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Abstract
The aim of this paper is to revisit the definition of differential operators on hypergraphs, which are a natural extension of
graphs in systems based on interactions beyond pairs. In particular, we focus on the definition of Laplacian and p-Laplace
operators for oriented and unoriented hypergraphs, their basic properties, variational structure, and their scale spaces. We
illustrate that diffusion equations on hypergraphs are possible models for different applications such as information flow on
social networks or image processing. Moreover, the spectral analysis and scale spaces induced by these operators provide a
potential method to further analyze complex data and their multiscale structure. The quest for spectral analysis and suitable
scale spaces on hypergraphsmotivates in particular a definition of differential operators with trivial first eigenfunction and thus
more interpretable second eigenfunctions. This property is not automatically satisfied in existing definitions of hypergraph
p-Laplacians, and we hence provide a novel axiomatic approach that extends previous definitions and can be specialized to
satisfy such (or other) desired properties.

Keywords Hypergraphs · PDEs on (hyper)graphs · Diffusion models · Information flow · Hypergraph spectral clustering ·
Image processing · Denoising · Segmentation

1 Introduction

Methods for image processing, data analysis and simula-
tion of information propagation have strongly benefited from
using graph structures in the past, and the modeling with
PDEsongraphs including graph p-Laplacians and associated
flow became a standard tool for analyzing graph structures
and dynamics on such (cf. [6, 15, 16]). Those are carried
on in machine learning in the concept of graph neural net-
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works, again closely related to models for information flow
on networks (cf. [5]). Traditional graphs can, however, cap-
ture only pairwise interactions of individuals, objects, or
pixels in images and thus are unable to directly model group
relationships, which are relevant, e.g., in social networks or
image patches. In order to mitigate for this problem, we pro-
pose to apply amore general structure, namely a hypergraph
with which it is straightforward to encode group interac-
tions. Here, we adopt the definition of oriented hypergraphs,
whose hyperarcs (generalizing edges) can have more than
one ingoing and more than one outgoing vertex. For this
structure, there is a natural way to define gradients, and we
use a scaling which preserves the axiom that the gradient of
a constant function on the vertices vanishes. Via a definition
of adjoint, we can then obtain a divergence operator and a
Laplacian. Additionally, we investigate the case of unori-
ented hypergraphs, in which so-called hyperedges do not
have an orientation, i.e., no distinction between outgoing and
ingoing vertices. In contrast to traditional edges in graphs,
here the number of vertices per hyperedge is not limited by
two. For this type of hypergraph, we introduce two possible
Laplacian operators, one which is gradient-based and one via
an averaging operator.
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1.1 Motivation

The hypergraph structure gives additional flexibility in sev-
eral applications compared to the pair-based graph structure.
An example is the modeling of social phenomena of (fake)
news spread, e.g., by connecting one person to all their fol-
lowers directly and hence representing a community within
a social network. One field of study in analyzing information
flow in social networks is opinion formation, an interesting
phenomenon that can be observed for a group of individu-
als which interact and have complex relationships with each
other. Some individuals of the social network, so-called opin-
ion leaders or social media influencers, with a large group
of followers (up to half a billion people) have a strong influ-
ence on the opinion of many others and can even make profit
by leveraging their impact on large groups of social media
users (see, e.g., [17]). Modeling information flow in social
networksmathematically is typically performed by using tra-
ditional graphs. With such graphs, it is possible to link two
social media users with a pairwise connection, if they are
online friends or follow each other (see, e.g., [12]). The infor-
mation flow in the social network can then be modeled in
terms of diffusion processes on the graph, e.g., by solving a
partial differential equation (PDE) (see, e.g., [1, 4]). How-
ever, recent work suggests that interactions beyond pairs are
of particular relevance (cf. [18]). Structures reminiscent of a
Laplacian on hypergraphs can be found in the model of [14].

A similar question arises in the analysis of community
structures, where graph spectral clustering is a standard
technique. In order to understand networks including group
connections, a more general structure such as hypergraphs
seems to be more appropriate. The success of PDE-based
methods on graphs motivates a further study on hypergraphs
in order to explore the potential of PDEs on such objects.
For this sake, we need appropriate definitions of hypergraph
gradients and Laplacians, which we revisit in this paper.
Moreover, the study of scales on hypergraphs is a relevant
topic, which could naturally be defined by the evolution of
diffusion type processes we hence study here.

In image processing, the graph structure is potentially lim-
iting, since it merely confines to the comparison of pairs
of pixels and their gray (respectively color) values. It may,
however, be relevant to make comparison between one pixel
and its surrounding pixels without the restriction to all
pairs. Another example is nonlocal image processing based
on patches consisting of multiple images. Hypergraph p-
Laplacians and their associated scale spaces are a promising
approach for such.

1.2 RelatedWork

There already exists extensive literature about traditional
graph theory and its application to social networks. In [12], an

overview of social network modeling with traditional graphs
is given, including community clustering, similarity analy-
sis, and community-based event detection. It indicates how
the versatile structure of a graph can be applied to real-
world problems. Arnaboldi et al. [1] introduce the so-called
ego network, a graph focusing on one specific social media
user in the center and their surrounding concentric layers of
followers, sorted hierarchically depending on their contact
frequency.

The paper [6] introduces first-order differential operators
and a family of p-Laplacian operators for traditional oriented
graphs. The proposed partial difference, adjoint, divergence
and anisotropic p-Laplacian for traditional graphs are a spe-
cial case of our vertex gradient, adjoint, divergence, and
p-Laplacian operators for hypergraphs, which are introduced
in Sect. 3. The theoretical results of [6] are applied for math-
ematical image analysis, such as filtering, segmentation,
clustering, and inpainting, but not for social network model-
ing.

[9] generalizes the already known p-Laplacian operators
for normal graphs to the hypergraph setting and performs
spectral analysiswith a specific focus on the 1-Laplacian. The
spectral properties are then applied to common (hyper)graph
problems, for instance vertex partitioning, cuts in graphs,
coloring of vertices and hyperarc partitioning, but the paper
does not include any numerical experiments or the model-
ing of social networks with hypergraphs. In comparison, our
gradient, adjoint, and p-Laplacian definitions are more gen-
eral and also have the property of the gradient null space
including constant vertex functions. Additionally, they are
also more flexible with respect to their adaptability for appli-
cation tasks.

The use of unoriented hypergraphs to model different
sociological phenomena of cliques, such as peer pressure,
with consensus models, has been proposed in [14]. Diffu-
sion processes in multi-way interactions with convergence
to one united group consensus are modeled with a simple
2-Laplacian inspired by the traditional graph setting. Due
to the lack of orientation in the hypergraphs, the described
consensus models are not able to capture the effects of a one-
sided connection through following someone (e.g., Twitter,
Instagram), but onlymutual connection throughbeing friends
(e.g., Facebook).

Furthermore, [20] uses unorientedhypergraphs inmachine
learning and shows how hypergraph modeling of data rela-
tionships can outperformnormal graphs in spectral clustering
tasks. Similarly, [11] compares two different algorithms for
submodular hypergraph clustering, for not oriented hyper-
graphs with positive vertex weights and a normalized pos-
itive hyperedge weight function, namely the inverse power
method (IPM) and the clique expansion method (CEM).
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1.3 Main Contributions

The contributions of this paper are manifold. First, we recall
the generalized vertex p-Laplacian operators for oriented
hypergraphs, which were introduced in the preceding paper
[8] and [7]. They generalize the definitions in [9] by including
two different vertex weight functions and hyperarc weight
functions, respectively. With appropriate choice of these
weights, the vertex gradient definition leading to the vertex
p-Laplacian fulfills the expected properties of the continuum
setting (anti-symmetry and the gradient of a constant func-
tion being equal to zero), based on less strict assumptions
compared to the implicit gradient of [9].

In order to obtain a meaningful definition of a p-Laplace
operator on unoriented hypergraphs as well, we introduce
a gradient operator with respect to a single vertex, which
follows the idea of the respective operators in the oriented
hypergraph case. As an alternative, we also consider an
approach via an averaging operator on the unoriented hyper-
graph, which is, however, confined to the linear case (p = 2)
as of now. The two different Laplacian operators are subse-
quently compared in our numerical experiments.

Moreover, we include two possible applications of the
corresponding diffusion equations: for the oriented setting
we investigate the information flow on networks based on
the hypergraph Laplacian and for the unoriented setting we
discuss an application to image processing and derive novel
scale spaces based on pixel neighborhood comparison, for
which our definitions are naturally suited.

2 Mathematical Basics of Hypergraphs

The definition of hypergraphs is a generalization of finite
graphs, both in the case of unoriented and oriented hyper-
graphs, which are based on unoriented and oriented normal
graphs, respectively. For a given finite set of vertices V =
{v1, v2, . . . vN }, a hypergraph does not only capture pairwise
connections between two vertices, but higher-order relation-
ships within any subset of all vertices.

Remark 1 As proposed in [13], we differentiate between ori-
ented and unoriented hypergraphs instead of directed and
undirected hypergraphs, because for every oriented hyperarc
there is only one orientation but two possible directions: the
direction along the orientation and the direction against the
orientation.

