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Abstract
Dynamic 3D imaging is increasingly used to study evolving objects. We address the problem of detecting and tracking simple
objects that merge or split in time. Common solutions involve detecting topological changes. Instead, we solve the problem
in 4D by exploiting the observation that if objects only merge or only split, they appear as a single component in 4D. This
allows us to initiate a topologically simple 3D hypersurface and deform it to fit the surface of all objects at all times. This
gives an extremely compact representation of the objects’ evolution. We test our method on artificial 4D images and compare
it to other segmentation methods. We also apply our method to a 4D X-ray data set to quantify evolving topology. Our method
performs comparably to existing methods with better resource use and improved robustness.

Keywords 4D images · Deformable models · Segmentation · Topology

1 Introduction

4D images refer to a series of 3D volumes acquired over
time, for example, via dynamic X-ray computed tomography
(CT). Such images may be used to study the evolution of
3D objects and have applications in e.g. medicine [1] and
materials science [2–4]. To use 4D images in quantitative
studies, we need segmentation methods that can detect and
track objects over time. Additionally, some systems contain
objects which merge or split as part of their time evolution,
and such events are often of interest on their own [2, 5].
Therefore, a segmentation method should handle topological
changes and still obtain an accurate result.

Furthermore, due to advancements in imaging technology
[6, 7], 4D images can nowbe acquiredwith a very high spatial
and temporal resolution, i.e., a voxel size≤ 5 µmat hundreds
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of 3D volumes per second. This places high demands on the
computational efficiency of segmentation methods.

In this paper, we address the problem of 4D segmentation
via a simplifying assumption, which we demonstrate leads to
a simple, elegant, and highly efficient segmentation method.
We assume that objects only perform splits or merges during
their evolution, but not both.While this assumption is slightly
limiting, many interesting systems exhibit this behavior. For
example, biological cells divide but do not merge, and bub-
bles in a foam merge but do not split. Furthermore, for such
systems, enforcing that objects are only allowed split or
merge can indeed be a benefit, as it exploits our prior knowl-
edge of the system.

To illustrate our method, we initially describe it in
2D+time for simplicity. Consider the case in Fig. 1a where
two solid blobs grow until they merge together to a single
object. The scenario of splitting is identical, as we can trans-
form one to the other by reversing time. We can think of
the objects at time t as the intersection of a 3D connected
component and an xy-plane at time t , as shown in Fig. 1b.
To segment the objects, we could aim to segment the full
2D+time connected component. However, in 4D, this will
require a large amount of memory. Instead, we could just
represent the boundary by segmenting the object contours at
every time, as in Fig. 1c. Yet, this still uses excessive memory
and does not exploit our assumption of only splits or merges.

Our core observation is that if we assume solid objects
onlymerge (or only split) the boundary of their 2D+time con-
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Fig. 1 The principle of the 4D segmentation approach illustrated on a
lower-dimensional 3D (2D+time) example. a Time series of 2D images,
where two disks grow and merge. b 2D images are stacked to form a 3D
(2D+time) volume. Here, the merging disks appear as a single simply

connected component. c Segmentation given by sequentially detecting
the disks in each 2D image. d Segmentation given by detecting the 2D
boundary of the 3D connected component

nected component is homeomorphic to a sphere. Thus, we
can represent its boundary as a triangle mesh, M, as shown
in Fig. 1d. However, note that we do not have to close the
mesh in the top (corresponding to time steps after the final
image) which in practice means that the triangle mesh has
n-disk topology rather than n-sphere topology. For 4D data,
the mesh used for segmentation is a tetrahedral mesh embed-
ded in 4D. Thus, we only have a single mesh whose cross
sections represent the contours we seek. This is significantly
less memory intensive than representing a segmentation for
each time step.

We now proceed as follows. Given a sequence of input 2D
images with merging objects, we segment the final image.
This gives a contour which we fill in to produce a triangle
mesh that represents the initial stage ofM. The surfacemesh
is now allowed to deform in 3D (i.e., 2D+time). Similar to
classic active contours [8] or deformable surfaces [9, 10], this
deformation is driven by an internal energy which keeps it
smooth and external energy which attracts the mesh to object
boundaries.When the computation stops, our spatiotemporal
data has been segmented. We can obtain a segmentation at
an arbitrary point in time, t , by intersecting M with a plane
corresponding to that specific value of t . This results in a
contour describing the boundary of the segmented object(s)
at the given time.

