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Abstract
Inversion of operators is a fundamental concept in data processing. Inversion of linear operators is well studied, supported
by established theory. When an inverse either does not exist or is not unique, generalized inverses are used. Most notable
is the Moore–Penrose inverse, widely used in physics, statistics, and various fields of engineering. This work investigates
generalized inversion of nonlinear operators. We first address broadly the desired properties of generalized inverses, guided
by the Moore–Penrose axioms. We define the notion for general sets and then a refinement, termed pseudo-inverse, for
normed spaces. We present conditions for existence and uniqueness of a pseudo-inverse and establish theoretical results
investigating its properties, such as continuity, its value for operator compositions and projection operators, and others.
Analytic expressions are given for the pseudo-inverse of some well-known, non-invertible, nonlinear operators, such as hard-
or soft-thresholding and ReLU. We analyze a neural layer and discuss relations to wavelet thresholding. Next, the Drazin
inverse, and a relaxation, are investigated for operators with equal domain and range. We present scenarios where inversion
is expressible as a linear combination of forward applications of the operator. Such scenarios arise for classes of nonlinear
operators with vanishing polynomials, similar to the minimal or characteristic polynomials for matrices. Inversion using
forward applications may facilitate the development of new efficient algorithms for approximating generalized inversion of
complex nonlinear operators.

Keywords Generalized inverse · Pseudo-inverse · Inverse problems · Nonlinear operators

1 Introduction

Operator inversion is a fundamental mathematical problem
concerning various fields in science and engineering. The
vast majority of research devoted to this topic is concerned
with generalized inversion of linear operators. However,
nonlinear operators are extensively used today in numer-
ous domains, and specifically in machine learning and image
processing. Given that many nonlinear operators are not
invertible, it is highly instrumental to formulate the gen-
eralized inverse of nonlinear operators and to analyze its
properties.

Generalized inversion of linear operators has been stud-
ied extensively since the 1950s, following the paper of
Penrose [1]. As noted in [2, 3], that work rediscovered,
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simplified, and made more accessible the definitions first
made by Moore [4], in what is referred to today as the
Moore–Penrose inverse, often also called the matrix pseudo-
inverse. Essentially, a concise and unique definition is given
for a generalized inverse of any matrix, including singular
square matrices and rectangular ones. A common use of
the Moore–Penrose (MP) inverse is for solving linear least-
square problems. As elaborated in the work of Baksalary and
Trenkler [2], celebrating 100 years for its discovery, the MP
inverse has broadened the understanding of various physical
phenomena, statistical methods, and algorithmic and engi-
neering techniques. We hope this work can facilitate the use
of nonlinear generalized inversion in the context of data sci-
ence.

The generalized inversion of linear operators in normed
spaces was analyzed by Nashed and Votruba [5, 6], where
the relation to projections is made explicit. Additional prop-
erties were provided by [7–9] and the references therein. A
detailed overview of various generalized inverse definitions
and properties is available in the book of Ben-Israel and Gre-
ville [3]. The representation of Drazin inverses of operators
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on aHilbert space is examined in [10].1 See [11, 12] for recent
books on the algebraic properties of generalized inverses,
idempotent and projection operators on Banach spaces, gen-
eralized Drazin invertibility, and computational aspects of
Moore–Penrose and Drazin inversion. Iterative numerical
algorithms for approximating the generalized inverse were
proposed, for example, in [13–15].

For the case of series of multilinear operators, there are
several studies related to the inversion of Born series [16–
18]. They show a generalized inversion can be obtained by a
series of forward operators and provide a rate of convergence.
In the second part of our study (related to Drazin inversion)
we also show how generalized nonlinear inversion can be
obtained using applications of the forward operator.

The research related to generalized inversion of nonlinear
operators has been very scarce. In [19] the notion of non-
linear pseudo-inverse is given, for the first time, to the best
of our knowledge. It is in the context of least square estima-
tion in image restoration. This topic, however, is not further
developed. Characteristics of the pseudo-inverse and issues
such as existence and uniqueness are not discussed. Themost
comprehensive study on generalized inversion of nonlinear
operators is in the work of Dermanis [20]. While focused
on geodesy, he defines inversion broadly. We significantly
extend the initial results of Dermanis and attempt to establish
a general theory, relevant to data science. In control applica-
tions (see [21, 22]), pseudo-inversion is used for the design of
controllers for nonlinear dynamics. The inversion is meant to
stabilize the system by approximately canceling the dynamic
of the plant function (that is, the relation between the input
and output of the system, without feedback). In these studies,
inversion is discussed in a rather narrow applied context.

The goal of this paper is to define broad notions of gen-
eralized inversion of nonlinear operators. We present several
flavors of inverses and attempt to analyze their mathemat-
ical properties in various settings. We use the following
nomenclature: all types of inverses that hold some inversion
properties are referred to as generalized inverses. We refer
to pseudo-inverse specifically for the case of the Moore–
Penrose inverse in the linear case and its direct extension in
the nonlinear case. Pseudo-inverse is one type of generalized
inverse. Others which will be discussed in more detail are
{1, 2}-inverse, Drazin inverse, and left-Drazin inverse.

The main contributions of the paper are:

1. We explain and illustrate the general concept of general-
ized inversion of nonlinear operators for sets, aswell as its
fundamental properties. It relies on the first two axioms
of Moore and Penrose and generally is not unique.

1 TheDrazin inverse relaxes theMP axioms but requires commutativity
with the operator. This conceptwill be defined exactly in a broad context
in Sect. 7.2.

2. For nonlinear operators in normed spaces a stronger def-
inition can be formulated, based on best approximate
solution, which directly coincides with Moore–Penrose
in the linear setting. We show that although the first
Moore–Penrose axiom is implied, the second one is still
required explicitly, unlike the linear case.

3. Certain theoretical results are established, such as con-
ditions for existence and uniqueness, the domain and
possible continuity of the inverse of a continuous oper-
ator over a compact set, and various settings in which
the inverse of an operator composed by several simpler
operators can be inferred.

4. Analytic expressions of the pseudo-inverse for some
canonical functions are given, as well as explicit compu-
tations of a neural-layer inversion and relations towavelet
thresholding.

5. We then focus on endofunctions (T : V → V ) and
investigate the Drazin inverse and a relaxation thereof.
For both general sets and vector spaces, we show scenar-
ios where these inverses are expressible using forward
applications of the operator. In particular, this generalizes
the approach of using the Cayley–Hamilton theorem for
expressing the inverse of a matrix.

Some definitions and notations. For an operator T :
V → W between sets V and W , T (V ′) denotes the image
of V ′ ⊆ V by T , and T −1(W ′) denotes the preimage of
W ′ ⊆ W by T . The restriction of T to a subset V ′ ⊆ V is
denoted byT |V ′ . The composition of operators T1 : V2 → V3

and T2 : V1 → V2 is denoted by T1 ◦ T2 or T1T2. The set of
all operators from V to W is denoted by W V , and we write
|V | for the cardinality of the set V . An operator T : V → W
is idempotent or a generalized projection iff T ◦ T = T . We
write argminv∈V { f (v)} or argmin{ f (v) : v ∈ V } for the
set of elements in V that minimize a function f : V → R.
The closed ball with center a and radius r is denoted by
B̄(a, r), and the open ball by B(a, r). The notationR

+ spec-
ifies non-negative reals. The indicator function of an event A
is denoted by I {A}. The determinant of a matrix A is denoted
by det(A) and its rank by rank A. We write F[x] for the ring
of univariate polynomials over a field F . The degree of a
polynomial p is denoted by deg(p), and is undefined for the
zero polynomial.

2 TheMoore–Penrose Properties and Partial
Notions of Inversion

The Moore–Penrose inverse is defined in the linear domain
as follows.

Definition 1 (Moore–Penrose pseudo-inverse) Let V and W
be finite-dimensional inner-product spaces over C. Let T :
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V → W be a linear operator with the adjoint T ∗ : W → V .
The pseudo-inverse of T is a linear operator T † : W → V ,
which admits the following identities:

MP1: T T †T = T MP3: (T T †)∗ = T T †

MP2: T †T T † = T † MP4: (T †T )∗ = T †T

As was shown by Penrose [1], this pseudo-inverse exists
uniquely for every linear operator. It may be calculated, for
example, using singular value decomposition (SVD, see, e.g.,
[3]). The same work by Penrose showed that the pseudo-
inverse is involutive, namely, T †† = T . He also showed
[23] that it yields a best approximate solution (BAS) to the
equation T v = w. That is, for every w ∈ W , ‖T v − w‖2 is
minimized over v ∈ V by v∗ = T †(w), and among all such
minimizers, it uniquely has the smallest 2-norm.

