaterials

24:1531

556. Yan Y, Li Y, Zheng Y, Yi Z, Wei J, Xia C, Chen Y (2003) Eur

Polym J 39:411

557. Bhattacharyya S, Nair LS, Singh A, Krogman NR, Bender J,

Greish YE, Brown PW, Allcock HR, Laurencin CT (2005) MRS

Symp Proc 845:91

558. Sinha A, Nayar S, Agrawal A, Bhattacharyya D, Ramachandr-

arao P (2003) J Am Ceram Soc 86:357

559. Zuo Y, Li Y, Wei J, Han J, Xu F (2004) Funct Mater 35:513

560. Zhou G, Li Y, Zhang L, Zuo Y, Jansen JA (2007) J Biomed

Mater Res A 83A:931

561. Daniel-da-Silva AL, Lopes AB, Gil AM, Correia RN (2007)

J Mater Sci 42:8581. doi:10.1007/s10853-007-1851-z

562. Furuzono T, Kishida A, Tanaka J (2004) J Mater Sci Mater Med

15:19

563. Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A

(2004) J Mater Sci 39:3221. doi:10.1023/B:JMSC.00000

25865.44900.74

564. Korematsu A, Furuzono T, Yasuda S, Tanaka J, Kishida A

(2005) J Mater Sci Mater Med 16:67

565. Yang K, Wang C, Wei J (2007) Composites B 38:306

566. Jiang L, Li Y, Zhang L, Wang XJ (2008) J Inorg Mater 23:135

567. Jiang L, Li Y, Zhang L, Liao J (2008) J Mater Sci Mater Med

19:981

568. Liou SC, Chen SY, Liu DM (2004) J Mater Sci Mater Med

15:1261

569. Liu L, Liu J, Wang M, Min S, Cai Y, Zhu L, Yao J (2008)

J Biomater Sci Polym Edn 19:325

570. Ren YJ, Sun XD, Cui FZ, Wei YT, Cheng ZJ, Kong XD (2007)

J Bioact Compat Polym 22:465

J Mater Sci (2009) 44:2343–2387 2381

123

http://dx.doi.org/10.1023/B:JMSC.0000039284.70028.fa
http://dx.doi.org/10.1007/s10853-005-6326-5
http://dx.doi.org/10.1023/A:1025194122977
http://dx.doi.org/10.1007/s10853-005-5693-2
http://dx.doi.org/10.1007/s10853-006-1264-4
http://dx.doi.org/10.1023/B:JMSC.0000040074.64787.b3
http://dx.doi.org/10.1007/s10853-006-1337-4
http://dx.doi.org/10.1007/s10853-007-1851-z
http://dx.doi.org/10.1023/B:JMSC.0000025865.44900.74
http://dx.doi.org/10.1023/B:JMSC.0000025865.44900.74


571. Mikołajczyk T, Rabiej S, Bogun M (2006) J Appl Polym Sci

101:760

572. Wei J, Li Y, Lau KT (2007) Composites B 38:301

573. Sundaraseelan J, Sastry TP (2007) J Biomed Nanotechnol

3:401

574. Leeuwenburgh SCG, Jansen JA, Mikos AG (2007) J Biomater

Sci Polym Ed 18:1547

575. Sun TS, Guan K, Shi SS, Zhu B, Zheng YJ, Cui FZ, Zhang W,

Liao SS (2004) Chin J Traumatol 7:18

576. Itoh S, Kikuehi M, Koyama Y, Takakuda K, Shinomiya K,

Tanaka J (2004) Cell Transplant 13:451

577. Hu Q, Li BQ, Wang M, Shen JC (2004) Biomaterials 25:779

578. Wei G, Ma PX (2004) Biomaterials 25:4749

579. Liou SC, Chen SY, Liu DM (2003) Biomaterials 24:3981

580. Liou SC, Chen SY, Liu DM (2005) J Biomed Mater Res B Appl

Biomater 73B:117

581. Huang J, Best SM, Bonfield W, Brooks RA, Rushton N, Jaya-

singhe SN, Edirisinghe MJ (2004) J Mater Sci Mater Med

15:441

582. Kong L, Gao Y, Cao W, Gong Y, Zhao N, Zhang X (2005)

J Biomed Mater Res A 75A:275

583. Christenson EM, Anseth KS, van den Beucken JJJP, Chan CK,

Ercan B, Jansen JA, Laurencin CT, Li WJ, Murugan R, Nair LS,

Ramakrishna S, Tuan RS, Webster TJ, Mikos AG (2007)

J Orthop Res 25:11

584. Nimni ME (ed) (1988) Collagen. CRC Press, Boca Raton, FL

585. Olmo N, Turnay J, Herrera JI, Gavilanes JG, Lizarbe MA (1996)

J Biomed Mater Res 30:77

586. Xie J, Baumann MJ, McCabe LR (2004) J Biomed Mater Res A

71A:108

587. Tcacencu I, Wendel M (2008) J Mater Sci Mater Med 19:2015

588. Yamauchi K, Goda T, Takeuchi N, Einaga H, Tanabe T (2004)

Biomaterials 25:5481

589. Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K (2000)

J Biomed Mater Res 50:518

590. Hellmich C, Ulm FJ (2002) J Biomech 35:1199

591. Boskey AL (1989) J Phys Chem 93:1628

592. Mathers NJ, Czernuszka JT (1991) J Mater Sci Lett 10:992

593. Sukhodub LF, Moseke C, Sukhodub LB, Sulkio-Cleff B,

Maleev VYa, Semenov MA, Bereznyak EG, Bolbukh TV (2004)

J Mol Struct 704:53

594. Roveri N, Falini G, Sidoti MC, Tampieri A, Landi E, Sandri M,

Parma B (2003) Mater Sci Eng C 23:441

595. Tampieri A, Celotti G, Landi E (2005) Anal Bioanal Chem

381:568

596. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G

(2003) J Biomed Mater Res A 67A:618

597. Mehlisch DR, Taylor TD, Leibold DG, Hiatt R, Waite DE,

Waite PD, Laskin DM, Smith ST, Koretz MM (1987) J Oral

Maxillofac Surg 45:408

598. Okazaki M, Ohmae H, Takahashi J, Kimura H, Sakuda M

(1990) Biomaterials 11:568

599. Ten Huisen KS, Martin RI, Klimkiewicz M, Brown PW (1995)

J Biomed Mater Res 29:803

600. Marouf HA, Quayle AA, Sloan P (1990) Int J Oral Maxillofac

Implants 5:148

601. Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML,

Shin D, Selby DK (1992) J Orthop Res 10:565

602. Clarke KI, Graves SE, Wong ATC, Triffit JT, Francis MJO,

Czernuszka JT (1993) J Mater Sci Mater Med 4:107

603. Rovira A, Bareille R, Lopez L, Rouasis F, Bordenave L, Rey C,

Rabaud M (1993) J Mater Sci Mater Med 4:372

604. Zhang QQ, Ren L, Wang C, Liu LR, Wen XJ, Liu YH, Zhang

XD (1996) Artif Cells Blood Substit Immobil Biotechnol 24:693
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