The most significant benefit of our approach is that it
allows us to precisely locate splits (or merges) in both time
and space. Consider themapping from a point p ∈ M to time
t(p). As shown in Fig. 1d, the points where splits occur cor-
respond to saddle points of t(p) where the gradient is zero.
Further, the center of the initial objects corresponds to the
minima of t . In other words, by finding the singularities of
t(p), as well as how they are connected, we can detect where
specific objects split. This strategy also makes our approach
robust to spurious self-intersections, since they do not affect
the location of the singularities. In practice, we exploit this

by computing the Reeb graph [11, 12] ofM with respect to
t(p) since the Reeb graph contains information both about
the placement and connectivity between the singularities.

Froma computational standpoint, our approach also offers
considerable benefits. As we only store a boundary, we have
a very compact description of the evolution of an object.
Partly because storing the boundary inherently requires sig-
nificantly less space. But also because a tetrahedron in 4D
can span multiple time values, which exploits the coherence
between two time-adjacent 3D volumes. This compactness
also makes our method fast, which allows us to segment very
large 4D images in only a few minutes. To make our method
accessible, we publish a Python implementation at https://
github.com/patmjen/4dsurf.

1.1 RelatedWork

Generally, existing methods for segmenting 4D images fall
into two categories: mesh-based methods and voxel-based
methods. Mesh-based methods are mainly used for tracking
non-interacting objects over time. In [10, 13], a sequential
approach is used where the fit in one 3D volume is used to
improve the fit in the next. Here, one needs to establish a
correspondence between segmentations in consecutive 3D
volumes in order to obtain object tracking. When objects
merge or split, this can be highly non-trivial, although some
works have suggested approaches for handling this, e.g. [14,
15]. Others [16–19] use a more global approach where a sep-
arate mesh is placed in every 3D volume and then all meshes
are fitted simultaneously. Common for these methods is that
the mesh connectivity is kept fixed and only vertex posi-
tions are changed. This provides a natural correspondence
between meshes and makes it easy to track the development
of an object over time. However, it does not allow for the
object to split or merge.
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Voxel-based approaches on the other hand can easily
handle topology changes. Here, authors have used meth-
ods ranging from level sets [5, 20], Markov random fields
[21, 22], to deep learning [13, 23]. However, while voxel-
based approaches are more flexible regarding the evolution
of the object, they do not (directly) give access to a mesh-
based representation, which can make postprocessing more
challenging. Furthermore, small errors in the segmentation
can have large effects on the resulting topology as two
objects may merge prematurely. And finally, since modern
4D images have sizes measured in the tens of gigabytes (GB)
to several terabytes (TB), segmenting 4D images with voxel-
based methods quickly becomes unwieldy unless the data is
severely downsampled.

2 Method

Deformable models are widely used in 2D and 3D segmenta-
tion in the form of curves and surfaces. In 4D segmentation,
hypersurfaces that deform in space-time are rarely encoun-
tered, and existing approaches treat the time dimension
differently than the space dimensions. In this section, we
propose the methodology needed to generalize parametric
deformable surfaces to 4D, providing a combined treatment
of the deformation in space and time. We begin by introduc-
ing the continuous formulation of 4D deformable models
and then detail how we discretize the problem. In the sub-
sequent sections, we then detail each component of our 4D
deformable model approach.

2.1 Continuous 4D Deformable Model

Given a 4D image, I : � ⊂ R
4 → R, we aim to find a parti-

tion of the domain � into two disjoint regions, �in and �out,
separated by a boundary �. The region �in corresponds to
the inside of the 4D connected component we wish to seg-
ment and �out to the outside. As � uniquely determines the
regions �in and �out we formulate our problem as a search
for a boundary,�∗, thatminimizes the following energy func-
tional

�∗ = argmin
�

Eext(�) + Eint(�). (1)

Here, Eext is an external energy term that ensures that �in

and�out correspond to the image regionswewish to segment
and Eint is an internal energy that acts as a regularizer by
encouraging the boundary � to remain smooth.

For Eext, we use the popular Chan-Vese energy [24],
which assumes the image can be modeled as a piecewise
constant function with value cin in �in and cout in �out. It is

Fig. 2 Single element of the tetrahedral mesh. Each vertex position, xi ,
has four coordinates: xi , yi , zi , and ti

given as

Eext(�) =
∫

�in

(I − cin)
2 d�

+
∫

�out

(I − cout)
2 d�.