Let us now examine how the Moore–Penrose scheme can
be adapted to nonlinear operators.Adirect application, unfor-
tunately, does not work. Recall that the adjoint of a linear
operator satisfies 〈T v,w〉 = 〈v, T ∗w〉 for every v ∈ V ,
w ∈ W . As can be easily shown, the properties of the inner
product restrict T to be linear (see Claim 24 in Appendix A).
This means that the adjoint operation as defined here does
not extend to nonlinear operators, and that MP3–4, which
involve the adjoint, need to be replaced. Thus, MP1–2 are
extended in a way that is suitable for nonlinear operators.

It should be noted that any possible subset of the four MP
properties (and indeed other possible properties) may serve
as the basis for the definition of a different type of inverse.
These various inverses have been studied intensively for lin-
ear operators (see [3]). In keeping with the notation of [3],
the MP pseudo-inverse, which satisfies MP1–4, is referred
to as a {1, 2, 3, 4}-inverse. For any subset {i, j, . . . , k} ⊆
{1, 2, 3, 4} one may also talk of T {i, j, . . . , k}, the set of all
{i, j, . . . , k}-inverses of the operator T , namely, satisfying
the properties i, j, . . . , k. The same notations will be used
here for a nonlinear operator T aswell. Let us first look closer
at {1, 2}-inverses of nonlinear operators.

3 The {1,2}-Inverses of Nonlinear Operators

It is important to note that V and W are no longer required
to be inner-product or even vector spaces, and they may in
fact be any two general nonempty sets. The following lemma
pinpoints the nature of a {1, 2}-inverse.
Lemma 1 Let T : V → W and T ‡ : W → V , where V and
W are nonempty sets. The statement T ‡ ∈ T {1, 2} is equiva-
lent to the following: ∀w ∈ T (V ), T ‡(w) ∈ T −1({w}), and
∀w /∈ T (V ), T ‡(w) = T ‡(w′) for some w′ ∈ T (V ).

Proof Assume that T ‡ ∈ T {1, 2}. If w ∈ T (V ), then w =
T (v) for some v ∈ V . By MP1, w = T (v) = T T ‡T (v) =

T T ‡(w), so T ‡(w) ∈ T −1({w}). If w /∈ T (V ), let w′ =
T (T ‡(w)), so w′ ∈ T (V ), and by MP2, T ‡(w′) = T ‡(w).

In the other direction, for every v we have T (v) ∈ T (V ),
so T ‡(T (v)) ∈ T −1({T (v)}), implying that T T ‡T (v) =
T (v), satisfying MP1. As for MP2, if w ∈ T (V ), we
have T ‡(w) ∈ T −1({w}), so T T ‡(w) = w, and thus
T ‡T T ‡(w) = T ‡(w). If w /∈ T (V ), then T ‡(w) =
T ‡(w′) for some w′ ∈ T (V ), and we already know that
T ‡T T ‡(w′) = T ‡(w′). As a result, T ‡T T ‡(w) = T ‡(w),
which completes the proof. �

Lemma 1 provides a recipe for constructing a {1, 2}-
inverse T ‡ of an operator T . First, for each element w in
the image of T , define T ‡(w) as some arbitrary element in
its preimage T −1({w}). Second, for any elementw not in the
image of T , select some arbitrary element in T (V ), and use
its (already defined) inverse as the value for T ‡(w).

Thus, MP1–2 leave us with two degrees of freedom in
defining the inverse. One is in selecting a subset V0 of V ,
which contains exactly one source of each element in T (V ).
It is easy to see that this set is exactly T ‡T (V ). The other is an
arbitrary mapping P0 from W \T (V ) to T (V ), whichmay be
extended to a mapping from W to T (V ) by defining it as the
identitymappingonT (V ). Thismapping clearly equalsT T ‡.
The following theorem summarizes the resulting picture.

Theorem 1 Let T : V → W be an operator, let V0 ⊆ V
contain exactly one source for each element in T (V ), and let
P0 : W → T (V ) satisfy that its restriction to T (V ) is the
identity mapping. Then, the following hold.

1. The restriction T |V0 is a bijection from V0 onto T (V ).
2. The function T ‡ = (T |V0)

−1P0 is a {1, 2}-inverse of T
that uniquely satisfies the combined requirements MP1–
2, T T ‡ = P0, and T ‡T (V ) = V0.

3. Applying the construction of part 2 to T ‡ with the set
W0 = T (V ) and mapping Q0 = T ‡T , yields T ‡‡ =
(T ‡|W0)

−1Q0 = T .
4. The constructions of parts 2 and 3 generalize the MP

pseudo-inverse for linear operators. Specifically, if V =
C

n, W = C
m, and T is linear, then picking V0 = T †T (V )

and P0 = T T † yields T ‡ = (T |V0)
−1P0 = T † and

picking W0 = T †(V ) and Q0 = T †T yields T ‡‡ =
(T ‡|W0)

−1Q0 = T †† = T .
5. The functions T T ‡ and T ‡T are idempotent.
6. If T is a bijection of V onto W , then T ‡ = T −1 is the

only {1, 2}-inverse of T .

Proof 1. Immediate, since V0 contains exactly one source
for each element in T (V ).

2. If w ∈ T (V ), then P0 maps it to itself, and (T |V0)
−1

then maps it to one of its sources. If w /∈ T (V ) then
(T |V0)

−1P0 maps it to the inverse of an element in T (V ).
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By Lemma 1, T ‡ satisfies MP1–2. We have that T T ‡ =
T (T |V0)

−1P0 = P0 and

T ‡T (V ) = (T |V0)
−1P0T (V ) (1)

= (T |V0)
−1T (V ) (2)

= V0 . (3)

As for uniqueness, Lemma 1 describes the degrees of
freedom in defining a {1, 2}-inverse. For w ∈ W\T (V ),
T T ‡(w) is clearly the element in T (V ) whose inverse is
associatedwithw. Otherwise,w ∈ T (V ) and T ‡T (V ) =
V0. Since V0 contains exactly one source for w, there is
no choice in defining its inverse.

3. First we need to verify that W0 ⊆ W contains exactly one
source under T ‡ for each element in T ‡(W ). We have
by parts 1 and 2 that T ‡(W ) = V0 and W0 = T (V )

has exactly one source under T ‡ for each element in
V0. We also have that Q0 = T ‡T maps V to T ‡(W )

and its restriction to T ‡(W ) is the identity mapping. By
part 2 we thus have that defining T ‡‡ = (T ‡|W0)

−1Q0

complies with MP1–2 and satisfies T ‡T ‡‡ = Q0 and
T ‡‡T ‡(W ) = W0. To show that T ‡‡ = T we can use
the uniqueness of the inverse shown in part 2. It is clear
that T ∈ T ‡{1, 2} by Lemma 1. In addition, T ‡T = Q0

by definition, and T T ‡(W ) = T (V ) = W0, and we are
done.

4. Let V = C
n , W = C

m , let T (v) = Av for a complex
m by n matrix A, and let A† be its MP inverse. We set
V0 = A†A(V ) and P0 = AA†. Thus, P0 : W → A(V ),
and for every w = Av,

P0(w) = AA†Av = Av = w, (4)

as required. In addition, A(V0) = AA†A(V ) = A(V ),
so every element in A(V ) has at least one source in V0.
To show that there is exactly one source, it is enough to
show that V0 and A(V ), which are both vector spaces,
have the same dimension. Let A = U1�U∗

2 be the sin-
gular value decomposition of A, where U1 and U2 are
unitary and � is a generalized diagonal matrix. Then,
the MP inverse of A is given by A† = U2�

†U∗
1 , where

�
†
j i = �−1

i j I
{
�i j �= 0

}
. Thus AA† = U1D1U∗

1 and

A†A = U2D2U∗
2 , where D1 = ��† and D2 = �†� are

diagonal matrices with only ones and zeros, and the same
trace. As a result, both P0(W ) (which equals A(V )) and
V0 have an equal dimension that is the common trace of
D1 and D2, as we wanted to show.
The fact that this construction in fact yields A† follows
since

A† = A†AA† = AP0 = (A|V0)
−1P0, (5)

where the last equality holds since A is a bijection from
V0 to A(V ) = P0(W ). As for A†† (part 3), both our
inverse and the MP inverse yield A (see [1], Lemma 1),
so they coincide again.