Definition 1 (Unoriented hypergraph UH ) [19] An unori-
ented hypergraph UH = (V, EH ) consists of a finite set of
vertices V , and a set of so-called hyperedges EH , with each
hyperarc eq ∈ EH being in the power set of the vertices 2|V |
and satisfying ∅ ⊂ eq ⊂ V with 2 ≤ ∣

∣eq
∣
∣ ≤ |V| − 1.

Example 1 (Unoriented hypergraph UH ) Given a set of
vertices

V = {v1, v2, v3, v4, v5, v6, v7, v8}

and a set of hyperedges

EH = {{v1, v2, v5} , {v2, v3, v7, v8} , {v6, v7}} ,

then the unoriented hypergraphUH = (V, EH ) can be visu-
alized in the following way:

v1 v2 v3 v4

v5 v6 v7 v8

e1
e2

e3

Remark 2 For clarity reasons, we assume that each hyper-
edge inEH is unique andhenceoccurs onlyonce.This implies
that the cardinality of the hyperedge set is finite due to set
of vertices V being finite and the number of hyperedges in
UH = (V, EH ) being limited by |EH | ≤ 2N .

Assigning either an output or an input orientation to
each vertex of a hyperedge results in an oriented version
of hyperedges, so-called hyperarcs. Based on this, oriented
hypergraphs can be defined.

Definition 2 [Oriented hypergraph OH ] [9] An oriented
hypergraph OH = (V,AH ) consists of a finite set of ver-
tices V , and a set of so-called hyperarcs AH . Each hyperarc
aq ∈ AH contains two disjoint subsets of vertices

aq =
(

aoutq , ainq
)

(1)

with ∅ ⊂ aoutq , ainq ⊂ V , aoutq ∩ ainq = ∅, aoutq being the set of
all output vertices and ainq being the set of all input vertices
of the hyperarc aq .

Example 2 [Oriented hypergraph OH ] Given a set of ver-
tices

V = {v1, v2, v3, v4, v5, v6, v7, v8}

and a set of hyperarcs

AH = {({v1, v2} , {v5}) , ({v3, v7} , {v2, v8}) ,

({v6} , {v7})} ,

then the oriented hypergraph OH = (V,AH ) can be visu-
alized in the following way:
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v1 v2 v3 v4

v5 v6 v7 v8

out out

in

out
in

out
in

out in

a1

a2

a3

Alternatively, hyperarcs can also be visualized similarly
to arcs in normal graphs:

v1 v2 v3 v4

v5 v6 v7 v8

a1 a2

a3

In our numerical experiments, we will use the second visual-
ization option (without color-coding the different hyperarcs)
in order to simplify understanding of the links between ver-
tices. Since the underlying oriented hypergraph will have

a specific property (
∣
∣
∣aoutq

∣
∣
∣ = 1), the examples will have a

one-to-one correspondence between the ”normal graph visu-
alization” and the hypergraph visualization, which would
generally not be given without color-coding each hyperarc.

Remark 3 Furthermore, for clarity reasons we assume that
each hyperarc in the set of hyperarcs AH is unique and thus
occurs only once. This automatically implies that the car-
dinality of the hyperarc set is finite due to set of vertices
V being finite. More precisely the number of hyperarcs in
OH = (V,AH ) is limited by |AH | ≤ NN .

We now define different functions on both unoriented and
oriented hypergraphs, which are used in Sect. 3 to introduce
differential operators inspired by the continuum setting. In
order to efficiently denote whether vertex is part of a hyper-
edge for an unoriented hypergraph and to check if a vertex is
part of a hyperarc as an output or an input vertex for an ori-
ented hypergraph,we use different kinds of vertex-hyperedge
and vertex-hyperarc characteristic functions.

Definition 3 [Vertex-hyperedge characteristic function δ]
For an unoriented hypergraph UH = (V, EH ), we define
the vertex-hyperedge characteristic function δ as:

δ : V × EH −→ {0, 1} (

vi , eq
) �−→ δ

(

vi , eq
)

=
{

1 vi ∈ eq
0 otherwise

. (2)

Definition 4 [Vertex-hyperarc characteristic functions δout,
δin] For an oriented hypergraph OH = (V,AH ), we define
the output vertex-hyperarc characteristic function δout as:

δout : V × AH −→ {0, 1} (

vi , aq
) �−→ δout

(

vi , aq
)

=
{
1 vi ∈ aoutq
0 otherwise

. (3)

Respectively, the input vertex-hyperarc characteristic func-
tion δin is given by:

δin : V × AH −→ {0, 1} (

vi , aq
) �−→ δin

(

vi , aq
)

=
{
1 vi ∈ ainq
0 otherwise

. (4)

Instead of defining separate δout and δin characteristic func-
tions, it would also be possible to define one vertex-hyperarc
characteristic function δ∗ as:

δ∗ : V × AH −→ {−1, 0, 1} (

vi , aq
) �−→ δ∗

(

vi , aq
)

=
⎧

⎨

⎩

−1 vi ∈ ainq
1 vi ∈ aoutq
0 otherwise

. (5)

however, this would lead to more complex definitions of the
vertex gradient, adjoint, and p-Laplacian operators later on,
because it complicates weighing output and input vertices of
a hyperarc differently.

Real-valued functions can be defined on the set of vertices
V , the set of hyperedges EH , and the set of hyperarcs AH in
order to link any kind of data to a hypergraph.

Definition 5 [Vertex functions f , and hyperedge or hyper-
arc functions F] For both an unoriented hypergraph UH =
(V, EH ) and an oriented hypergraph OH = (V,AH ), vertex
functions are defined on the set of vertices as

f : V −→ R vi �−→ f (vi ) (6)

with vertex weight functions being defined as

w : V −→ R>0 vi �−→ w (vi ) . (7)

For an unoriented hypergraph UH = (V, EH ), hyperedge
functions are defined on the domain of the set of hyperedges
as

F : EH −→ R eq �−→ F
(

eq
)

(8)

with hyperedge weight functions being defined as

W : EH −→ R>0 eq �−→ W
(

eq
)

. (9)
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Similarly, for an oriented hypergraph OH = (V,AH ), hyper-
arc functions are defined on the domain of the set of hyperarcs
as

F : AH −→ R aq �−→ F
(

aq
)

(10)

with hyperarc weight functions being defined as

W : AH −→ R>0 aq �−→ W
(

aq
)

. (11)

The space of all vertex functions, all hyperedge and all
hyperarc functions defined on a given hypergraph can be
identified with an N - or an at most NN -dimensional Hilbert
space, respectively.

Definition 6 [Space of vertex functions H (V), space of
hyperedge functions H (EH ), and space of hyperarc
functions H (AH )] For an unoriented hypergraph UH =
(V, EH ) and an oriented hypergraph OH = (V,AH ), the
space of all vertex functions f is given by

H (V) = { f | f : V −→ R} (12)

whereH (V)with the inner product 〈 f , g〉H(V) = ∑

vi∈V wI

(vi )
α f (vi ) g (vi ) for any two vertex functions f , g ∈

H (V), vertex weight function wI , and parameter α ∈ R

is a Hilbert space.
For an unoriented hypergraph UH = (V, EH ), the space

of all hyperedge functions F is defined as

H (EH ) = {F | F : EH −→ R} (13)

where H (EH ) with the inner product 〈F,G〉H(EH )

= ∑

eq∈EH
WI

(

eq
)β

F
(

eq
)

G
(

eq
)

for any two hyperedge
functions F,G ∈ H (EH ), hyperedge weight function WI ,
and parameter β ∈ R constitutes a Hilbert space. In the same
manner, the space of all hyperarc functions F for an oriented
hypergraph OH = (V,AH ) is defined as

H (AH ) = {F | F : AH −→ R} (14)

where H (AH ) with the product 〈F,G〉H(AH )

= ∑

aq∈AH
WI

(

aq
)β

F
(

aq
)

G
(

aq
)

for any two hyperarc
functions F,G ∈ H (AH ), hyperarc weight function WI ,
and parameter β ∈ R defines a Hilbert space.

3 Differential Operators on Hypergraphs

This section introduces first- and higher-order differential
operators both for unoriented and for oriented hypergraphs.

3.1 First-order Differential Operators for Oriented
Hypergraphs

Utilizing the introduced definitions for hypergraphs, we can
now generalize the definitions of the vertex gradient, the ver-
tex adjoint, and the vertex p-Laplacian for normal graphs,
which have already been discussed in a simplified form with
less weight functions and parameters in [6].