(2)

Generally, cin and cout may be unknownvalueswhich are also
optimized over. However, as that adds a significant compu-
tational cost, we assume in this paper that cin and cout are
known a priori.

For Eint, we use the Dirichlet energy

Eint(�) = γ

∫
�

‖∇�(x)‖22 dx, (3)

where γ ≥ 0 is a fixed parameter that controls the degree of
regularization.

2.2 Discrete 4D Deformable Model

To find the optimal boundary, we use a discretized version of
�. Since � is the boundary between two 4D regions, it is a
3D hypersurface embedded in 4D [25]. We represent � with
a tetrahedral mesh T with vertices X ∈ R

V×4 where vertex
positions xi are given by four coordinates as shown in Fig. 2.

Given an initial mesh T (0), a solution to the discretized
version of (1) can be found by gradient descent of the energy
[8, 9]

∇XEext(T (i−1)) + ∇XEint(T (i−1))

= −1

τ
(X(i) − X(i−1)),

(4)

where τ is a step size. The gradient of the Dirichlet energy
∇Eint(�) is given by the Laplacian �� [26]. This gives the
update equation

(I + λL)X(i) = X(i−1) − τ∇Eext(T (i−1)), (5)

where L is a matrix approximating the Laplacian of �, and
λ = τγ . We describe our initialization strategy in Sect. 2.3.
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As the mesh deforms from its initial configuration the tetra-
hedra will stretch, meaning the mesh will not be able to fit
the image to sufficient detail. Therefore, we adaptively sub-
divide the mesh every nsub iteration to prevent the mesh from
becoming too coarse. We detail our subdivision strategy in
Sect. 2.4.

For the external energy gradient in (5), it can be shown
that the vertex displacements corresponding to∇Eext(T ) are
given by

∂Eext

∂xi
= 2(cin − cout)(I (xi ) − (cin + cout)/2)ni , (6)

where ni is the normal for vertex i [27]. As we adaptively
subdivide themesh during deformation, wewant our normals
to be robust to this. Therefore, we have developed an exten-
sion of angle-weighted normals to 4D, which we describe in
Sect. 2.5.

For the Laplacian matrix, we use the scale-dependent
Laplacian [28], in order to be robust to irregularly sized tetra-
hedra [26]. This computes the Laplacian at the i’th vertex as

L(xi ) = 1

E

∑
j∈N (i)

x j − xi
ei j

, E =
∑
j∈N (i)

ei j , (7)

where ei j = ∥∥x j − xi
∥∥ and N (i) are the neighbor vertices of

vertex i . Since L is sparse, we can solve the linear system in
(5) efficiently using conjugate gradient iteration. However,
constructing L is relatively expensive, and we therefore only
update it when we subdivide the mesh. While not strictly
correct, we did not observe drawbacks with this strategy.

Finally, to extract the segmentation for a 3D volume at a
given time, we compute a cross section of the fitted 4D mesh
using the method detailed in Sect. 2.6.

2.3 Mesh Initialization

Weassumeobjects onlymerge (similar to the exampleFig. 1),
since splitting can be viewed as merging in reverse. Thus, if
the initial mesh is placed in the last 3D volume of the 4D
image, it only needs to propagate backward in time. This
makes a hyperdisk (i.e., a solid 3D ball) a good candidate
for an initial mesh. The boundary of a hyperdisk forms a 2D
surface, which we can represent with a triangle mesh.

This leads to the following initialization approach. First,
fit a triangle mesh to the 2D object boundary in the last 3D
volume. Since we only consider a single 3D volume here,
we can ignore the time coordinate and treat it as a traditional
3D segmentation task. As a result, we can use an exist-
ing 3D method such as deformable surfaces [10], graph cut
approaches [29, 30], or an isosurface [31] from a voxel seg-
mentation to find the triangle mesh. We now let this triangle

Fig. 3 The principle of initialization process illustrated on a 3D
(2D+time) example. a First, the boundary of the object in a single image
(volume in 4D) is located. b The interior of the boundary is triangu-
lated (tetrahedralized in 4D), which gives the initial mesh. c The initial
mesh is iteratively deformed to fit to the boundary of the connected
component

Fig. 4 Illustration of the mapping from the coordinate mesh (left) to
the deformed mesh (right). A point inserted in the highlighted face in
the coordinate mesh can be mapped to its corresponding position in the
deformed mesh using barycentric coordinates

mesh be the boundary of the hyperdisk, and then tetrahedral-
ize it using theTetGen tool bySi [32]. Finally,we add the time
coordinate to the tetrahedron vertices,which results in the ini-
tial mesh. An illustration of the initialization approach for a
lower-dimensional (2D+time) example is shown in Fig. 3.