5. Directly from MP1–2, we have that T T ‡T T ‡ = T T ‡

and T ‡T T ‡T = T ‡T .
6. By Lemma 1, there are no degrees of freedom in defining

T ‡, since W \ T (V ) is empty and there is a single source
for every element. On the other hand, it is clear that T −1

satisfies MP1–2.
�

It is instructive to consider the symmetry, or lack thereof,
between T and T ‡. The roles of T and T ‡ are completely
symmetric in MP1–2, and it is therefore possible to define
T ‡‡ = T if onlyMP1–2have to be satisfied. The construction
given in part 2 of Theorem 1 does not restrict the degrees of
freedom allowed by MP1–2, yet embodies them (through V0

and P0) in a way that is not necessarily symmetric in the roles
of T and T ‡. The specific construction for T ‡‡ in part 3 aims
to preserve the symmetry between T and T ‡ and achieves the
desired involution property of the inverse, namely, T ‡‡ = T .

Ultimately, Theorem 1 describes T as a composition of
an endofunction of V , T ‡T , and a bijection, T |V0 , where
V0 = T ‡T (V ). Symmetrically, T ‡ is a composition of an
endofunction of W , T T ‡, and a bijection T ‡|W0 , which is the
inverse of the bijection that is part of T . These compositions,
T = T (T ‡T ) and T ‡ = T ‡(T T ‡), are inherent in MP1–2.
The endofunctions above are also idempotent, or generalized
projections. It should be noted that such operators do not
require a metric, like conventional metric projections. The
full scheme is depicted in Fig. 1.

If one seeks to assign a particular {1, 2}-inverse for every
operator from V to W and indeed also from W to V , then
that is always possible by following the recipe of part 2 of
Theorem 1 or Lemma 1. In addition, if this assignment is a
bijection F : W V → V W , then the involution property may
be satisfied for all operators by defining the inverse of F(T )

for T : V → W as T . Note that this definition is proper since
F is a bijection, and that T ‡ ∈ T {1, 2} implies T ∈ T ‡{1, 2}
since the roles of the operator and the inverse in MP1–2 are
symmetrical.

The existence of a bijection between W V and V W (equiv-
alently, |W V | = |V W |) is a necessary condition for all
operators to have an involutive {1, 2}-inverse. For exam-
ple, if |V W | < |W V |, then there are two different operators
T1, T2 ∈ W V that are assigned the same inverse in T ‡ ∈ V W ,
and clearly the inverse of T ‡ cannot be equal to both.

3.1 The {1,2}-Inverse of Generalized Projections

Every idempotent endofunction E : V → V has that E3 =
E . Consequently, E ∈ E{1, 2}. This may not hold for the
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Fig. 1 A symmetric depiction
of the {1, 2}-inverse scheme, as
detailed in Theorem 1. The
inverse ‘projects’ a point w to
W0 = T (V ) and then maps it to
V0 using T |−1

V0
(equivalently,

T ‡|W0 ), which is a proper
bijection from W0 onto V0. In
the other direction, T
equivalently first ‘projects’ a
point v onto V0, where T is then
a proper bijection onto W0. The
generalized projections are done
by T ‡T in V and by T T ‡ in W

MP inverse. For example, the matrix

E =
(
0 0
1 1

)
(6)

is idempotent, yet its MP inverse is

E† =
(
0 0.5
0 0.5

)
. (7)

There are classes of idempotent operators where the MP
inverse is necessarily the operator itself. For a linear T :
C

n → C
m , T T † and T †T are not merely idempotent endo-

morphisms. SVD yields that both T T † and T †T have the
self-adjoint matrix form U DU∗, where U is unitary and D
is square diagonal with ones and zeros on the diagonal. It is
easy to see that both T T † and T †T are their ownMP inverses
by checking MP1–4 directly. The form U DU∗ describes a
metric projection onto a vector subspace, which is in partic-
ular a closed convex subset of the original vector space. For
consideringmetric projections inmore general scenarios, the
following concept will be key.

Definition 2 A nonempty subset C of a metric space V , with
a metric d, is a Chebyshev set, if for every v ∈ V , there is
exactly one element v′ ∈ C s.t. d(v, v′) = infu∈C d(v, u).
The projection operator onto C , PC : V → V , may thus be
uniquely defined at v by setting PC (v) = v′.2

By the Hilbert projection theorem (see, equivalently, [24],
Theorem 4.10), every nonempty, closed, and convex set in a
Hilbert space is a Chebyshev set.

Claim 1 Let V be a metric space, C ⊆ V a Chebyshev set,
and PC : V → V the projection onto C.

1. The operator PC is idempotent.
2. It holds that PC is its own {1, 2}-inverse, but if |C | > 1

and C � V , it is not unique.

2 This definition of course applies to normed spaces and Hilbert spaces.

3. In the particular case where V is a Hilbert space and C
is a closed subspace of V , it holds that PC is a linear
operator and a {1, 2, 3, 4}-inverse of itself.

Proof 1. For every v ∈ V we have PC (v) ∈ C , and for
every v ∈ C , PC (v) = v, therefore, for every v ∈ V ,
P2

C (v) = PC (v).
2. Since PC is idempotent, clearly PC ∈ PC {1, 2}. By

Lemma 1, we may define a {1, 2}-inverse P‡
C as P‡

C (v) =
v for every v ∈ C , and P‡

C (v) = P‡
C (T (v)) for every

v /∈ C , for any arbitrary T : V \ C → C . Thus,
P‡

C (v) = T (v) for every v /∈ C . Since |C | > 1 and
C � V , we may choose T that does not coincide with
PC .

3. Note that any subspace is clearly convex, so any closed
subspace is a Chebyshev set by theHilbert projection the-
orem. The fact that the projection onto a closed subspace
is linear is well known (see, e.g., [24], Theorem 4.11).
To show that P†

C = PC , it remains to show that MP3–4
are satisfied. Since P2

C = PC , both MP3 and MP4 would
be satisfied if P∗

C = PC , or equivalently, if for every
u, v ∈ V , 〈PC (u), v〉 = 〈u, PC (v)〉. This indeed holds,
since

〈PC (u), v〉 = 〈PC (u), PC (v) + PC⊥(v)〉 (8)

= 〈PC (u), PC (v)〉 (9)

= 〈PC (u) + PC⊥(u), PC (v)〉 (10)

= 〈u, PC (v)〉 , (11)

completing the proof.
�

Part 3, given here for completeness, relates the result back
to the linear case, and for V = C

n yields the (unique) MP
inverse.
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4 A Pseudo-Inverse for Nonlinear Operators
in Normed Spaces

We now examine the concept of pseudo-inverse, which
applies to normed spaces and coincides with MP1–4 for
matrices. For this reason we will use the notation T † for
this type of inverse as well. We note that this definition does
not use the adjoint operation and can be applied to nonlinear
operators.

Definition 3 (Pseudo-inverse for normed spaces) Let V and
W be subsets of normed spaces over F (R or C), and let T :
V → W be an operator. A pseudo-inverse of T is an operator
T † : W → V that satisfies the following requirements:

BAS: ∀w ∈ W , T †(w) ∈ argmin{‖v‖ : v ∈
arg min

v′∈V
{‖T (v′) − w‖} }

MP2: T †T T † = T †

The calculation of T †(w) for a givenw ∈ W can be translated
into twoconsecutiveminimization problems: first, findmw =
minv∈V {‖T (v) − w‖}, and then minimize ‖v‖ for v ∈ V
s.t. ‖T (v) − w‖ = mw. Note that the definition implicitly
requires that the minima exist. Any solutions are then also
required to satisfy MP2.

The BAS property is modeled after the best approximate
solution property of the MP inverse. It replaces MP3 and
MP4, so the definition no longer relies on the adjoint oper-
ation. In addition, BAS directly implies MP1, making it
redundant. This means that a pseudo-inverse according to
Definition 3 is in particular a {1, 2}-inverse. Property MP2 is
not implied by BAS, and neither is the involution property.