Definition 7 [Vertex gradient operator ∇v] For an oriented
hypergraph OH = (V,AH ) with vertex weight functions
wI andwG , and hyperarc weight functionWG , we define the
vertex gradient operator ∇v with parameters α, γ, ε, η ∈ R

as:

∇v : H (V) −→ H (AH ) f �−→ ∇v f

∇v f : AH −→ R aq �−→ ∇v f
(

aq
)

= WG
(

aq
)γ

∑

vi∈V

⎛

⎝δin
(

vi , aq
) wI (vi )

α wG (vi )
ε

∣
∣
∣ainq

∣
∣
∣

−δout
(

vi , aq
) wI (vi )

α wG (vi )
η

∣
∣
∣aoutq

∣
∣
∣

⎞

⎠ f (vi ) . (15)

The weight wI denotes the vertex weight function from
the inner product ofH (V) andwG denotes the vertex weight
function, which is introduced with the gradient operator.
Using different values for the parameters ε and η corresponds
to putting different weights on the input and output vertices
in the gradient of hyperarc aq .

The introduced vertex gradient fulfills two expected prop-
erties from the continuum setting, namely anti-symmetry and
the gradient of a constant function being equal to zero.

Theorem 1 [Vertex gradient operator properties] The ver-
tex gradient ∇v defined on an oriented hypergraphs OH =
(V,AH )with vertex weight functionswI andwG, and hyper-
arc weight function WG, satisfies the following properties:

(1) Vanishing gradient of a constant vertex function: If
the condition

wI (vk)
α wG (vk)

ε

= wI
(

v j
)α

wG
(

v j
)η

holds for all vertex combinations v j , vk ∈ V with v j ∈
aoutq and vk ∈ ainq for a hyperarc aq ∈ AH , then for every

constant function f , i.e., f (vi ) ≡ f for all vertices vi ∈
V , we have ∇v f

(

aq
) = 0 for all hyperarcs aq ∈ AH .
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(2) Antisymmetry:Let ε = η. Then the identity∇v f
(

aoutq ,

ainq
)

= −∇v f
(

ainq , aoutq

)

holds for all hyperarcs aq ∈
AH .

Proof See [7] Theorem 9.2 (Vertex gradient operator prop-
erties). ��

Let us mention one additional complication compared to
the traditional graph case: while it is trivial to see that for a
connected graph constant functions are the only elements in
the nullspace of the gradient, this is not apparent for hyper-
graphs.

By computing the adjoint ∇∗
v of the vertex gradient, we

can introduce a consistent definition of a divergence operator
on hypergraphs in analogy to traditional calculus. Detailed
computation based on the relation

〈G,∇v f 〉H(AH ) = 〈 f ,∇∗
vG〉H(V) (16)

for all vertex functions f ∈ H (V) and all hyperarc functions
G ∈ H (AH ) can be found inTheorem9.9 of [7] (Connection
vertex gradient ∇v and vertex adjoint ∇∗

v ).

Definition 8 [Vertex adjoint operator ∇∗
v ] For an oriented

hypergraph OH = (V,AH ) with vertex weight function
wG , and hyperarc weight functions WI and WG , the vertex
adjoint operator ∇∗

v with parameters β, γ, ε, η ∈ R is given
by:

∇∗
v : H (AH ) −→ H (V) F �−→ ∇∗

v F

∇∗
v F : V −→ R vi �−→ ∇∗

v F (vi )

=
∑

aq∈AH

⎛

⎝δin
(

vi , aq
) wG (vi )

ε

∣
∣
∣ainq

∣
∣
∣

−δout
(

vi , aq
) wG (vi )

η

∣
∣
∣aoutq

∣
∣
∣

⎞

⎠

WI
(

aq
)β

WG
(

aq
)γ

F
(

aq
)

. (17)

Definition 9 [Vertex divergence operator divv] For an ori-
ented hypergraph OH = (V,AH ) with vertex weight
functionwG , and hyperarc weight functionsWI andWG , the
vertex divergence operator divv with parameters β, γ, ε, η ∈
R is given by:

divv : H (AH ) −→ H (V) F �−→ divvF

divvF : V −→ R vi �−→ divvF (vi ) = −∇∗
v F (vi )

=
∑

aq∈AH

⎛

⎝δout
(

vi , aq
) wG (vi )

η

∣
∣
∣aoutq

∣
∣
∣

−δin
(

vi , aq
) wG (vi )

ε

∣
∣
∣ainq

∣
∣
∣

⎞

⎠

WI
(

aq
)β

WG
(

aq
)γ

F
(

aq
)

. (18)

3.2 p-Laplacian Operators for Oriented Hypergraphs

Based on the previous definitions, we introduce a generalized
vertex p-Laplacian inspired by the continuum setting, which
implies that for all p ∈ (1,∞) and all vertex functions f ∈
H (V) it holds true that:

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

,

where |·| denotes the pointwise absolute value.
Note that from the definition of the divergence as a neg-

ative adjoint of the gradient, it becomes clear the oriented
hypergraph p-Laplacian is the negative variation of the p-
norm of the gradient, which allows to apply the full theory
of eigenvalues of p-homogeneous functionals (see [2]). In
particular, the oriented hypergraph Laplacian is a negative
semidefinite linear operator and has a spectrum on the nega-
tive real line.

Definition 10 [Vertex p-Laplacian operator �
p
v ] For an ori-

ented hypergraph OH = (V,AH ) with vertex weight
functionswI andwG , andwith hyperarcweight functionsWI

andWG , the vertex p-Laplacian operator�p
v with parameters

α, β, γ, ε, η ∈ R is given by:

�p
v : H (V) −→ H (V) f �−→ �p

v

f �p
v f : V −→ R vi �−→ �p

v f (vi )

=
∑

aq∈AH

⎛

⎝δout
(

vi , aq
) wG (vi )

η

∣
∣
∣aoutq

∣
∣
∣

−δin
(

vi , aq
) wG (vi )

ε

∣
∣
∣ainq

∣
∣
∣

⎞

⎠WI
(

aq
)β

WG
(

aq
)pγ

×
∣
∣
∣
∣
∣
∣

∑

v j∈V

⎛

⎝δin
(

v j , aq
) wI

(

v j
)α

wG
(

v j
)ε

∣
∣
∣ainq

∣
∣
∣

−δout
(

v j , aq
) wI

(

v j
)α

wG
(

v j
)η

∣
∣
∣aoutq

∣
∣
∣

⎞

⎠ f
(

v j
)

∣
∣
∣
∣
∣
∣

p−2

×
∑

vk∈V

⎛

⎝δin
(

vk, aq
) wI (vk)

α wG (vk)
ε

∣
∣
∣ainq

∣
∣
∣

−δout
(

vk, aq
) wI (vk)

α wG (vk)
η

∣
∣
∣aoutq

∣
∣
∣

⎞

⎠ f (vk) . (19)
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The following theorem states that the vertex p-Laplacian
is well-defined.

Theorem 2 [Connection vertex gradient ∇v , vertex diver-
gence divv , and vertex p-Laplacian �

p
v ] For an oriented

hypergraph OH = (V,AH ) with vertex weight functions
wI and wG, and hyperarc weight functions WI and WG, the
vertex p-Laplacian �

p
v fulfills the equality

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

(20)

for all vertex functions f ∈ H (V).

Proof See Theorem 10.13 in [7] (Connection vertex diver-
gence divv , vertex gradient ∇v , and vertex p-Laplacian �

p
v ).
��

Moreover, our vertex p-Laplacian definition is a valid gen-
eralization of the definition introduced in [9].

Remark 4 [Parameter choice for the vertex p-Laplacian oper-
ator] The simplified definition of the vertex p-Laplacian
introduced in [9] for any vertex function f ∈ H (V) and
for any vertex vi ∈ V can be written in our notation as:

�p f (vi ) = 1

deg (vi )

∑

aq∈AH : δout(vi ,aq)=1
or δin(vi ,aq)=1

×

∣
∣
∣
∣
∣
∣
∣

∑

v j∈ainq
f
(

v j
) −

∑

v j∈aoutq

f
(

v j
)

∣
∣
∣
∣
∣
∣
∣

p−2

×
⎛

⎝
∑

vk∈V

(

δout
(

vi , aq
)

δout
(

vk, aq
)

+δin
(

vi , aq
)

δin
(

vk, aq
))

f (vk)

−
∑

vk∈V

(

δout
(

vi , aq
)

δin
(

vk, aq
)

+δin
(

vi , aq
)

δout
(

vk, aq
))

f (vk)

⎞

⎠ . (21)

The factor
(

δout
(

vi , aq
)

δout
(

vk, aq
) + δin

(

vi , aq
)

δin
(

vk, aq
))

is always equal to zero, unless vi , vk ∈ aoutq or
vi , vk ∈ ainq , which means that the vertices vi and vk are
co-oriented. Similarly, the factor

(

δout
(

vi , aq
)

δin
(

vk, aq
)

+δin
(

vi , aq
)

δout
(

vk, aq
))

ensures to only consider vertices
vk ∈ V which are anti-oriented compared to vertex vi and
hence either vi ∈ aoutq , vk ∈ ainq or vi ∈ ainq , vk ∈ aoutq .

Thus, choosing the parameters of the vertex p-Laplacian
�

p
v as α = 0, β = 0, γ = 0, ε = 0 and η = 0 together with

excluding the 1∣
∣
∣aoutq

∣
∣
∣

and 1∣
∣
∣ainq

∣
∣
∣

multiplicative factors and includ-

ing a new − 1
deg(vi )

factor in the vertex adjoint and the vertex

divergence, results in the simplified vertex p-Laplacian intro-
duced in [9].