To avoid the mesh leaving the last 3D volume, we
constrain the time coordinate of the tetrahedron vertices
that correspond to the original triangle vertices to remain
unchanged.

2.4 Adaptive 4DMesh Subdivision

A considerable amount of research has been conducted on
creating and subdividing tetrahedral meshes in 3D, and we
want to leverage this. We will use an idea similar to that of
coordinate charts from differential geometry [33], which are
maps from manifolds to Euclidean space. In our case, we
know the initial mesh is contained in a single 3D volume.
After the mesh has been deformed in 4D, the initial mesh
defines a natural mapping between 3D Euclidean space and
the 4D mesh. For a point placed anywhere within the initial
mesh, we can then use barycentric coordinates to find its
corresponding position in 4D. See Fig. 4 for an illustration.

Specifically, we keep a copy of the initial mesh, T (0),
during deformation—henceforth referred to as the coordinate
mesh, T C . To perform subdivision, we find all tetrahedra
whose volume has grown larger than a threshold, s, and insert
a newpoint at the barycenter of each tetrahedron. The volume
of a tetrahedrawith vertex positions x1, x2, x3, and x4 is given
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by [34, 35]

vol(T) = 1

6

√
G(x2 − x1, x3 − x1, x4 − x1), (8)

whereG is the Gram determinant. Then, the original vertices
of T C , along with the new points, are re-tetrahedralized with
TetGen [32], which gives a new coordinate mesh. This is
then re-mapped to 4D, after which the old coordinate and 4D
mesh are thrown away.

While performing a full re-tetrahedralization is more
expensive than updating themesh, it has the benefits of result-
ing in a higher quality mesh, and is simple to implement with
tools designed for 3D meshes.

2.5 AngleWeighted Normals in 4D

Analogous to surface meshes in 3D, vertex normals are
defined as a weighted average of the adjacent tetrahedral face
normals. These are in turn defined using a 4D analog of the
cross product [36]; given 4D vectors u, v, andw, we can find
an orthogonal vector, n = (nx , ny, nz, nt )T, as

nx =
∣∣∣∣∣∣
uy uz ut
vy vz vt
wy wz wt

∣∣∣∣∣∣ , ny =
∣∣∣∣∣∣
ux uz ut
vx vz vt
wx wz wt

∣∣∣∣∣∣ ,

nz =
∣∣∣∣∣∣
ux uy ut
vx vy vt
wx wy wt

∣∣∣∣∣∣ , nt =
∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣ ,
(9)

where |·| is the determinant. For a tetrahedron with vertex
positions x1, x2, x3, and x4, we form the vectors as u =
x2 − x1, v = x3 − x1, and w = x4 − x1.

Previous works have used simple averaging or weighted
the normal of each tetrahedron by its volume [37]. However,
as for triangle meshes [38], these weighting schemes are sen-
sitive to re-tessellation of the mesh. In this work, we extend
angle-weighted normals to four dimensions by weighting the
contribution of each tetrahedron by the solid angle spanned
by the tetrahedron at v. Assume, without loss of generality,
that the mesh is scaled such that all edges are longer than 1.
The solid angle, ω, is then given by the area of the spherical
triangle formed by the intersection of the tetrahedron and a
unit sphere, as illustrated in Fig. 5.

The area of the spherical triangle ω is given by

ω = θ1 + θ2 + θ3 − π, (10)

where θ1, θ2, and θ3 are the dihedral angles of the tetrahedron
edges connected to v [39].

Fig. 5 The solid angle ω at vertex v is the area of the spherical triangle
given by the intersection of the tetrahedron and a unit sphere centered at
v. θ1, θ2, and θ3 denote the dihedral angles along the tetrahedron edges
connected to v

The normal at vertex i is then given by

ni =
∑

T∈Ti ωTnT∥∥∥∑
T∈Ti ωTnT

∥∥∥
, (11)

where Ti are the incident tetrahedra for vertex i with normals
nT and incident solid angles ωT . The denominator ensures
that the resulting normal is unit length. Similar to angle-
weighted normals for trianglemeshes, this weighting scheme
is invariant to re-tessellation of the mesh.