Claim 2 Let V and W be subsets of normed spaces, let T :
V → W , and let S : W → V satisfy BAS w.r.t. T .

1. It holds that S ∈ T {1}.
2. For every w ∈ T (V ), ST S(w) = S(w), namely, MP2 is

satisfied on T (V ).
3. In general, S does not necessarily satisfy MP2.
4. It might be impossible to define involutive pseudo-

inverses for all operators in W V , even when all these
operators have pseudo-inverses.

Proof 1. Let v ∈ V and write w = T (v). For v′ ∈ V to
minimize ‖T (v′) − w‖, one must have T (v′) = w. By
the BAS property, S(w) ∈ T −1({w}), so T S(w) = w,
and therefore, T ST (v) = T (v), namely,MP1 is satisfied.

2. Let w = T (v) for some v ∈ V . Therefore,

ST S(w) = ST ST (v) = ST (v) (12)

= S(w) , (13)

where the second equality is by part 1, soMP2 is satisfied
on T (V ).

3. Let V = {−1, 1} and W = {0, 1} as subsets of R, let
T (−1) = T (1) = 1, and consider S(0). Since T (V ) =
{1}, any source of 1 with minimal norm would satisfy
BAS, namely, either −1 or 1. The same is true for S(1).
Thus, BAS poses no restrictions on S. We can therefore
satisfy BAS by choosing S(0) = −1 and S(1) = 1, and
then ST S(0) = 1 �= −1 = S(0), contradicting MP2.

4. Let V be a set of elements with equal norms, e.g., on the
unit circle in R

2 with the 2-norm.
Assume that T is onto W . By parts 1 and 2, a pseudo-
inverse of T is in T {1, 2}. BAS means that for every
w ∈ W , a pseudo-inverse value at w must be a source
of w with minimal norm, namely, any source of w.
This requirement is fulfilled by any {1, 2}-inverse of T
(Lemma 1), so the pseudo-inverses of T are exactly its
{1, 2}-inverses.
Assume now that T1 is a constant operator, T1(v) = w0

for every v ∈ V . BAS imposes no restrictions on the
value of a pseudo-inverse of T1 at any point, so again any
{1, 2}-inverse of T1 from W to V would be a pseudo-
inverse.
For every T ∈ W V , it is always possible to pick a {1, 2}-
inverse by Lemma 1.
Let |W | = 2 and |V | = 5, so |W ||V | > |V ||W |, and every
operator in W V is either surjective or constant. It is thus
possible to define a pseudo-inverse for each, but there
must be two distinct operators T1, T2 ∈ W V with the
same pseudo-inverse, so the involution property cannot
possibly hold for both.

�
The nonlinear pseudo-inverse has the desirable elemen-

tary property that for any bijection T , T −1 is its unique valid
pseudo-inverse (Claim 25 in Appendix A). By itself, how-
ever, Definition 3 implies neither existence nor uniqueness.
In what follows we will seek interesting scenarios where this
is indeed the case. One such important scenario is the origi-
nal case of matrices, discussed by Penrose. As shown by him
[23], for a linear operator T , the BAS property is uniquely
satisfied by the MP inverse. Since the MP inverse also satis-
fies MP2, we can state the following.

Claim 3 Let V and W be finite-dimensional inner-product
spaces over C, and let T : V → W be a linear operator.
Then Definition 3 w.r.t. the induced norms is uniquely satis-
fied by the MP inverse.

Focusing on the image of the operator (equivalently, if
the operator is onto) allows for easier characterization of
existence and uniqueness.

Lemma 2 (Inverse restricted to the image) Let V and W
be subsets of normed spaces, and let T : V → W and
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E ⊆ T (V ). A pseudo-inverse T † : E → V exists iff
Aw = argmin{‖v‖ : v ∈ T −1({w})} is well-defined (mini-
mum exists) for every w ∈ E. A pseudo-inverse T † : E → V
exists uniquely iff Aw is a singleton for every w ∈ E.

Proof If Aw is well defined for every w ∈ E , then BAS can
be satisfied. By part 2 of Claim 2, BAS implies MP2, and
thus a pseudo-inverse exists. Moreover, if Aw is a singleton
for everyw, then there are no degrees of freedom in choosing
a pseudo-inverse, so it is unique.

If a pseudo-inverse exists, then the BAS property implies
that for every w ∈ E , Aw is well-defined. Suppose that for
some w, Aw is not a singleton. BAS then allows a degree of
freedom for the value of a pseudo-inverse on w. Since BAS
implies MP2 in the current scenario, any choice would yield
a valid pseudo-inverse, implying non-uniqueness. �

With the following restriction, the pseudo-inverse may be
uniquely defined beyond the image.

Claim 4 (Sufficient condition for a unique pseudo-inverse)
Assume that for every w ∈ T (V ), argmin{‖v‖ : T (v) = w}
is a singleton, and let W ′ = {w ∈ W : argmin{‖w0 −
w‖ : w0 ∈ T (V )} is a singleton}. Then a pseudo-inverse
T † : W ′ → V exists and it is unique.

Proof Note that W ′ ⊇ T (V ), and define T †(w) as follows. If
w ∈ T (V ), thenT †(w) is the single source ofwwithminimal
norm. If w ∈ W ′ \ T (V ), then define T †(w) = T †(w0),
where w0 is the single closest element to w in T (V ). By
Lemma 1, this is a {1, 2}-inverse, and in addition, it clearly
satisfies BAS, so it is a pseudo-inverse. The BAS property
uniquely determines the values of a pseudo-inverse on W ′,
so we are done. �

We now consider the important case of continuous oper-
ators. The next theorem shows that a pseudo-inverse always
exists over the whole range if the domain of the operator
is compact. Conditions for uniqueness and continuity of the
inverse are also given.

Theorem 2 (Continuous operators over a compact set) Let V
and W be subsets of normed spaces where V is compact, and
let T : V → W be continuous.

1. A pseudo-inverse T † : W → V exists.
2. Assume further that W is a Hilbert space, T is injective,

and T (V ) is convex. Define T † : W → V , as T † =
T −1 ◦ PT (V ), where PT (V ) is the projection onto T (V )

and T −1 : T (V ) → V is the real inverse of T . Then T †

is continuous and is the unique pseudo-inverse of T .

Proof 1. For every w ∈ W , the function gw : V → R

defined as gw(v) = ‖T (v) − w‖ is continuous. By the
extreme value theorem, it attains a global minimum mw

on V . The set Gw = {v ∈ V : ‖T (v) − w‖ = mw} =
g−1
w ({mw}) is closed, as the preimage of a closed set

by a continuous function. As a subset of V , Gw is also
compact, and the function h : Gw → R, defined as
h(v) = ‖v‖ is continuous and attains a minimum μw

on Gw, again by the extreme value theorem. The set
of elements in Gw with minimal norm will be denoted
by Hw. By definition, the BAS property can be satis-
fied by defining T †(w) ∈ Hw. However, this must be
done while also satisfying MP2. By Lemma 1, MP1–
2 are satisfied if we choose T †(w) ∈ T −1({w}) for
w ∈ T (V ), and T †(w) = T †(w′) for some w′ ∈ T (V )

for w /∈ T (V ). For w ∈ T (V ) we pick T †(w) arbitrarily
in Hw, and indeed T †(w) ∈ Hw ⊆ Gw = T −1({w}).
For w /∈ T (V ), picking T †(w) = T †T (v) for some
arbitrary v ∈ Hw would thus guarantee that we satisfy
MP1–2, and it remains only to show that T †T (v) ∈ Hw

if v ∈ Hw. Now, it holds that Hw = {u ∈ V :
‖T (u) − w‖ = mw and ‖u‖ = μw}. By MP1 we
have that ‖T (T †T (v)) − w‖ = ‖T (v) − w‖ = mw,
so T †T (v) ∈ Gw and it is left to show that ‖T †T (v)‖ =
μw. It holds that T †T (v) is a source of T (v) under T
with minimal norm. Since v is also a source of T (v),
‖T †T (v)‖ ≤ ‖v‖ = μw. However, the minimal norm of
elements in Gw is μw, so ‖T †T (v)‖ = μw, and we are
done.