Moreover, applying these parameter choices to the vertex
gradient, the vertex adjoint, and the vertex divergence leads to
the following definitions for all vertex functions f ∈ H (V),
all hyperarc functions F ∈ H (AH ), for all hyperarcs aq ∈
AH and all vertices vi ∈ V:

∇v f
(

aq
) =

∑

vi∈V

(

δin
(

vi , aq
) − δout

(

vi , aq
))

f (vi )

∇∗
v F (vi ) = − 1

deg (vi )

∑

aq∈AH

(

δin
(

vi , aq
)

−δout
(

vi , aq
))

F
(

aq
)

divv (F) (vi ) = − 1

deg (vi )

∑

aq∈AH

(

δout
(

vi , aq
)

−δin
(

vi , aq
))

F
(

aq
)

Proof See Theorem 10.12 in [7] (Parameter choice for the
vertex p-Laplacian operator). ��

Based on our axiomatic definition of the p−Laplacian
via a gradient and adjoint divergence, it is straightforward to
verify its variational structure:

Theorem 3 [p-Laplacian energy and derivatives] For an
oriented hypergraph OH = (V,AH ), the negative hyper-
graph p-Laplacian for p ∈ (1,∞) is the first variation of
the associated p-Dirichlet energy

Ep[ f ] :=
∑

vi∈V
|∇ p

v f (vi ) |, (22)

i.e., for every vertex function f ∈ H (V) we have

− �p
v f = E ′

p[ f ]. (23)

3.3 First-order Differential Operators for Unoriented
Hypergraphs

In order to retrieve a meaningful definition of a gradient also
in the case of an unoriented hypergraph, where vertices in a
hyperedge cannot be separated into output and input vertices,
we appoint for each hyperedge eq ∈ EH a specific vertex
vq̃ := vi ∈ eq , which all other vertices in the hyperedge
v j ∈ eq\

{

vq̃
}

are compared to.

Remark 5 If it is not clear how to choose a suitable special
vertex vq̃ for each hyperedge eq ∈ EH based on the appli-
cation, then it is also possible to include each hyperedge eq
exactly

∣
∣eq

∣
∣ times in the set of hyperedges EH , where each

version of the hyperedge has a different special vertex vi ∈ eq
(however, note that this requires paying particular attention to
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notation as mentioned in Remark 2). This means that we are
able to generate an oriented hypergraph out of an unoriented
one as follows: for each hyperedge eq ∈ EH in the unoriented
hypergraph, we create |eq | hyperarcs for the oriented hyper-
graph with the same vertices as eq . Each hyperarc has one
output and |eq | − 1 input vertices and each vertex vi ∈ eq is
an output vertex in exactly one newly created hyperarc. The
associated vertex gradient, adjoint, and p-Laplacian opera-
tors for the oriented hypergraph then follow the respective
definitions of the unoriented hypergraph case.

Before defining new differential operators for unoriented
hypergraphs, it is necessary to introduce a new vertex-
hyperedge characteristic function.

Definition 11 [Vertex-hyperedge characteristic function δ̃]
For an unoriented hypergraph UH = (V, EH ), we define
the vertex-hyperedge characteristic function δ̃ as

δ̃ : V × EH −→ {0, 1}
(

vi , eq
) �−→ δ̃

(

vi , eq
) =

{

1 vi = vq̃
0 otherwise

(24)

which indicates if vertex vi ∈ V is the special vertex vq̃ of
hyperedge eq ∈ EH . Furthermore, the following connection
to the vertex-hyperedge function δ holds true for all vertices
vi ∈ V and all hyperedges eq ∈ EH :

δ̃
(

vi , eq
) = 1 �⇒ δ

(

vi , eq
) = 1. (25)

The vertex gradient operator for unoriented hypergraphs
is defined with the same weight functions and parameters as
the definition in the oriented case.

Definition 12 [Vertex gradient operator ∇v] For an unori-
ented hypergraph UH = (V, EH ) with vertex weight
functions wI and wG , and hyperedge weight function WG ,
the vertex gradient operator ∇v with parameters α, γ, ε, η ∈
R is given as:

∇v : H (V) −→ H (EH )

f �−→ ∇v f

∇v f : EH −→ R eq �−→ ∇v f
(

eq
)

with

∇v f
(

eq
)

= WG
(

eq
)γ

(
∑

vi∈V
δ
(

vi , eq
) (

wI (vi )
α

× wG (vi )
ε f (vi ) − wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
) ))

.

The above gradient can be rewritten as:

∇v f
(

eq
)

= WG
(

eq
)γ

((
∑

vi∈V
δ
(

vi , eq
)

wI (vi )
α wG (vi )

ε f (vi )

)

− ∣
∣eq

∣
∣ wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)
)

. (26)

The vertex gradient for unoriented hypergraphs also ful-
fills the expected property of a constant vertex function
f ∈ H (V) resulting in a vanishing gradient.

Theorem 4 [Vertex gradient operator properties] The ver-
tex gradient∇v of an unoriented hypergraphUH = (V, EH )

with vertex weight functions wI and wG, and hyperedge
weight function WG, satisfies the following property: if the
vertex weights suffice the condition

wI (vi )
α wG (vi )

ε = wI
(

vq̃
)α

wG
(

vq̃
)η

for all vertex-hyperedge combinations vi ∈ eq and eq ∈ EH ,
then for every constant function f ∈ H (V), i.e., f (vi ) ≡
f for all vertices vi ∈ V , we get ∇v f

(

eq
) = 0 for all

hyperedges eq ∈ AH .

Proof Given a constant vertex function f ∈ H (V) on an
unoriented hypergraph UH = (V, EH ) with vertex weight
functions wI and wG , and hyperedge weight function WG ,
then it holds true that: the property wI (vi )

α wG (vi )
ε =

wI
(

vq̃
)α

wG
(

vq̃
)η for all vertex-hyperedge combinations

vi ∈ eq and eq ∈ EH implies that for each hyperedge eq
there exists a constant weq ∈ R>0 such that

wI (vi )
α wG (vi )

ε = wI
(

vq̃
)α

wG
(

vq̃
)η =: weq

for all vertices vi ∈ eq . Thus, together with the property
f (vi ) ≡ f ∈ R for all vertices vi ∈ V , this yields for every
hyperedge eq ∈ EH :

∇v f
(

eq
)

= WG
(

eq
)γ

(
∑

vi∈V
δ
(

vi , eq
) (

wI (vi )
α wG (vi )

ε f

− wI
(

vq̃
)α

wG
(

vq̃
)η

f
))

= WG
(

eq
)γ

(
∑

vi∈V
δ
(

vi , eq
) (

wI (vi )
α wG (vi )

ε

− wI
(

vq̃
)α

wG
(

vq̃
)η

)

f

)

= WG
(

eq
)γ

⎛

⎝
∑

vi∈V
δ
(

vi , eq
) (

weq − weq

)

f

⎞

⎠
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= WG
(

eq
)γ ∣

∣eq
∣
∣
(

weq − weq

)

f

= WG
(

eq
)γ ∣

∣eq
∣
∣ · 0 · f = 0

Where the last equality is feasible due to the hyperedge
weight function WG and the vertex function f being real
functions and the number of vertices in every hyperedge

∣
∣eq

∣
∣

being finite. ��
Based on the connections in the continuum setting

〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
vG〉H(V)

divvF = −∇∗
v F

for all vertex functions f ∈ H (V) and all hyperedge func-
tions F,G ∈ H (EH ), we define the vertex adjoint and vertex
gradient operators for unoriented hypergraphs.

Definition 13 [Vertex adjoint operator∇∗
v ] For an unoriented

hypergraph UH = (V, EH ) with vertex weight function
wG , and hyperedge weight functionsWI andWG , the vertex
adjoint operator ∇∗

v with parameters β, γ, ε, η ∈ R is given
by:

∇∗
v : H (EH ) −→ H (V) F �−→ ∇∗

v F

∇∗
v F : V −→ R vi �−→ ∇∗

v F (vi ) =
∑

eq∈EH

(

δ
(

vi , eq
)

wG (vi )
ε

−δ̃
(

vi , eq
) ∣
∣eq

∣
∣

wG (vi )
η
)

WI
(

eq
)β

WG
(

eq
)γ

F
(

eq
)

. (27)

Theorem 5 [Connection vertex gradient ∇v and vertex
adjoint ∇∗

v ] For an unoriented hypergraph UH = (V, EH )

with vertex weight functions wI and wG, and hyperedge
weight functions WI and WG, the vertex gradient ∇v and
the vertex adjoint ∇∗

v fulfill the equality

〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
vG〉H(V) (28)

for all vertex functions f ∈ H (V) and all hyperedge func-
tions G ∈ H (EH ).

Proof For the sake of clarity, the proof is given in the
appendix. ��

As in the case of the oriented hypergraph, we define the
vertex divergence operator based on the vertex adjoint oper-
ator.