As a proof, consider re-tesselating a tetrahedron meaning
splitting it into multiple sub-tetrahedra where the original
vertices remain in place and all new vertices are convex
combinations of the original vertices. In this case, the face
normals of the new tetrahedrawill be equal to the original face
normal. Furthermore, the solid angles of the sub-tetrahedra
incident with vwill sum to the original solid angle ω. There-
fore, the contribution of the incident sub-tetrahedra to the
vertex normal of v will be equal to the contribution of the
original tetrahedron.

2.6 Cross sections of Tetrahedral Meshes in 4D

Computing a cross section is equivalent to finding the inter-
section with a hyperplane or extracting an isosurface.We use
a simplified version of themarching tetrahedronmethod [40],
which has been used previously for visualizing 4D tetrahe-
dral meshes [36].

We assume without loss of generality that we compute
the intersection with the xyz-hyperplane at t = 0. If a tetra-
hedron intersects a hyperplane, the intersection will always
be one of the eight cases illustrated in Fig. 6. The last three
cases are problematic as the intersections are not surface ele-
ments. To avoid these, we perturb the time coordinate of all
vertices which lie on the hyperplane by a small ε 
 1, which
guarantees we will only encounter the first two cases.
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Fig. 6 All possibleways a tetrahedron in 4Dmay intersect a hyperplane.
Black vertices are on the hyperplane (t = 0), red vertices are ‘below’
(t < 0), and blue vertices are ‘above’ (t > 0). The intersection can be
a a quadrilateral (which may be split into two triangles), b–e a triangle,
(f) the entire tetrahedron, g a line, or h a point

Fig. 7 2D cross sections of the last 3D volume in the artificial 4D image
for different values of the noise level σ

3 Results

To assess the performance of ourmethod,we perform a series
of numerical experiments, where we segment computer-
generated 4D images with known ground truth. This allows a
quantitative assessment and comparison with other methods.
Next, we apply the method to a 4D dataset from dynamic X-
rayCT.Here, a ground truth segmentation is not known, sowe
can only do a qualitative evaluation. Finally, we demonstrate
how our method allows for tracking the evolution of split-
ting/merging objects through time by computing the Reeb
graph [11, 12] of the fitted tetrahedral mesh.

3.1 Numerical experiments

We created an artificial 4D image containing five organic-
looking blobs, shown in the top row of Fig. 8. As time
progresses, the blobs move toward each other until they col-
lide and merge to a new blob whose volume grows to equal
the sum of the previous two blobs. Furthermore, as the blobs
move, they rotate and deform to make the data more chal-
lenging to segment.

The 4D image consists of 200 binary label volumes of size
100× 100× 100 voxels. Before segmenting, the intensity of
the 4D image is transformed so the blobs have an intensity

of 100 and the background an intensity of 200. After that,
we add zero-mean Gaussian noise with standard deviations
of 25 and 50 to create two additional 4D images. Figure7
shows a cross section of the last 3D volume in each of the
4D images.

We segment the artificial images with the proposed
method and compare with three other segmentationmethods.
Thesemethodswere chosenbecause they arewell established
and form the basis of many segmentation approaches [41].

1. Sequential 3D Markov Random Fields (MRFs). We seg-
ment each 3D image independently in sequence. The
image segmentation is modeled as a graph minimum cut
problem as detailed in [42]. Voxels are nodes in a graph
and are connected to a special source and sink node.
Each source/sink edge has a cost proportional to the back-
ground/foreground probability. Additionally, each node
is connected to its six spatial neighbors with an edge
whose cost controls the segmentation smoothness. We
now seek a partition of the nodes into two disjoint sets
by cutting edges of the graph until there is no path from
the source to the sink node. The cost of the partition is
the sum of the cut edges and we find the partition of
minimum cost via the popular algorithm by Boykov and
Kolmogorov (BK) [42].

2. 4D Markov Random Fields (MRFs). We use the same
construction as for 3D MRFs, but compute a single seg-
mentation for the entire 4D images at once. As such, we
also add edges between graph nodes and their tempo-
ral neighbors (in addition to their six spatial neighbors).
Again, the segmentation is computed with BK algorithm
[42].We note that one could also use smaller overlapping
temporal windows, instead of considering the entire 4D
image, in order to reduce the computational costs. To be
able to compare results with a global method, we chose
not to do this.