2. Since T is continuous and V is compact, then T (V ) is
compact, and therefore, closed. The projection PT (V ) is
thus well defined, by the Hilbert projection theorem, and
it is continuous, by a theorem due to Cheney and Gold-
stein (Theorem 10 in Appendix A).
The operator T is a bijection from V to T (V ), so the real
inverse T −1 : T (V ) → V is well defined. Since V is
compact and T is continuous, it is well known that T −1

is also continuous. This holds since the preimage of any
closed (and hence compact) set in V by T −1 is its image
by T ; this image is compact, since T is continuous, and
hence closed.
Define T † : W → V as T † = T −1 ◦ PT (V ). This oper-
ator is continuous as the composition of two continuous
operators. By Claim 4 there is a unique pseudo-inverse
of T defined on W . To satisfy the BAS property, this
pseudo-inverse must coincide with T †, and thus this
unique pseudo-inverse must be T †.

�

One may show examples of continuous operators with a
unique pseudo-inverse that nevertheless have a discontinuity
even on the image. For V = [−r , r ] (with, say, r ≥ 4) and
W = R, the pseudo-inverse of T (v) = (v − 2)3 − (v − 2)
has a discontinuity since some points in the image have more
than one source (Fig. 2). The existence and uniqueness of a
pseudo-inverse of T on the image is guaranteed by Claim 4.

123



Journal of Mathematical Imaging and Vision

Fig. 2 An example of a
discontinuity in a unique
pseudo-inverse due to local
extrema, with
T (v) = (v − 2)3 − (v − 2). The
pseudo-inverse value at
w1 = T (v1) is v1, which of the
two sources of w1 has the
smaller norm. For any ε > 0,
T (v1) + ε has a single source
that is greater than v2

The only violation of the assumptions of part 2 of Theorem 2
is that T is not injective.

Another example of a discontinuity, this time also with
w /∈ T (V ), may be shown with V = [0, 2π ], W = C, and
T (v) = eiv . A pseudo-inverse T † : C → [0, 2π ] exists by
part 1 of Theorem 2. The image is T (V ) = {z ∈ C : |z| = 1}.
For every w �= 0, the nearest element in the image is w/|w|
and its source with minimal norm is its angle in [0, 2π). For
w = 0 all elements of the image are equidistant, and v = 0
is the source with minimal norm. Thus

T †(w) =
{
angle ofw in [0, 2π) w �= 0

0 w = 0
(14)

is the unique pseudo-inverse of T , with a discontinuity at any
w ∈ R

+.
The impact ofTheorem2maybe extended to non-compact

domains V that are a countable union of compact sets V1 ⊆
V2 ⊆ . . ., for example, Rn = ∪∞

m=1 B̄(0, m). For every point
w ∈ W one may relate the sequence (T |Vn )

†(w) to T †(w),
as follows.

Theorem 3 Let T : V → W , where V = ∪∞
n=1Vn and V1 ⊆

V2 ⊆ . . ., denote Tn = T |Vn , and assume a pseudo-inverse
T †

n : W → Vn exists for every n. If for every w ∈ W there
is N = N (w) ∈ N s.t. n ≥ N implies T †

n (w) = T †
N (w),

then T † : W → V , defined as the pointwise limit T †(w) =
limn→∞ T †

n (w), is a pseudo-inverse for T . Furthermore, if
the pseudo-inverse for each Tn is unique, then limn→∞ T †

n

is the unique pseudo-inverse for T .

Proof Letw ∈ W , and let N1 = N (w), N2 = N (T (T †
N1

(w))),
and n ≥ max{N1, N2}. Then

T †T T †(w) = T †T T †
N1

(w) = T †
N2

T T †
N1

(w) (15)

= T †
n T T †

n (w) = T †
n (w) = T †(w) , (16)

so T † satisfies MP2. We next show that T † satisfies BAS.
Assume by way of contradiction that v0 = T †

N1
(w) does not

minimize ‖T (v)−w‖ over V . Then there is some v′ ∈ V s.t.
‖T (v′) − w‖ < ‖T (v0) − w‖. However, v′ ∈ Vn for some
n ≥ N1, and v0 = T †

n (w), and is therefore a minimizer of
‖T (v) − w‖ over Vn , leading to a contradiction. Similarly,
if there were a minimizer v′ of ‖T (v) − w‖ over V with a
smaller norm than v0, then v′ ∈ Vn for some n ≥ N1, and
v0 = T †

n (w) would again lead to a contradiction. Therefore,
v0 ∈ argmin{‖v‖ : v ∈ V minimizes ‖T (v) − w‖}, so T †

satisfies BAS, and is a valid pseudo-inverse for T .
For the uniqueness part, assume by way of contradiction

that there is another pseudo-inverse T̄ for T , which differs
from T † = limn→∞ T †

n on some w0. Then there is some
n ≥ N (w0) s.t. both T †(w0) = T †

n (w0) ∈ Vn and also
T̄ (w0) ∈ Vn . We will define a pseudo-inverse T̄n �= T †

n for
Tn , yielding a contradiction to the uniqueness of T †

n . Denote
v = T †

n (w0) and v̄ = T̄ (w0), and define

T̄n(w) =

⎧
⎪⎨

⎪⎩

v̄, TnT †
n (w) = Tn(v̄)

or w = w0

T †
n (w), otherwise.

(17)

First, T̄n : W → Vn , and T̄n �= T †
n since they dif-

fer on w0. We next show MP2 for T̄n . If w = w0, then
T̄nTn T̄n(w) = T̄nTn(v̄). Now, TnT †

n (Tn(v̄)) = Tn(v̄), so
T̄n(Tn(v̄)) = v̄. Thus T̄nTn T̄n(w) = v̄ = T̄n(w), as required.
If TnT †

n (w) = Tn(v̄), then T̄n(w) = v̄ and T̄nTn T̄n(w) =
T̄nTn(v̄) = T̄n(TnT †

n (w)). By MP1, TnT †
n (TnT †

n (w)) =
TnT †

n (w) = Tn(v̄), so T̄n(TnT †
n (w)) = v̄, and again MP2

is satisfied. Finally, assume TnT †
n (w) �= Tn(v̄) and w �= w0,

so T̄n(w) = T †
n (w). Now, T̄nTn T̄n(w) = T̄nTnT †

n (w), and
TnT †

n (TnT †
n (w)) = TnT †

n (w) �= Tn(v̄), so if we could show
that TnT †

n (w) �= w0, we would have that T̄nTnT †
n (w) =

T †
n TnT †

n (w) = T †
n (w), and thus MP2 for the final case.

However, if TnT †
n (w) = w0, then w0 ∈ T (V ) and therefore

T (v̄) = w0, so Tn(v̄) = T (v̄) = TnT †
n (w), which contra-

dicts the assumption for the current case.
TheBASproperty clearly holds for T̄n withw s.t. T̄n(w) =

T †
n (w), since T †

n is a valid pseudo-inverse for Tn . For the
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remaining cases, we need to show that v̄ ∈ argmin{‖v‖ :
v ∈ Vn minimizes ‖T (v) − w‖}. If w = w0, then v, v̄ ∈ Vn

and v = T †
n (w0) imply that ‖Tn(v) − w0‖ ≤ ‖Tn(v̄) − w0‖.

On the other hand, v̄ = T̄ (w0) means that ‖T (v̄) − w0‖ ≤
‖T (v) − w0‖, and thus ‖T (v̄) − w0‖ = ‖T (v) − w0‖.
Similarly, it now follows that ‖v‖ = ‖v̄‖, so v̄ satis-
fies BAS as a choice for a pseudo-inverse of Tn at w0. If
TnT †

n (w) = Tn(v̄), then ‖TnT †
n (w)−w‖ = ‖Tn(v̄)−w‖, and

therefore v̄ ∈ argminu∈Vn {‖Tn(u) − w‖}. Since T̄ (T (v̄)) =
T̄ (T (T̄ (w0))) = T̄ (w0) = v̄, we have that T̄ (TnT †

n (w)) =
T̄ (Tn(v̄)) = v̄. This means that v̄ has minimal norm among
the sources of TnT †

n (w) under T , which include T †
n (w), and

thus ‖v̄‖ ≤ ‖T †
n (w)‖. Therefore, v̄ satisfiesBASas a pseudo-

inverse for Tn at w, and the proof is complete. �

4.1 Projections Revisited

The {1, 2}-inverse of projections has been considered in Sect.
3.1. We now continue the discussion in the current context
of pseudo-inverses. The following result gives the pseudo-
inverse of a projection for Hilbert spaces. This will be done
as a special case of a more general scenario.