Definition 14 [Vertexdivergenceoperator divv] For anunori-
ented hypergraph UH = (V, EH ) with vertex weight func-
tion wG , and hyperedge weight functions WI and WG , the
vertex divergence operator divv with parameters β, γ, ε, η ∈
R is given by:

divv : H (EH ) −→ H (V) F �−→ divvF

divvF : V −→ R vi �−→
divvF (vi )

= −∇∗
v F (vi ) =

∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣wG (vi )

η

−δ
(

vi , eq
)

wG (vi )
ε

)

WI
(

eq
)β

WG
(

eq
)γ

F
(

eq
)

.

(29)

3.4 p-Laplacian Operators for Unoriented
Hypergraphs

Analogously to the case of the oriented hypergraph, in this
subsection we present a definition for the vertex p-Laplacian
based on the vertex gradient and vertex divergence. The ver-
tex Laplacian we obtain from a perspective of averaging can
be found in the next subsection.

Definition 15 [Vertex p-Laplacian operator �
p
v ] For an

unoriented hypergraph UH = (V, EH ) with vertex weight
functions wI and wG , and hyperedge weight functions WI
andWG , the vertex p-Laplacian operator�p

v with parameters
α, β, γ, ε, η ∈ R is given by:

�p
v : H (V) −→ H (V) f �−→ �v f �p

v f : V −→ R

vi �−→ �p
v f (vi )

=
∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣wG (vi )

η

−δ
(

vi , eq
)

wG (vi )
ε
)

WI
(

eq
)β

WG
(

eq
)pγ

×
∣
∣
∣
∣
∣
∣

⎛

⎝
∑

v j∈V
δ
(

v j , eq
)

wI
(

v j
)α

wG
(

v j
)ε

f
(

v j
)) − ∣

∣eq
∣
∣ wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)

∣
∣
∣
∣
∣
∣

p−2

×
⎛

⎝

⎛

⎝
∑

vk∈V
δ
(

vk, eq
)

wI (vk)
α wG (vk)

ε f (vk)

⎞

⎠

− ∣
∣eq

∣
∣ wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)

⎞

⎠ . (30)

Theorem 6 [Connection vertex gradient ∇v , vertex diver-
gence divv , and vertex p-Laplacian�

p
v ] For an unoriented

hypergraph UH = (V, EH ) with vertex weight functions wI

and wG, and hyperedge weight functions WI and WG, the
presented vertex p-Laplacian �

p
v fulfills the equality

�p
v f = divv

(

|∇v f |p−2 ∇v f
)

(31)

for all vertex functions f ∈ H (V).
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Proof Given an unoriented hypergraphUH = (V, EH ) with
vertex weight functions wI and wG , and hyperedge weight
functions WI and WG , and a vertex function f ∈ H (V),
then the definitions of the vertex divergence operator divv

and the vertex gradient operator ∇v lead to the following for
all vertices vi ∈ V:

divv

(

|∇v f |p−2 ∇v f
)

(vi )

=
∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣wG (vi )

η

− δ
(

vi , eq
)

wG (vi )
ε

)

WI
(

eq
)β

WG
(

eq
)γ

∣
∣∇v f

(

eq
)∣
∣
p−2 ∇v f

(

eq
)

=
∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣wG (vi )

η

− δ
(

vi , eq
)

wG (vi )
ε

)

WI
(

eq
)β

WG
(

eq
)γ

∣
∣
∣
∣
∣
∣

WG
(

eq
)γ

(
⎛

⎝
∑

v j∈V
δ
(

v j , eq
)

wI
(

v j
)α

wG
(

v j
)ε

f
(

v j
)

⎞

⎠

− ∣
∣eq

∣
∣wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)
)∣

∣
∣
∣

p−2

WG
(

eq
)γ

(
⎛

⎝
∑

vk∈V
δ
(

vk, eq
)

wI (vk)
α wG (vk)

ε f (vk)

⎞

⎠

− ∣
∣eq

∣
∣wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)
)

Since the hyperedge weight function WG maps to positive
values, the following equality holds true and leads to the
vertex p-Laplacian definition for unoriented hypergraphs:

=
∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣wG (vi )

η

− δ
(

vi , eq
)

wG (vi )
ε

)

WI
(

eq
)β

WG
(

eq
)γ+γ (p−2)+γ

∣
∣
∣
∣
∣
∣

⎛

⎝
∑

v j∈V
δ
(

v j , eq
)

wI
(

v j
)α

wG
(

v j
)ε

f
(

v j
)

⎞

⎠

− ∣
∣eq

∣
∣wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)

∣
∣
∣
∣
∣
∣

p−2

(
⎛

⎝
∑

vk∈V
δ
(

vk, eq
)

wI (vk)
α wG (vk)

ε f (vk)

⎞

⎠

− ∣
∣eq

∣
∣ wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)
)

=
∑

eq∈EH

(

δ̃
(

vi , eq
) ∣
∣eq

∣
∣ wG (vi )

η

− δ
(

vi , eq
)

wG (vi )
ε

)

WI
(

eq
)β

WG
(

eq
)pγ

∣
∣
∣
∣
∣
∣

⎛

⎝
∑

v j∈V
δ
(

v j , eq
)

wI
(

v j
)α

wG
(

v j
)ε

f
(

v j
)

⎞

⎠

− ∣
∣eq

∣
∣wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)

∣
∣
∣
∣
∣
∣

p−2

(
⎛

⎝
∑

vk∈V
δ
(

vk, eq
)

wI (vk)
α wG (vk)

ε f (vk)

⎞

⎠

− ∣
∣eq

∣
∣wI

(

vq̃
)α

wG
(

vq̃
)η

f
(

vq̃
)
)

= �p
v f (vi )

Thus, the previously introduced definitions for the ver-
tex gradient ∇v , the vertex divergence divv , and the vertex
p-Laplacian �

p
v suffice the equality �

p
v f (vi ) = divv(|∇v f |p−2 ∇v f

)

(vi ) for all vertices vi ∈ V and for all vertex
functions f ∈ H (V). ��
3.5 Averaging Operators on Unoriented

Hypergraphs

Instead of starting with a gradient definition in order to
retrieve a feasible Laplacian operator for unoriented hyper-
graphs, we now want to define a Laplacian operator based
on intuitive averaging. For this definition, a special vertex
vq̃ for every hyperedge eq ∈ EH is not necessary anymore.
Before introducing the vertex averaging operator, we need
the definition of the number of incident hyperedges.
Definition 16 [Number of incident hyperedges] For an unori-
ented hypergraph UH = (V, EH ), the number of incident
hyperedges of a given vertex vi ∈ V is defined as:

#EH (vi ) = ∣
∣
{

eq ∈ EH
∣
∣ vi ∈ eq

}∣
∣ . (32)

Note: We call vertices vi ∈ V with #EH (vi ) = 0 isolated,
since they are not connected to any other vertex v j ∈ V .

The averaging operator below aims at defining for a given
vertex vi the average value of a vertex function f ∈ H (V)

by considering all hyperedges eq ∈ EH , which vi is a part
of, and then averaging the vertex function over all vertices
v j ∈ eq .

Definition 17 [Vertex averaging operator �v] For an unori-
ented hypergraph UH = (V, EH ) without any isolated
vertices vi ∈ V , i.e., #EH (vi ) > 0 for all vertices vi ∈ V , we
define the vertex averaging operator as:
�v : H (V) −→ H (V) f �−→ �v f
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�v f : V −→ R vi �−→ �v f (vi ) =
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
)

1
∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

f
(

v j
)

. (33)

By using a simplified version of the inner product on the
space of all vertex functions H (V) with wI ≡ 1, we obtain
an energy-conserving adjoint vertex averaging operator�v

∗
.

Definition 18 [Adjoint vertex averaging operator �v
∗
] For

an unoriented hypergraph UH = (V, EH ) without any iso-
lated vertices and with the previously defined averaging
operator �v , the adjoint vertex averaging operator is given
by:
�v

∗ : H (V) −→ H (V) f �−→ �v
∗
f

�v
∗
f : V −→ R vi �−→ �v

∗
f (vi ) =

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V

δ
(

v j , eq
) 1

#EH
(

v j
) f

(

v j
)

. (34)

Theorem 7 [Connection between vertex averaging opera-
tor �v and adjoint vertex averaging operator �v

∗
] For

an unoriented hypergraph UH = (V, EH ) without isolated
vertices and with any two vertex functions f , g ∈ H (V), the
vertex averaging operator�v and the adjoint vertex operator
�∗

v suffice the following equality

〈g,�v f 〉H(V)

:=
∑

vi∈V
g (vi )�v f (vi )

=
∑

v j∈V
f
(

v j
)

�v
∗
g

(

v j
)

=: 〈 f ,�v
∗
g〉H(V), (35)

where the inner product on the space of all vertex functions
H (V) has the weight wI ≡ 1.

