Skip to main content
Log in

Dislocation boundaries in drawn single crystal copper wires produced by Ohno continuous casting

  • Interface Science
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dislocation boundaries in drawn single-crystal copper wires produced by Ohno continuous casting have been studied via electron backscattering diffraction and transmission electron microscopy. In the undeformed wires, there are subgrains with misorientation angle lower than 4.2°. For the cold-drawn wires, we measured misorientation angle and spatial distribution of dislocation boundaries, analysing the formation mechanism of dislocation boundaries parallel to drawing direction. Regarding spatial distribution of high-angle dislocation boundaries, at the strains more than 2.77, the boundaries spread from the centre to the surface regions with increasing strain. Regarding the angular distribution of dislocation boundary misorientation, at the strain lower than 2.77, there is one peak lower than 5°. Increasing the strain to 4.12, a bimodal distribution of misorientation angles is observed. One is lower than 5°, and the other is between 45 and 50°. For dislocation boundaries parallel to drawing direction, although at low strains there are different deformation bands with different microstructures, at high strain the microstructures are characterized as dislocation boundaries parallel to drawing direction formed by two approaches: the interaction between two kinds of boundaries and the increase in misorientation angle of boundaries shared by some dislocation cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ohno A (1986) J Met 38:14

    CAS  Google Scholar 

  2. Yan W, Chen J, Fan XH (2003) Trans Nonferrous Met Soc China 13:1075

    CAS  Google Scholar 

  3. Soda H, Mclean A, Wang Z, Motoyasu G (1995) J Mater Sci 30:5438. doi:https://doi.org/10.1007/BF00351555

    Article  CAS  Google Scholar 

  4. Xu ZM, Li JG, Fu HZ (1998) Trans Nonferrous Met Soc China 8:277

    CAS  Google Scholar 

  5. Xu ZM, Guo ZQ, Li JG (2004) Mater Charact 53:395

    Article  CAS  Google Scholar 

  6. https://doi.org/www.multi-room.com/downloads/AQ/aq_cable_theory.pdf

  7. Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069

    Article  CAS  Google Scholar 

  8. Hansen N (1990) Mater Sci Technol 6:1039

    Article  CAS  Google Scholar 

  9. Kuhlmann-Wilsdorf D (1989) Mater Sci Eng A 113:1

    Article  Google Scholar 

  10. Blicharski M, Dymek S, WrÓbel M (1995) J Mater Process Technol 53:75

    Article  Google Scholar 

  11. Hughes DA, Hansen N (1993) Metall Trans A 24:2021

    Article  Google Scholar 

  12. Jakobsen B, Poulsen HF, Lienert U, Almer J, Shastri SD, Sørensen HO, Gundlach C, Pantleon W (2006) Science 312:889

    Article  CAS  Google Scholar 

  13. Huang X (2007) J Mater Sci 42:1577. doi:https://doi.org/10.1007/s10853-006-0988-5

    Article  CAS  Google Scholar 

  14. Huang X, Tsuji N, Hansen N, Minamino Y (2003) Mater Sci Eng A 340:265

    Article  Google Scholar 

  15. Sakharova NA, Fernandes JV (2006) Mater Chem Phys 98:44

    Article  CAS  Google Scholar 

  16. Waryobar DR (2003) Doctoral Thesis, The Florida State Uuniversity

  17. Inakazu N, Kaneno Y, Inoue H (1994) Mater Sci Forum 157–162:715

    Article  Google Scholar 

  18. Rajan K, Petkie R (1998) Mater Sci Eng A 257:185

    Article  Google Scholar 

  19. Abdellaoui A, Montesin T, Heizmann JJ, Pelletier JB (1994) Mater Sci Forum 157–162:611

    Article  Google Scholar 

  20. Hughes DA, Hansen N (1997) Acta Mater 45:3871

    Article  CAS  Google Scholar 

  21. Hughes DA, Hansen N, Bammann DJ (2003) Scr Mater 48:147

    Article  CAS  Google Scholar 

  22. Winther G (2003) Acta Mater 51:417

    Article  CAS  Google Scholar 

  23. Huang X, Hansen N (1997) Scr Mater 37:1

    Article  CAS  Google Scholar 

  24. Huang X, Hansen N (2004) Mater Sci Eng A 387–389:186

    Article  Google Scholar 

  25. Huang X (1998) Scr Mater 38:1697

    Article  CAS  Google Scholar 

  26. Huang X, Winther G (2007) Philos Mag A 87:5189

    Article  CAS  Google Scholar 

  27. Li S, He S, Bael AV, Houtte PV (2004) Mater Sci Forum 408–412:439

    Google Scholar 

  28. Park H, Lee DN (2004) Mater Sci Forum 408–412:637

    Google Scholar 

  29. Wrobel M, Dymek S, Blicharski M, Gorczyca S (1994) Z MetaIlkd 85:415

    CAS  Google Scholar 

  30. Mughrabi H, Ungar T, Kienle W, Wilkens M (1986) Philos Mag A 53:793

    Article  CAS  Google Scholar 

  31. Kawasaki Y, Takeuchi T (1980) Scr Metall 14:183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. I·P. Jones (Department of Metallurgy and Materials, Birmingham University, UK) is thanked for the help of the manuscript and useful conversations. Prof. Q. Liu (Chongqing University, PR China) is thanked for help with EBSD. This study was supported by the Natural Science Foundation of China under contracts no. 50471098 and 50771076 and the Education Department Foundation of Shaanxi Province, China, under contract No. 07JK274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yan, W., Ding, R.G. et al. Dislocation boundaries in drawn single crystal copper wires produced by Ohno continuous casting. J Mater Sci 44, 1909–1917 (2009). https://doi.org/10.1007/s10853-008-3079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3079-y

Keywords

Navigation