Claim 5 (Pseudo-inverse of a projection cascade) Let V be a
subset of a Hilbert space, and let 1 ≤ n ∈ N, 0 ∈ Cn ⊆
Cn−1 · · · ⊆ C1 ⊆ V , where C1, . . . , Cn are closed and
convex. Let PCi : V → V be the projection onto Ci for
i = 1, . . . , n, and define P = PCn ◦ · · · ◦ PC1 . Then, PCn is
the unique pseudo-inverse of P.

Proof It holds that PCn P PCn = PCn , so PCn satisfies MP2.
Note that P(V ) = P(Cn) = Cn , and for any w ∈ V , since
PCn (w) is uniquely the nearest vector to w in Cn ,

A = argmin
v∈V

{‖P(v) − w‖} (18)

= {v ∈ V : P(v) = PCn (w)} . (19)

For the BAS property to hold, it remains to show that for
any v ∈ V s.t. P(v) = PCn (w), ‖v‖ > ‖PCn (w)‖ unless
v = PCn (w). If v ∈ Cn , then v = P(v) = PCn (w) and the
claim is trivial, so assume v /∈ Cn . Let then 1 ≤ i ≤ n be the
smallest index s.t. v /∈ Ci . Denote u j = PC j ◦ . . . ◦ PC1(v)

for any 1 ≤ j ≤ n and u0 = v. For any 1 ≤ j ≤ n,

‖u j−1‖2 =‖u j−1 − u j‖2 + ‖u j‖2 (20)

+ 2Re〈u j−1 − u j , u j 〉 . (21)

By Lemma 4, using the fact that 0 ∈ C j , we have that Re〈0−
u j , u j −u j−1〉 ≥ 0, so Re〈u j−1−u j , u j 〉 ≥ 0, and therefore

‖u j−1‖2 ≥ ‖u j−1 − u j‖2 + ‖u j‖2. (22)

It follows that ‖u0‖ ≥ . . . ≥ ‖un‖, and since ui−1 �= ui ,
we also have ‖ui−1‖ > ‖ui‖, so ‖v‖ = ‖u0‖ > ‖un‖ =
‖P(v)‖ = ‖PCn (w)‖, as required. �
It should be noted that a projection cascade, as defined in
Claim 5, is a generalized projection, but not necessarily a
metric projection (for example, in the case of a square con-
tained in a disk in R

2 with the 2-norm). Note also that the
requirement 0 ∈ C for a convex set C is equivalent to the
requirement PC (0) = 0. Thus, the relation between this sub-
class of projections to all projections resembles that of linear
operators to affine operators. The pseudo-inverse of a single
projection may now be characterized easily.

Corollary 1 Let V be a subset of a Hilbert space, let C ⊆ V
be a closed and convex set s.t. 0 ∈ C, and let PC : V → V
be the projection onto C. Then, PC is its own unique pseudo-
inverse.

In the above results and in what follows projections will
mostly be dealt with in Hilbert spaces, where nonempty
closed and convex sets are known to beChebyshev sets. Since
pseudo-inverses are defined in the broader context of normed
spaces, we will briefly mention a stronger characterization
and refer the reader to [25, p. 436] for more details.

Theorem 4 A normed space is strictly convex and reflexive
iff each of its nonempty closed convex subsets is a Chebyshev
set.

Remark 1 Strictly convex and reflexivenormed spaces include
all uniformly convex Banach spaces [25, Proposition 5.2.6,
Theorem 5.2.15], and these, in turn, include L p(�,�,μ)

spaces, for 1 < p < ∞, and every Hilbert space [26].

5 High-Level Properties of the Nonlinear
Inverse

It is interesting to consider general constructions, such as
operator composition, product spaces and operators, domain
restriction, and their relation to the inverse. The purpose is to
describe the inverse for complex cases using simpler compo-
nents. In this section, we will consider both {1, 2}-inverses
and pseudo-inverses.

Claim 6 (Product operator) Let Ti : Vi → Wi , where Vi

and Wi are sets for 1 ≤ i ≤ n, and let T ‡
i ∈ Ti {1, 2}.

Define the product operator �i Ti : �i Vi → �i Wi as
(�i Ti )((v1, . . . , vn)) = (T1(v1), . . . , Tn(vn)). Then,

1. The operator (�i Ti )
‡ : �i Wi → �i Vi , defined by

(�i Ti )
‡((w1, . . . , wn)) =

(T ‡
1 (w1), . . . , T ‡

n (wn)) ,
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is a {1, 2}-inverse of �i Ti . In addition, the involution
property is preserved, namely, �i Ti ∈ (�i Ti

‡){1, 2}.
2. For every i , assume further that Vi and Wi are subsets

of normed spaces and T ‡
i is also a pseudo-inverse of Ti .

Consider �i Vi and �i Wi as subsets in the normed direct
product spaces, each equipped with a norm that is some
function of the norms of components, where that function
is strictly increasing in each component (e.g., the sum of
component norms). Then �i Ti

‡ is also a pseudo-inverse
of �i Ti .

Proof The proof of part 1 is immediate by considering each
component separately. For part 2 we need only establish the
BASproperty for the product. Now, there is some g : R

+n →
R

+ s.t.

‖(�i Ti )(�ivi ) − �iwi‖�i Wi = g(‖T1(v1) (23)

− w1‖W1 , . . . , ‖Tn(vn) − wn‖Wn ) , (24)

where the subscript of each norm specifies the appropriate
space. Moreover, g is strictly increasing in each component,
so the l.h.s. is minimized iff each argument on the r.h.s. is
minimized. Furthermore,

‖(T ‡
1 (w1), . . . , T ‡

n (wn))‖�i Vi (25)

= f (‖T ‡
1 (w1)‖V1 , . . . , ‖T ‡

n (wn)‖Vn ) , (26)

where f : R
+n → R

+ is strictly increasing in each com-
ponent, so �ivi = (T ‡

1 (w1), . . . , T ‡
n (wn)) is a minimizer of

‖(�i Ti )(� jv j ) − �iwi‖�i Wi that also has a minimal norm,
as required. �
Remark 2 In the above claim, the norm of each product space
may be the p-normof the vector of component norms, for any
1 ≤ p < ∞, which is strictly increasing in each component.
In particular, if each Vi and Wi is R with the absolute value
norm, and σ : R → R has pseudo-inverse σ † : R → R,
then T : R

n → R
n , the entrywise application of σ , has

pseudo-inverse (σ †, . . . , σ †) for the p-norm, 1 ≤ p < ∞.

Remark 3 Note that the dependence on component norms
mentioned in Claim 6 may be different for the two direct
product spaces. In addition, the proof holds even if this depen-
dence is only non-decreasing in each component for the space
containing �i Vi .

Definition 4 (Norm-monotone operators) Let V , W be sub-
sets of normed spaces. An operator T : V → W is
norm-monotone if for everyv1, v2 ∈ V ,‖v1‖ ≤ ‖v2‖ implies
‖T (v1)‖ ≤ ‖T (v2)‖.
Claim 7 (Composition with bijections) Let V , V1, W , and
W1 be sets, let T : V → W , and let S1 : W → W1 and
S2 : V1 → V be bijections.

1. If T ‡ ∈ T {1, 2}, then S−1
2 T ‡S−1

1 ∈ (S1T S2){1, 2}.
2. Assume further that V , V1, W , and W1 are subsets of

normed spaces, aS1 is an isometry for some a �= 0, and
S−1
2 is norm-monotone. If T ‡ is a pseudo-inverse of T

then S−1
2 T ‡S−1

1 is a pseudo-inverse of S1T S2.