Proof Given an unoriented hypergraphUH = (V, EH )with-
out any isolated vertices and two vertex functions f , g ∈
H (V), then the definitions of the vertex averaging operator
�v and the adjoint vertex averaging operator �v

∗
yield the

following:
〈g,�v f 〉H(V)

=
∑

vi∈V
g (vi ) �v f (vi )

=
∑

vi∈V
g (vi )

1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

f
(

v j
)

=
∑

vi∈V

∑

eq∈EH

∑

v j∈V
g (vi )

1

#EH (vi )
δ
(

vi , eq
)

1
∣
∣eq

∣
∣
δ
(

v j , eq
)

f
(

v j
)

=
∑

v j∈V

∑

eq∈EH

∑

vi∈V
g (vi )

1

#EH (vi )
δ
(

vi , eq
)

1
∣
∣eq

∣
∣
δ
(

v j , eq
)

f
(

v j
)

=
∑

v j∈V
f
(

v j
) ∑

eq∈EH

δ
(

v j , eq
) 1

∣
∣eq

∣
∣

∑

vi∈V
δ
(

vi , eq
) 1

#EH (vi )
g (vi ) =

∑

v j∈V
f
(

v j
)

�v
∗
g

(

v j
)

= 〈 f ,�v
∗
g〉H(V)

Therefore, with the definitions of the vertex averaging
operator �v and the adjoint vertex averaging operator �v

∗
,

the equality 〈g,�v f 〉H(V) = 〈 f ,�v
∗
g〉H(V) holds true for

all vertex functions f , g ∈ H (V). ��
Example 3 [Vertex averaging operator does not conserve
mean values] Given a set of verticesV = {v1, v2, v3, v4} and
a set of hyperedges EH = {{v1, v2, v3} , {v2, v4}}, then the
vertex averaging operator �v on the unoriented hypergraph
UH = (V, EH ) does not conserve themean value for general
vertex functions f ∈ H (V):

v1 v2

v3 v4

Δvf (v1) = 1
1

1
3 (f (v1) + f (v2) + f (v3))

)

Δvf (v2) = 1
2

1
3 (f (v1) + f (v2) + f (v3)) + 1

2 (f (v2) + f (v4))
)

Δvf (v3) = 1
1

1
3 (f (v1) + f (v2) + f (v3))

)

Δvf (v4) = 1
1

1
2 (f (v2) + f (v4))

)
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�v f (v1) = 1

1

(
1

3
( f (v1) + f (v2) + f (v3))

)

�v f (v2) = 1

2

(
1

3
( f (v1) + f (v2) + f (v3))

+1

2
( f (v2) + f (v4))

)

�v f (v3) = 1

1

(
1

3
( f (v1) + f (v2) + f (v3))

)

�v f (v4) = 1

1

(
1

2
( f (v2) + f (v4))

)

�v f (v1) + �v f (v2) + �v f (v3) �v f (v4) +
= 5

6
f (v1) + 19

12
f (v2)

5

6
f (v3) + 3

4
f (v4)

�= f (v1) + f (v2) + f (v3) + f (v4)

In contrast to this, the adjoint vertex averaging operator
conserves the overall energy for all vertex functions f ∈
H (V).

Theorem 8 [Adjoint vertex averaging operator �v
∗
con-

serves mean values] For an unoriented hypergraph UH =
(V, EH ) without isolated vertices and with any vertex func-
tion f ∈ H (V), the adjoint vertex averaging operator �v

∗

conserves the mean value of f , and hence, the following
equality holds:

∑

vi∈V
�v

∗
f (vi ) =

∑

vi∈V
f (vi ) . (36)

Proof Given an unoriented hypergraphUH = (V, EH )with-
out any isolated vertices and a vertex function f ∈ H (V),
then the following reformulations hold true:

∑

vi∈V
�v

∗
f (vi )

=
∑

vi∈V

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
) 1

#EH
(

v j
) f

(

v j
)

=
∑

vi∈V

∑

eq∈EH

∑

v j∈V
δ
(

vi , eq
)

1
∣
∣eq

∣
∣
δ
(

v j , eq
) 1

#EH
(

v j
) f

(

v j
)

=
∑

v j∈V

∑

eq∈EH

∑

vi∈V
δ
(

vi , eq
)

1
∣
∣eq

∣
∣
δ
(

v j , eq
) 1

#EH
(

v j
) f

(

v j
)

=
∑

v j∈V
f
(

v j
) 1

#EH
(

v j
)

∑

eq∈EH

δ
(

v j , eq
)

1
∣
∣eq

∣
∣

∑

vi∈V
δ
(

vi , eq
)

=
∑

v j∈V
f
(

v j
) 1

#EH
(

v j
)

∑

eq∈EH

δ
(

v j , eq
)

=
∑

v j∈V
f
(

v j
) 1

#EH
(

v j
) #EH

(

v j
)

=
∑

v j∈V
f
(

v j
)

Hence, the presented adjoint vertex averaging operator
�v

∗
conserves the overall energy on any given unoriented

hypergraph UH for all vertex functions f ∈ H (V). ��

Let us put together the knowledge gained from the above
analysis. Since we used the simple Euclidean scalar prod-
uct and showed that the adjoint operator conserves the mean
value, we can look at�v − I as a suitable operator for a scale
space analysis, somehow introducing a non-self-adjoint ver-
sion of the Laplacian. The energy conservation of the adjoint
shows that indeed�v has eigenvalue onewith constant eigen-
function. Thus, the evolution equation with operator �v − I
is expected to converge to a constant state and yield a suitable
scale space, which we will investigate further below.

Indeed, the averaging operator is self-adjoint if #EH (vi )

is constant on the set of vertices V , and in this case �v − I
has the structure of a normal graph Laplacian.

Lemma 1 Given an unoriented hypergraph UH = (V, EH )

with #EH (vi ) = #EH
(

v j
)

for all vertices vi , v j ∈ V . Then
for all vertex functions f ∈ H (V), the operator �v f − f
is equivalent to the graph Laplacian on a weighted oriented
graph for an arc

(

vi , v j
)

from vertex vi to vertex v j with the
particular weight function

w(vi , v j ) :=
1

#EH (vi )

∑

eq∈EH

1
∣
∣eq

∣
∣
δ
(

vi , eq
)

δ
(

v j , eq
)

.

Proof For an unoriented hypergraph UH = (V, EH ) with
#EH (vi ) = #EH

(

v j
)

for all vertices vi , v j ∈ V , the equiva-
lence becomes apparent from a simple change of summation:

(�v f − f ) (vi )

=
⎛

⎝
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

f (v j )

⎞

⎠

− f (vi )
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=
⎛

⎝
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

f (v j )

⎞

⎠

− 1

#EH (vi )
#EH (vi )

1
∣
∣eq

∣
∣

∣
∣eq

∣
∣ f (vi )

=
⎛

⎝
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

f (v j )

⎞

⎠

−
⎛

⎝
1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
)

⎞

⎠ f (vi )

= 1

#EH (vi )

∑

eq∈EH

δ
(

vi , eq
) 1

∣
∣eq

∣
∣

∑

v j∈V
δ
(

v j , eq
) (

f (v j ) − f (vi )
)

=
∑

eq∈EH

∑

v j∈V

(
1

#EH (vi )
δ
(

vi , eq
) 1

∣
∣eq

∣
∣

δ
(

v j , eq
) (

f (v j ) − f (vi )
)
)

=
∑

v j∈V

∑

eq∈EH

(
1

#EH (vi )
δ
(

vi , eq
) 1

∣
∣eq

∣
∣

δ
(

v j , eq
) (

f (v j ) − f (vi )
)
)

=
∑

v j∈V

(
1

#EH (vi )

∑

eq∈EH

1
∣
∣eq

∣
∣

δ
(

vi , eq
)

δ
(

v j , eq
)
)

( f (v j ) − f (vi ))

=
∑

v j∈V
w

(

vi , v j
)

( f (v j ) − f (vi ))

The term in the last row is exactly the traditional graph
Laplace operator of vertex vi for an oriented normal graph
with a vertex function f (see [7] Remark 7.12 (Parameter
choice for the vertex p-Laplacian operator)), where for the
arc weight w it holds true that w

(

vi , v j
) = 0 if the arc

(

vi , v j
)

does not exist in the oriented normal graph. ��
Let us mention that the weighted oriented normal graph

we obtain above could be considered the easiest map from an
unoriented hypergraph to aweighted graph, since theweights
essentially count the number of hyperedges eq ∈ H (V) two
vertices vi , v j ∈ V have in common.

4 Scale Spaces Based on Hypergraph
p-Laplacians

In the following, we discuss PDEs based on the family of
p-Laplace and averaging operators on hypergraphs intro-

duced in Sect. 3, which can be used for modeling information
flow in social networks with oriented hypergraphs as well
as performing image processing based on both oriented and
unoriented hypergraphs.

4.1 Modeling Information Flow Using Oriented
Hypergraphs

For analyzing information flow on social networks with ori-
ented hypergraphs, we consider two different PDE systems
modeling diffusion processes.We start with investigating the
scale space for the p-Laplacian operator, i.e., the gradient
flow of the p-Laplacian energy:

∂ f

∂t
(vi , t) = �p

v f (vi , t), vi ∈ V, t ∈ (0,∞)

f (vi , 0) = f0(vi ), vi ∈ V.