3. Surface Detection via Graph Cut (GC). An initial mesh is
placed at a user-defined location and deformed to fit the
image contours, as detailed in [29, 30, 43].Newcandidate
positions for each mesh vertex are sampled equidistantly
in a column along the outward vertex normals. These can-
didates are graph nodes connected to a special source and
sink node. Each source/sink edge has an associated cost,
computed as in [44], related to the probability of being
inside/outside the deformed mesh. Nodes in neighboring
column are connected with edges to enforce that vertex
displacement varies by a maximum of � steps to ensure
a smooth surface. We then compute an optimal node par-
tition into ‘inside’ and ‘outside’ with the BK algorithm
[42] and move each vertex to the outermost ‘inside’ node
in its column.
The initial mesh is an 8-frequency subdivided icosahe-
dron approximating a sphere. We process each volume
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Fig. 8 Segmentation results for the artificial 4D image using the proposed method. The rows show 3D renderings of (top to bottom): the data,
segmentation for σ = 0, segmentation for σ = 25, and segmentation for σ = 50. The segmentations have been overlaid on the data

sequentially and place amesh at the centroid of each con-
nected component of the ground truth label volume. Note
that this represents a best-case scenario for this method,
as it requires either a good pre-segmentation of the data
or manual annotation at every time step. Furthermore,
the sequential nature of this method means that we do
not have any correspondence between segmentations in
different 3D volumes as we do with our method. The
correspondences would have to be established afterward
which is non-trivial. We apply the graph cut method for
two values of the max. difference parameter, �. A large
value gives the method more freedom to fit elongated
shapes, while a smaller value makes it more robust to
noise.

For our method, we scale each spatial axis to [−1, 1] and
the time axis to [−2, 2]. We scale the time axis to ensure
that the image features have roughly equal curvature. This
allows us to maintain a more regular mesh during the defor-
mation, which results in a better fit. We use the ground truth
segmentation of the last volume to initialize as in Sect. 2.3.
Furthermore, the max. tet. volume, s, starts at 4× the final

value to perform a rough initial fit and is then set to the final
value for the last 10 iterations to refine the fit.

The parameters for all methods are shown in Table 1,
and all experiments were performed with an AMD Ryzen
7 3700X processor. For the noiseless image, we only apply
our method. The segmentation results for our method are
shown in Fig. 8. Visually, the segmentations correspond well
with the data, with some noise observable for σ = 50.

To provide a quantitativemeasure of the quality of the seg-
mentation, a ground truth segmentation boundary—stored
as a surface mesh—was created for each 3D volume. These
were then compared with cross sections of the tetrahedral
mesh at the corresponding times. The comparison was done
with the mean and maximum distance between the surface
meshes as computed with the MESH tool by Aspert et al.
[45]. The results are shown in Fig. 9.

The plots support what is seen in Fig. 8 as the mean dis-
tances remain small, i.e., below one voxel. There is a spike in
the error at the end of the merges, since there is a slight dis-
continuity in the data when blobs merge. Thus, the temporal
part of the chosen regularization introduces a larger error at
these times. The same behavior occurs for the maximum dis-
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Table 1 Parameters used to
segment the artificial 4D images

Method Parameter σ = 0 σ = 25 σ = 50

Ours Means, cin, cout 100, 200 100, 200 100, 200

#iter., N 50 50 50

Step size, τ 0.2 0.2 0.3

Smoothing, λ 0.004 0.004 0.004

Max. volume, s 16 16 16

nsub 10 10 10

MRF Source term – (I (x)−200)2 (I (x)−200)2

3D/4D Sink term – (I (x)−100)2 (I (x)−100)2

Neighbor term – 104 104

Graph Means, cin, cout – 100, 200 100, 200

cut Std. dev., σ – 100 100

(GC/�) #Column samples – 150 150

Coumn. sample step – 0.5 0.5

Max. diff., � – 2 and 8 2 and 8

Fig. 9 Plots of mean and max. distance between cross sections of the
fitted tetrahedral meshes and ground truth segmentation boundary. The
gray regions signify times when merges are ongoing and the vertical
dotted lines mark the beginning of a new merge

tance, although the errors are larger since a single spurious
vertex can significantly affect the value.