Proof For part 1, we have that

(S1T S2)(S−1
2 T ‡S−1

1 )(S1T S2) = S1T T ‡T S2 (27)

= S1T S2 , (28)

and

(S−1
2 T ‡S−1

1 )(S1T S2)(S−1
2 T ‡S−1

1 ) (29)

= S−1
2 T ‡T T ‡S−1

1 (30)

= S−1
2 T ‡S−1

1 , (31)

satisfying MP1–2.
For part 2, by the BAS property of T ‡, it holds for every

w1 ∈ W1 that T ‡(S−1
1 (w1)) ∈ argmin{‖v‖ : v ∈ Aw1},

where Aw1 = {v ∈ V minimizes ‖T (v) − S−1
1 (w1)‖}. We

have that

Aw1 = {v ∈ V minimizes ‖S1T (v) − w1‖} (32)

= S2({u ∈ V1 minimizes ‖S1T S2(u) (33)

− w1‖}) , (34)

where the first equality holds since aS1 is an isometry for
some a �= 0, and the second one holds since S2 is bijective.
Letv′ ∈ Aw1 haveminimal norm, and consideru′ = S−1

2 (v′).
By Eqs. (32)–(33), u′ minimizes ‖S1T S2(u) − w1‖ over V1.
Let u′′ ∈ V1 be any minimizer of ‖S1T S2(u)−w1‖ in V1, so
v′′ = S2(u′′) ∈ Aw1 . Since v′ hasminimal norm,wehave that
‖S2(u′)‖ ≤ ‖S2(u′′)‖, and since S−1

2 is norm-monotone, it
holds that ‖u′‖ ≤ ‖u′′‖. In other words, u′ has minimal norm
among minimizers of ‖S1T S2(u) − w1‖ in V1. We can pick
v′ = T ‡(S−1

1 (w1)), so u′ = S−1
2 T ‡(S−1

1 (w1)), and thus

S−1
2 T ‡(S−1

1 (w1)) ∈ argmin{‖u‖ : u ∈ V1 (35)

minimizes ‖S1T (S2(u)) − w1‖} . (36)

That is, S−1
2 T ‡S−1

1 satisfies the BAS property as required
from a pseudo-inverse of S1T S2. �
Corollary 2 If V and W are normed spaces, and T : V → W
has a pseudo-inverse T † : W → V , then for any scalars
a, b �= 0 and vector w0 ∈ W , b−1T †(a−1(w − w0)) is a
pseudo-inverse of aT (bv) + w0.

Proof Let V1 = V , W1 = W , S1 : W → W1 defined as
S1(w) = aw+w0, and S2 : V1 → V defined as S2(v) = bv.
Clearly, S1 and S2 are bijections that satisfy the conditions of
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part 2 of Claim 7. Then S−1
2 T †S−1

1 = b−1T †(a−1(w −w0))

is a pseudo-inverse of S1T S2. �
Remark 4 Norm-monotone bijections form a fairly rich fam-
ily of operators. Given normed spaces V and W , for any
bijection T1 : {v ∈ V : ‖v‖ = 1} → {w ∈ W : ‖w‖ = 1}
and any surjective and strictly increasing f : R

+ → R
+, the

operator T : V → W , defined as T (v) = f (‖v‖)T1(v/‖v‖)
for v �= 0 and T (0) = 0, is a norm-monotone bijection. Note
also that any bijective isometry from V to W that maps 0 to
0, multiplied by some nonzero scalar, is a norm-monotone
bijection. Bijective isometries between normed spaces over
R are always affine by the Mazur–Ulam theorem [27], but
may be non-affine for spaces over C.

Claim 8 (Domain restriction changes the inverse) Let V , W
be sets, V1 � V , T : V → W , and T ‡ ∈ T {1, 2}. Let
T1 = T |V1 , and let T ‡

1 ∈ T1{1, 2}. Then for every w ∈
T (V )\T (V1), necessarily T ‡

1 (w) �= T ‡(w).

Proof By Lemma 1, for every w ∈ T (V1), T ‡
1 (w) must

be a source of w under T in V1 and T ‡(w) must be a
source of w under T in V , so it is possible (but not nec-
essary) that T ‡(w) = T ‡

1 (w). However, for an element w ∈
T (V )\T (V1),T ‡(w) is a source ofw underT ,whileT ‡

1 (w) is

a source of an element in T (V1). Therefore, T ‡
1 (w) �= T ‡(w)

necessarily. �
Remark 5 If T ‡

1 and T ‡ are pseudo-inverses, such a necessary

divergence between T ‡ and T ‡
1 might occur even for some

w ∈ T (V1). Since T ‡
1 (w) must be a source in V1 under T

with smallest norm, and T ‡(w) must be a source under T
with the smallest norm in V , these smallest norms might be
different, constraining that T ‡

1 (w) �= T ‡(w).

Claim 9 (Composition) Let U , V , W be sets, and let T :
U → V and S : V → W .

1. If S‡
1 ∈ S|T (U ){1, 2} and T ‡ ∈ T {1, 2}, then T ‡S‡

1 ∈
(ST ){1, 2}. Consequently, if S‡ ∈ S{1, 2} and T is onto
V , then T ‡S‡ is a {1, 2}-inverse of ST , but if T is not
onto, that does not necessarily hold.

2. Assume that U, V , and W are subsets of normed spaces,
and let T † and S†

1 be pseudo-inverses of T and S|T (U ),
respectively. There is a setting where ST has a unique
pseudo-inverse, and it is not T †S†

1 .

Proof For part 1, let w ∈ W be an element in the image of
ST . Since S‡

1 ∈ S|T (U ){1, 2}, then by Lemma 1, v = S‡
1(w)

is a source for w under S, and it is also in T (U ). Since
T ‡ ∈ T {1, 2}, T ‡(v) is a source of v under T . Therefore,
T ‡S‡

1(w) is a source for w under ST . If w ∈ W is not in

the image of ST , then w′ = S|T (U )S‡
1(w) is. This is true

because, by Lemma 1, S‡
1(w) is the source in T (U ) of some

element w′ in the image of ST . Then,

T ‡S‡
1(w) = T ‡S‡

1 S|T (U )S‡
1(w) = T ‡S‡

1(w
′). (37)

Namely, T ‡S‡
1(w) is the inverse value of some element in the

image of ST , as required by Lemma 1. Therefore, T ‡S‡
1 ∈

(ST ){1, 2}, and if T is onto, then T ‡S‡ ∈ (ST ){1, 2}.
For a counterexample when T is not onto, let U =

{u1, u2, u3}, V = {v1, v2, v3}, W = {w1, w2}, T (u1) =
T (u2) = v2, T (u3) = v3, S(v1) = S(v3) = w2, S(v2) =
w1. Defining T ‡(v3) = u3, T ‡(v1) = T ‡(v2) = u1,
S‡(w1) = v2, and S‡(w2) = v1 satisfies MP1–2, as may
be easily verified by Lemma 1. However, T ‡S‡(w2) = u1,
and the only source of w2 under ST is u3, so T ‡S‡ cannot
be a {1, 2}-inverse of ST .

For the second part, Let U = {u1, u2}, ‖u2‖ < ‖u1‖,
V = {v1, v2}, ‖v1‖ < ‖v2‖, W = {w}, S(v1) = S(v2) = w,
T (u1) = v1, and T (u2) = v2. Note that T is a bijection.
It is easy to verify that there is a unique valid choice for
T †, namely, T †(v1) = u1 and T †(v2) = u2, and a unique
valid choice for S†

1 , namely, S†
1(w) = v1. Similarly, there is a

unique valid choice (ST )† for a pseudo-inverse of ST , which
is (ST )†(w) = u2. Since T †S†

1(w) = u1, T †S†
1 cannot be a

pseudo-inverse of ST . �
A specific composition of particular interest is that of

a projection applied after an operator, even (perhaps espe-
cially) if the operator does not have a pseudo-inverse. One
such case is that of a neural layer, which will be considered
in Sect. 6.

Theorem 5 (Left-compositionwith projection)Let T : V →
W , where V and W are subsets of normed spaces, let ∅ �=
C ⊆ T (V ) be a Chebyshev set, and let PC : W → W be the
projection operator onto C.

1. For w ∈ W , write Bw = argmin{‖v‖ : v ∈
V , PC T (v) = PC (w)}, and let W ′ ⊆ W be the set
of elements w ∈ W for which Bw is well defined.
Then, w ∈ W ′\C implies PC (w) ∈ W ′ ∩ C, and the
following recursive definition yields a pseudo-inverse
(PC T )† : W ′ → V :

(PC T )†(w) =
{
some v ∈ Bw, w ∈ W ′ ∩ C

(PC T )†(PC (w)),w ∈ W ′ \ C .

2. If, in addition, T is continuous, W is a Hilbert space,
and every closed ball is compact in V , then the pseudo-
inverse of part 1 is defined on all of W (W ′ = W ).