(37)

Solving (37) for every time step t ∈ (0,∞) amounts to com-
puting the information flow between vertices of the oriented
hypergraph along the respective hyperarcs.

Note that although there are no explicit boundaries in ori-
ented hypergraphs, we can interpret the above problem as
the homogeneous Neumann boundary problem. Due to the
properties of the proposed family of hypergraph p-Laplace
operators, it is easy to see that the mean-value of f is con-
served in time and we can naturally interpret the evolution
as a scale space toward coarser and coarser scales on the
graph. Moreover, the general asymptotic of gradient flows
for p-homogeneous energies (cf. [2]) yields that f → f as
t → ∞, with f being the mean value of f0. Moreover, the

rescaled quantity g = f − f
‖ f − f ‖ converges to a multiple of a

second eigenfunction for generic initial values.
Similar to the Neumann boundary problem, we can also

introduce a Dirichlet-type problem, where the Dirichlet
boundary ∂V ⊂ V denotes a subset of the vertex set V of
the oriented hypergraph, for which we introduce boundary
values and keep them fixed over time. The corresponding
stationary solution is not necessarily constant

�p
v f (vi ) = 0, vi ∈ V̊,

f (v j ) = Fj , v j ∈ ∂V.
(38)

Then, we aim at solving the p-Laplace equation on the
complementary vertex set V̊ := V\∂V of the oriented
hypergraph. Instead of solving (38) directly, we solve the
hyperbolic PDE model (37) on the vertex set V̊ , while keep-
ing the vertex function f ∈ H(V) fixed on the boundary
set ∂V . The reason for this approach is that any stationary
solution of (37) on V̊ with fixed boundary values is also a
solution to the p-Laplace equation in (38). To solve the two
proposed PDEmodels discussed above, we numerically have
to solve the initial value problem in (37). For this sake, we
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employ a forward-Euler time discretization with fixed time
step size τ > 0 anduse the renormalizedvariable g to observe
convergence to a nontrivial eigenfunction. This leads to the
following explicit iteration scheme:

fn+1(vi ) = fn(vi ) + τ · �p
v fn(vi ). (39)

4.2 Image Processing Using Unoriented
Hypergraphs

To perform image processing for grayscale images defined
on regular grids, we consider a PDE system that can be inter-
preted as an initial value problem for the vertex averaging
operator introduced in Definition 17. In particular, we are
interested in solving the following initial value problem

∂ f
∂t (vi , t) − λ · ( f0 (vi ) − f (vi , t))

= �v f (vi , t) − f (vi , t) , vi ∈ V, t ∈ (0,∞)

f (vi , 0) = f0 (vi ) , vi ∈ V. (40)

Note that in contrast to the initial value problemmodeling
opinion formation in social networks in (37), here we intro-
duce an additional data fidelity term that penalizes strong
deviations from the noisy image, represented by the initial
vertex function f0 ∈ H(V). The influence of this data fidelity
term can be controlled by a fixed parameter λ > 0 that
allows to realize a trade-off between smoothing the perturbed
image pixels via the hypergraph vertex averaging operator
and staying close to the initial image. In classical variational
regularization, this would correspond to the gradient flow
of the least-squares fidelity augmented with a regulariza-
tion energy scaledwith regularization parameter 1

λ
. However,

since the averaging operator is not self-adjoint, the corre-
sponding term in (40) cannot arise in the gradient flow of
an associated energy functional. Nonetheless, the diffusive
nature of�v f − f induces an interpretation as regularization
albeit in nonvariational setting, similar, e.g., to the inpainting
model in [3].

Once again we use a forward-Euler time discretization
with fixed time step size τ > 0, which is chosen small
enough to fulfill the CFL stability conditions. Following this
approach, we derive the following iterative scheme for image
processing using the hypergraph vertex averaging operator:

fn+1 (vi ) = fn (vi ) + τ · (

�v fn(vi ) − fn (vi )

+λ · ( f0 (vi ) − fn (vi ))) . (41)

5 Numerical Experiments

In this section, we present the results of our numerical exper-
iments when using the hypergraph operators introduced in
Sect. 3 for two different applications. In particular, we first

discuss how the oriented hypergraph p-Laplacian operator
can be used to model opinion formation in social networks.
Furthermore, we apply the vertex averaging operator of
unoriented hypergraphs for the task of image processing, and
we provide results that can be used both for image denoising
and for segmentation tasks.

5.1 Opinion Formation in Social Networks

In the following, we present the results of our numerical
experiments in which we solve the two PDEs (37) and (38)
by using the explicit forward-Euler discretization scheme
until the relative change between two iterations is smaller
than ε := 10−6. We choose τ in (39) small enough to ful-
fill the CFL condition for numerical stability. This leads to
very small time steps for the iteration scheme in the cases
1 ≤ p < 2.

For our numerical experiments, we use the Twitter data
set provided by Stanford University [10]. It consists of
41, 652, 230 vertices (users) and 1, 468, 364, 884 arcs (ori-
entedpairwise connections indicating that oneperson follows
another). Due to the size of the data set, we restrict our
numerical experiments to a comparatively small sub-network
within the first 1, 000, 000 lines of the Twitter input data. We
chose a sub-network of individuals such that all users are
directly or indirectly linked to each other to avoid cliques
of individuals, which are not connected to the rest of the
sub-network and thus also not influenced by users outside
their small circle.Moreover,we ensure that each sub-network
includes an opinion leader with a large number of followers
in the sub-network. Therefore, we can observe how one influ-
ential user impacts the opinion of the rest. In order to generate
hyperarcs from the given arcs, we put one Twitter user as a
singleton output vertex set and summarize all followers of
this user as the set of input vertices. This especially allows
highlighting the effect of opinion leaders, for instance famous
people with a large group of followers on Twitter.

We simulate the opinion of all individuals in the social
network toward an imaginary hypothesis by a vertex func-
tion f : V × [0,∞) → [−1, 1], which can be interpreted
as the following. If an individual believes the hypothesis the
corresponding value of the vertex function is positive (with
1 being the strongest level of trust), while for an individual
that opposes the hypothesis the corresponding value of the
vertex function is negative (with−1 being the strongest level
of distrust).

For the boundary value problem (38), we initialize the
opinion of all individuals in a social network by setting the
vertex function f to zero, which can be interpreted as having
noopinion toward an imaginary hypothesis.Wenowsimulate
information flow in the social network by giving two opin-
ion leaders (i.e., vertices with many followers) two opposing
opinions toward this hypothesis and setting the respective
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Fig. 1 Solution of the boundary value problem of graph (top) and hypergraph (bottom) p-Laplace operator for p = 2

Fig. 2 Second eigenfunction of graph (top) and hypergraph (bottom) p-Laplace operator for p = 1 with thresholding at 0 after 16, 000 iterations

values of the vertex function to −1 and 1. We keep these
values fixed as a form of Dirichlet boundary conditions.
By using the explicit forward-Euler discretization scheme
to solve the boundary value problem for p = 2, the opinion
of the two dedicated individuals is propagated in the social
network as can be seen in Fig. 1.We initialize the vertex func-
tion equally for the oriented normal graph (top row) and the
oriented hypergraph (bottom row) and calculate the diffu-
sion process until convergence. As can be seen, in both cases
the opinion is propagated in the social network based on the
underlying network topology and the final state is equivalent

for both the normal graph and the hypergraph experiment.
However, as can be observed, information within the hyper-
graph is distributed at a higher rate compared to the normal
graph and thus converging faster. This is due to the fact that
opinion leaders in a normal graph have a less direct impact
on their followers compared to the hypergraph case, where
the follower’s believe f (vi ) is scaled with 1

|ainq | , where |ainq |
is the number of followers of the individual user. This can
be seen in (19) since in our modeling for this application the
parameter aoutq is set to 1.
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For the initial value problem (37), we choose p = 1 and
a sufficiently small time step size τ > 0 to guarantee stability
of the corresponding iteration scheme (39).We initialize each
individual’s opinion f0 (vi ) randomly with a uniform distri-
bution in the interval [−1, 1].Additionally,wemake sure that
the vertex function f is initialized with average 0 and nor-
malized. As can be observed in Fig. 2, the information flow
in the social network converges to a second eigenfunction
of both the graph p-Laplacian (top row) and the hypergraph
p-Laplacian (bottom row). For both cases, we thresholded
at 0 after 16, 000 iterations to induce a spectral clustering of
the opposing opinions and hence separating the social net-
work into smaller communities based on the topology of the
network (i.e., the relationship of following an individual).
The resulting second eigenfunctions differ significantly with
respect to the underlying topology of the oriented normal
graph and the oriented hypergraph. This yields potential for
further analysis and experiments in other applications, e.g.,
segmentation of images via spectral clustering.