For the other methods, we also use the distance to the
ground truth segmentation boundary. For the GC methods,
this can be done directly. For the MRF methods, we extract
an isosurface from each 3D label volume. The results are
shown in Fig. 10. Additionally, we also compare the resource
use of the methods. We measured runtime, peak memory
use, and how much memory was needed to store the final

Fig. 10 Plots of themean distance between the computed segmentation
boundary for eachmethod andground truth segmentation boundary. The
gray regions signify times when merges are ongoing and the vertical
dotted lines mark the beginning of a new merge

segmentations. Table 2 shows the results along with the the-
oretical scaling of each measured value w.r.t. the image size.
Our method performs as well as or better than the compared
approaches while resulting in a more compact representation
of the final segmentation.

3.2 Application to Metal Foam

We now apply the method to a 4D synchrotron X-ray CT
image. The dataset is a time series of foaming metal, where
blowing agent powders have been mixed into a block of alu-
minum.As the aluminumsample is heated to itsmelting point
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Table 2 Resource use for the
segmentation approaches. The
memory uses do not include the
size of the image data (200 MB).
The scaling w.r.t. the image size
of each value is also shown. S
represents the size of each 3D
volume, and T is the number of
3D volumes in the 4D image

Noise Method Time Memory use (peak) Memory use (seg.)
Meas. Scaling Meas. Scaling Meas Scaling

σ = 25 3D MRF 45 s S, T 408.3 MB S 200.0 MB S, T

4D MRF 205 s S, T 57,500.0 MB S, T 200.0 MB S, T

GC/2 37 s T 62.6 MB 1 9.2 MB T

GC/8 39 s T 50.3 MB 1 9.2 MB T

Ours 36 s 1 40.5 MB 1 4.4 MB 1

σ = 50 3D MRF 45 s S, T 421.5 MB S 200.0 MB S, T

4D MRF 232 s S, T 57,500.0 MB S, T 200.0 MB S, T

GC/2 38 s T 40.1 MB 1 9.2 MB T

GC/8 40 s T 48.3 MB 1 9.2 MB T

Ours 38 s 1 41.0 MB 1 5.3 MB 1

Fig. 11 Segmentation results for the 4D synchrotron X-ray CT data. The top row shows a 3D rendering of the 4D data at different times. The
bottom row shows the segmentations overlaid on the data. Note that the last column shows an xyt-slice where the vertical axis represents time
(bottom = t0 and top = t95)

the powders release gas, which causes bubbles to form. Over
time, these bubbles expand and merge to form even larger
bubbles. More details can be found in [2]. The data consists
of 55 volumes of size 888 × 888 × 600 and uses 26 GB of
memory. It is visualized in the top row of Fig. 11.

We initialize the mesh at the large bubble in the bottom of
the last volume (see Fig. 11d).We again scale the spatial axes
to [−1, 1] and the temporal to [−0.25, 0.25]. The goal of the
segmentation is to detect which bubbles merged together to
form the final bubble. The parameters are shown in Table 3
and the segmentation itself took 5min using an Intel Xeon
Gold 6142 processor.

The result of the segmentation is shown in the bottom row
of Fig. 11. The method has detected the merging of different
bubbles. Furthermore, the 4D cross sections provide a good
match with the data, even though the quality of the segmen-
tation degrades somewhat the further we are from the initial

Table 3 Parameters used to segment the 4D synchrotronX-rayCTdata.
Please see Table 1 for more descriptive parameter names

cin cout N τ λ s nsub

25 70 342 0.03 0.0003 5.2 · 10−6 10

mesh. Also, there are some minor errors in the last volumes
where the tetrahedral mesh has moved into an adjacent bub-
ble.

3.3 Tracking Evolving Topology

We now demonstrate how our method allows the quantifica-
tion of splitting/merging by computing the Reeb graph [11,
12] of the fitted tetrahedral mesh. Reeb graphs are used to
describe the evolution of level sets of a function defined on
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Fig. 12 Illustration of the Reeb graph for a simple 2D+time example.
The level sets are shown as black rings and the Reeb graph has nodes
where the level sets change topology. The nodes are colored according
to their time coordinate

a manifold—in our case the time coordinate of our fitted
tetrahedral mesh—making them ideal for detecting topolog-
ical event such as splitting or merging [46]. As illustrated in
Fig. 12, nodes are placed where topological changes occur
such as local extrema and saddle points. If the level sets
between two points form a connected component, the points
are joined by an edge. As a result, the Reeb graph provides
a compact description of the evolving topology of an object
and also encodes when andwhere topological changes occur.