5.2 Local and Nonlocal Image Processing

In the following, we discuss how the proposed hypergraph
differential operators can be applied to image processing
tasks. Bymodeling pixels of an imagewith the help of normal
graphs or hypergraphs instead of a regular grid, it is possible
to not only represent local relationships of adjacent pixels,
but also nonlocal relationships based on the image’s content.
For example, one could link image pixels that are relatively
far from each other in the image, but share a similar image
texture in their respective neighborhood.

Given an image Ĩ ∈ R
n×m of height n ∈ N and width

m ∈ N perturbed by a normal distributed noise signal ν ∼
N (0, σ 2), a typical task in image processing is to recover a
noise-free image I ∈ R

n×m from

Ĩ = I + ν. (42)

This task can be interpreted as an inverse problem known as
image denoising. In our numerical experiments we restrict
ourselves to grayscale images for the sake of simplicity.

To perform image denoising, we first model the relation-
ship between the image pixels with an unoriented hyper-
graph. In particular, we represent each image pixel as a
vertex vi ∈ V of the oriented hypergraph and interpret the
pixel grayscale intensities as the values of the vertex func-
tion f ∈ H(V) with f : V → [0, 255]. Here, 0 represents
the lowest signal intensity (i.e., black pixels) and 255 rep-
resents the highest signal intensity (i.e., white pixels). We
construct the hyperedges of the hypergraph as described in
detail below.

For our numerical experiments, we chose a grayscale
image I of size 225×400 pixels of a flower field that contains

image features at different scales. We added random Gaus-
sian noise ν with mean μ = 0 and variance σ 2 = 150 to
every image pixel to generate an artificially perturbed image
Ĩ . Both the unperturbed image I and the noisy variant Ĩ are
illustrated in Fig. 3

We construct an initial vertex function f0 ∈ H(V) from
the noisy image Ĩ .

Weperformed twodifferent experiments for imagedenois-
ing using the introduced unoriented hypergraph vertex aver-
age operator �v from definition 17. In the first experiment,
we perform local image processing by constructing a hyper-
edge of the unoriented hypergraph from the vertices that
model the direct four pixel neighbors of any image pixel.
This corresponds to traditional image processingmethods on
regular grids as performed, e.g., in [3]. For boundary pixels
of the image, we use an analogue of Neumann zero boundary
conditions, i.e., we assume the image is extended constantly.
This results in a total of 225·400 = 90000 hyperedges for the
unoriented hypergraph, where each hyperedge eq ∈ EH can
be directly associated with the corresponding image pixel.

In the first case, we compare the results of using the iter-
ative scheme (41) with and without data fidelity term, for
which we each performed 100 iterations in our numerical
experiments. To investigate the influence of the data fidelity
term, we first fixed the time step size as τ := 0.1 and varied
the regularization parameter λ > 0. The left column of Fig. 4
shows that with decreasing value of λ > 0, the smoothing
effect of the vertex averaging operator increases, leading to
less noisy images. On the other hand, the edges of image
features get more and more blurry as can be expected in this
case. In another setting, we remove the data fidelity term by
setting λ := 0 and hence we investigate the corresponding
evolution equation of the vertex averaging operator. Here, we
varied the time step size parameter τ > 0 to compare differ-
ent results for a fixed number of iterations. As can be seen
in the right column of Fig. 4, we recover the scale spaces of
the operator �v . With increasing time step size τ > 0, we
observe more andmore coarse image features induced by the
local averaging effect of the operator.

In the second numerical experiment, we perform nonlo-
cal image processing by constructing the hyperedges of the
unoriented hypergraph not from the local neighborhood of
an image pixel, but by regarding the pixel intensities of the
image. By this we are able to assemble vertices in hyperedges
that correspond to image pixels which can be anywhere in
the image and hence we gain a nonlocal vertex averaging
operator. In particular, we construct for each vertex vi ∈ V a
hyperedge containing all vertices for which the value of the
vertex function f is similar. For this, we choose a threshold
ε > 0 and add all vertices v j ∈ V to the hyperedge induced
by the vertex vi ∈ V for which the distance is small enough,

123



Journal of Mathematical Imaging and Vision

Fig. 3 Illustration of the
original grayscale image I (left)
and the artificially perturbed
image Ĩ (right) used for image
denoising

Fig. 4 Solution of the initial
value problem (40) for the
average hypergraph operator on
a local hypergraph with data
fidelity term (left) and without
data fidelity term (right)
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i.e.,

| f (vi ) − f (v j )| < ε. (43)

We chose ε := 40 for the experiments presented in this set-
ting. With this approach, we nonlocally group image pixels
with similar grayscale intensities. Since pixels with equal
grayscale intensity lead to similar or even equal hyperedges,
we treat hyperedges uniquely, i.e., without any duplicates in
H(E).

As in the case of local image processing described above,
we compared the results of using the iterative scheme (41)
with and without data fidelity term, for which we performed
100 iterations in our numerical experiments. We started our
experiments by fixing the time step size as τ := 1 and vary-
ing the regularization parameter λ > 0 in order to investigate
the influence of the data fidelity term. The left column in
Fig. 5 shows that with decreasing value of λ > 0, the results
deviate more and more from the initial image. Furthermore,
one can observe that the amount of different pixel intensities
decreases more and more until the resulting image shows
only one grayscale intensity in the last row. At the same
time, edges of image features stay sharp as there is no aver-
aging operation across the boundaries of image regions with
strongly varying grayscale intensities. Secondly, we again
removed the influence of the data fidelity term entirely by set-
ting λ := 0. By varying the time step size parameter τ > 0,
we can compare different scales of the resulting scale space
for a fixed number of iterations of the nonlocal hypergraph
vertex averaging operator�v . As in the experiment with data
fidelity, we observe that the amount of different pixel inten-
sities decreases rapidly with increasing time step size τ > 0,
leading to a grouping of image pixels into image regions with
similar grayscale intensities, until eventually all image pixels
have the same grayscale value in the last row. This expected
behavior can be leveraged for other image processing tasks
in which grouping of image pixels is needed, e.g., in image
compression or segmentation.

6 Conclusions

In this paper, we derived various variants of differential oper-
ators and a family of p-Laplacian operators on hypergraphs,
which generalize known graph and hypergraph operators
from literature. In particular, we considered gradient, adjoint
and p-Laplacian definitions both in the case of oriented and
unoriented hypergraphs.

The resulting operators on oriented hypergraphs and the
associated scale space flows can be employed for model-
ing information flows or performing spectral analysis in
social networks, where we can directly incorporate group
relationships via hyperarcs. Moreover, the proposed averag-

ing operators and p-Laplacians for unoriented hypergraphs
enable performing local and nonlocal image processing with
results that can be used for segmentation tasks. Preliminary
results indicate a great potential for future research. Interest-
ing further questions, in addition to a more detailed study of
spectral clustering, are, e.g., the relation between hypergraph
gradients and higher-order methods for partial differential
equations or the definition of distance functions on hyper-
graphs via eigenfunctions of the infinity-Laplacian.

Another promising direction is to investigate the influence
of non-constant weight functions of the hypergraphs used
in our numerical experiments. In particular, we propose to
define the weights of hyperedges based on the variance of
the vertex function values for the vertices included in the
respective hyperedge. This should further improve the results
of both local and nonlocal image processing.

Due to the overarching success of learning-basedmethods
inmany areas of image processing and data analysis, it seems
obvious that further developments in this directions are in
place for hypergraph structures. We believe that our work
can provide a foundation for hypergraph neural networks
generalizing the recently celebrated graph neural network
structures with unforeseen opportunities.

A Proof of Theorem 5

Proof Given an unoriented hypergraphUH = (V, EH ) with
vertex weight functions wI and wG , and hyperedge weight
functions WI and WG , a vertex function f ∈ H (V), and a
hyperedge function F ∈ H (EH ) then using the definitions
of the inner product onH (EH ) and of the vertex gradient ∇v

results in:

〈G,∇v f 〉H(EH )

=
∑

eq∈EH

WI
(

eq
)β

G
(

eq
) ∇v f

(

eq
)
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eq
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⎛

⎝
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δ
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Fig. 5 Solution of the initial
value problem (40) for the
average hypergraph operator on
a nonlocal hypergraph with
data fidelity term (left) and
without data fidelity term (right)
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The last reformulation holds true, because for each hyper-
edge er ∈ EH there exists exactly one special vertex v j ∈ V
with v j = vq̃ and thus the additional sum in combination
with the characteristic function has no effect.
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The last equality is based on the following argument: For
a vertex vi ∈ V and a hyperedge eq ∈ EH , there are four
cases:

(1) δ
(
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(4) δ
(

vi , eq
) = 0 and δ̃

(

vi , eq
) = 1 impossible by defi-

nition

Hence the following equality holds true in all four cases,
which verifies the feasibility of the reformulation above:
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With this equality, we obtain the desired result:
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Therefore, the equality 〈G,∇v f 〉H(EH ) = 〈 f ,∇∗
vG〉H(V)

holds true for all vertex functions f ∈ H (V) and all hyper-
edge functions G ∈ H (EH ). ��
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