We use the Topology Toolkit [47, 48] to compute the Reeb
graph for the (noiseless) segmentation of our 4D test image
and the segmentation of the metal foam image. Prior to com-
putation, we smooth the tetrahedral mesh with Laplacian
smoothing and afterward we prune edges of the Reeb graph
which are shorter than 10% of the mean edge length.

The results are shown in Fig. 13. For both segmentations,
the Reeb graph provides a good description of where and
how the objects merged together. Note especially how, even
though a level set might have some slight self-intersections,
e.g., in Fig. 13h, objects are not counted as having merged
since the Reeb graph considers the full spatiotemporal struc-
ture.

4 Discussion

The method presented in this paper can segment merging or
splitting objects in 4D. As demonstrated in Sect. 3.1, this can
be achieved even in the presence of severe noise, although
with a reduced quality. When objects are merging, our
method also significantly outperformed the fixed-topology
GC methods while being faster and using the same amount
of memory. The MRF methods gave the most accurate seg-
mentation, which is expected given that this is a binary

segmentation problem with Gaussian noise. However, they
used significantly more time and memory.

Furthermore, the time andmemory benefits of our method
will only improve as the image size increases, since the
resource use of our method only depends on the complex-
ity of the object to segment and not on the size of the
input image. This is not the case for the compared methods.
Finally, storing the segmentation as a tetrahedral mesh also
results in an extremely compact description of the segmented
objects—indeed, of the tested methods, ours provided the
most compact segmentation. For the foaming aluminumdata,
which took up 26 GB of space, the resulting mesh only uses
around8.5MBwhich is a reduction factor ofmore than3,000.

Our method also offers increased robustness regarding
quantifying the evolution of object topology. As we explic-
itly model the hypersurface boundary in 4D, splits/merges
can be automatically detected as saddle points and do not
need manual heuristics or collision detection like sequential
methods. Furthermore, this also means that if some level sets
intersect due to segmentation errors or imaging artifacts it is
easily discarded as an error and not amerge/split—something
which is not possible with sequential or 3D/4D voxel-based
approaches. These benefits are unique to our object repre-
sentation.

The main challenge with our method is how to maintain
the mesh quality during deformation. With too high a regu-
larization, the method cannot achieve a sufficient quality of
fit due to over-smoothing. With too low, the tetrahedral mesh
may start to self-intersect which results in a degenerate fit.
Currently, finding the suitable balance between step size and
regularization strength requires manual tuning. Promising
avenues for addressing this are collision detection or displac-
ing the vertices along non-intersecting search lines as in [49,
50]. However, as implementing these in a computationally
efficient way is non-trivial, we relegate it to future work.

Furthermore, while Laplacian smoothing works well to
regularize the spatial components of the fit, the spatiotempo-
ral saddle points, that form at splits/merges (see Fig. 11e), are
sensitive to over-smoothing. Additionally, for more complex
image data (e.g. medical scans), an intensity-based deforma-
tion force may not be adequate. In these cases, performance
may be improved by adapting approaches from [51–54]
where the output of a neural network is used to guide the
deformation of a contour in 2D images. Finally, our method
does not attempt to detect if the topological assumptions are
broken. As a result, fitting to image data where both splits
and merges happen can result in degenerate fits.

5 Conclusion

We presented a method for simultaneously segmenting and
tracking merging or splitting objects in 4D images. This
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Fig. 13 Reeb graphs for the artificial (top row) and metal foam (bot-
tom row) images. Each column shows a 3D cross section of the fitted
4D tetrahedral mesh with the Reeb graph overlaid. The Reeb graph has
been projected to 3D and its nodes are colored according to their time

coordinate (scaled to be in [−1, 1]) as in Fig. 12. The Reeb graph nodes
corresponding to the merge in each subfigure have been highlighted
with a black circle

was achieved by fitting a discretized hypersurface to the 3D
boundary of the 4D simply connected component comprising
the object of interest. Applications to artificial and real 4D
images showed that the method was able to successfully seg-
ment, track, and quantify merging or splitting objects, even
in the presence of noise. The method achieved comparable
accuracy to existing methods with a resource use equal to or
better than sequential 3Dmethods. Furthermore, our method
only scales with object complexity and not image size mak-
ing it suitable for the analysis of very large images.
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