Proof 1. For any w ∈ W , BAS necessitates that

(PC T )†(w) ∈ argmin{‖v‖ : v ∈ V (38)
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minimizes ‖PC T (v) − w‖} . (39)

Since C ⊆ T (V ), there is some v0 s.t. T (v0) = PC (w),
and thus PC T (v0) = PC (w). SinceC is a Chebyshev set,
v ∈ V minimizes ‖PC T (v) − w‖ iff PC T (v) = PC (w),
and the BAS requirement becomes

(PC T )†(w) ∈ argmin{‖v‖ : v ∈ V , (40)

PC T (v) = PC (w)} = Bw . (41)

Ifw ∈ W ′ ∩C , then our definition satisfies BAS and also
MP2, since

(PC T )†(PC T )(PC T )†(w) (42)

= (PC T )†(PC (w)) (43)

= (PC T )†(w) . (44)

If w ∈ W ′ \ C , then by definition of Bw, BPC (w) = Bw.
Thus, BPC (w) is well-defined, so PC (w) ∈ W ′ ∩ C and
(PC T )†(PC (w)) is already defined. It satisfies BAS since
it is in BPC (w), and also satisfies MP2 since

(PC T )†(PC T )(PC T )†(w) (45)

= (PC T )†(PC T )(PC T )†(PC (w)) (46)

= (PC T )†(PC (w)) (47)

= PC
†(w) . (48)

2. A Chebyshev set in a Hilbert space is closed and con-
vex, so by Theorem 10, PC is continuous, so PC T is
continuous as well. Therefore, for any w ∈ C , A =
(PC T )−1({w}) is closed. There is some v0 ∈ V s.t.
PC T (v0) = w, so A1 = A∩{v ∈ V : ‖v‖ ≤ ‖v0‖} �= ∅.
Since A1 is compact, the norm function attains a mini-
mum mw on that set by the extreme value theorem, and
Bw = {v ∈ V : ‖v‖ = mw} is well-defined. For any
w ∈ W , Bw = BPC (w) is thus also well-defined, so
W ′ = W .

�

6 Test Cases

In this section we consider nonlinear pseudo-inverses for
specific cases. Recall that a valid pseudo-inverse T † of an
operator T : V → W should satisfy BAS and MP2.

6.1 Some One-dimensional Operators

In Table 1, we give the pseudo-inverses for some sim-
ple operators over the reals, with the Euclidean norm (the

only norm up to scaling). The domain of the pseudo-
inverse shows where it may be defined. We shall elaborate
on the derivations for two of the operators and defer
the explanations for the rest to Appendix B. Below we
write sgnε(v) = min{1,max{−1, v/ε}} for ε > 0, so
sgn(v) = limε→0+ sgnε(v), pointwise. To be clear, sgn(v) =
I {v > 0} − I {v < 0}.

Let T (v) = (v − a)2, V = W = R, 0 �= a ∈ R. Note
that T (V ) = [0,∞), and for every w ≥ 0, the sources
of w are a ± √

w, of which a − sgn(a)
√

w has the single
smallest norm. For w /∈ T (V ), the single closest element in
T (V ) is 0. Writing W ′ = {w ∈ W : argmin{‖w0 − w‖ :
w0 ∈ T (V )} is a singleton}, we have W ′ = R. By Claim 4, a
pseudo-inverse T † : R → R exists and it is unique. Directly
from BAS, necessarily T †(w) = a − sgn(a)

√
w, for w ≥ 0,

and T †(w) = a, for w < 0.
Let T (v) = max{v, 0} (ReLU), V = W = R. The ReLU

function is a projection on the closed convex setC = [0,∞),
which contains 0, and by Corollary 1 it is its own unique
pseudo-inverse, namely, T †(w) = max{w, 0}. Note that this
generalizes easily to the operator T : R

n → R
n , which

applies ReLU entrywise, with the Euclidean norm. There we
have a projection on the closed convex set [0,∞)n , and again
byCorollary 1, the operator is its own unique pseudo-inverse,
namely, T † = T .

6.2 A Neural Layer

In this subsection, we consider the pseudo-inverse of a single
layer of a trained multilayer perceptron.

Let V = R
n and W = R

m , let A be an m by n matrix, and
let σ : R → R be a transfer function. We will consider σ

to be either tanh or ReLU. With some abuse of notation, we
will also write σ : W → W for the elementwise application
of σ to a vector in W . Given v ∈ V , a neural layer operator
T : V → W is then defined as T (v) = σ(Av), which is
continuous for both choices of σ and smooth for tanh. We
consider the 2-norm for both spaces andmake the simplifying
assumption that A(V ) = W (thus m ≤ n).

Note that Claim 9 readily yields a {1, 2}-inverse for
this setting. In particular, for σ = ReLU, we have that
A†σ ∈ (σ A){1, 2}, since the pseudo-inverses of A and σ are
also {1, 2}-inverses, and entrywise ReLU is its own pseudo-
inverse. We next consider pseudo-inverses.

Claim 10 Let T : V → W , where V = R
n, W = R

m,
m ≤ n, T = σ A, and A is a full-rank matrix.

1. If σ = tanh, then T has a unique pseudo-inverse, T † :
(−1, 1)m → V , defined as T †(w) = A†(arctanh(w)).

2. Let σ = tanh, let 1 < k ∈ N, and define Ck = [−1 +
1/k, 1 − 1/k]m and Tk = PCk T . Then limk→∞ Tk = T ,
and we may define a valid pseudo-inverse T †

k : W → V .
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Table 1 Pseudo-inverses of
some one-dimensional
operators, T : R → R

T (v) T †(w) Domain of T † Unique

v2 ±√
max{w, 0} R –

(v − a)2, a �= 0 a − sgn(a)
√
max{w, 0} R +

max{v, 0} (ReLU) max{w, 0} R +

v · I {|v| ≥ a}, a ≥ 0 sgn(w) · I
{|w| > a

2

}
max(a, |w|} R +

sgn(v)max{|v| − a, 0}, a ≥ 0 sgn(w)(|w| + a) R +

tanh(v) arctanh(w) (−1, 1) +

sgn(v) 0 [− 1
2 , 1

2 ] +

sgnε(v), ε > 0 ε sgn1(w) R +

exp(v) log(w) (0,∞) +

sin(v) arcsin(min{1,max{−1, w}}) R +

3. For σ = ReLU, we can recursively define a valid pseudo-
inverse T † : W → V , where for w ∈ W\[0,∞)m we
have T †(w) = T †(σ (w)), and for w ∈ [0,∞)m, T †(w)

is the solution to the quadratic program min ‖v‖2 s.t.
(Av)i = wi , ∀i wi > 0, and (Av)i ≤ 0, ∀i wi = 0.

Proof 1. For σ = tanh, σ : W → (−1, 1)m is a bijection,
and T (V ) = (−1, 1)m . Using Lemma 2, T † : T (V ) →
V defined as T †(w) = A†(arctanh(w)) is the unique
valid pseudo-inverse.
For w /∈ (−1, 1)m , there is no nearest point in T (V ), so
the pseudo-inverse cannot be defined.

2. Note that for every k > 1, Ck is nonempty, closed,
and convex, so it is a Chebyshev set. It is clear that
limk→∞ Tk = T in a pointwise sense, and thus Tk may
be seen as an approximation for T for a large enough k.
Note that T is continuous, Ck ⊆ T (V ), W is a Hilbert
space, and every closed ball in V is compact, so we may
apply both parts of Theorem 5 and define a valid pseudo-
inverse T †

k by

T †
k (w) =

{
some v ∈ Bw, w ∈ Ck

T †
k (PCk (w)), w ∈ W \ Ck,

(49)

where Bw = argmin{‖v‖ : v ∈ V , PCk T (v) = w} is
guaranteed to be well-defined for every w ∈ Ck . Thus,
for w ∈ W\Ck we have T †

k (w) = T †
k (PCk (w)), and for

w ∈ Ck , T †
k (w) is a solution of the optimization problem

min ‖v‖ s.t.

(Av)i = arctanh(wi ) ∀i |wi | < 1 − 1

k

(Av)i ≤ arctanh

(
1

k
− 1

)
∀i wi = 1

k
− 1

(Av)i ≥ arctanh

(
1 − 1

k

)
∀i wi = 1 − 1

k

(50)

Note that it is equivalent to minimize ‖v‖2 instead of
‖v‖. We further comment that this feasible constrained
convex optimization problem has a unique solution.

3. For σ = ReLU, σ itself is a metric projection onto
[0,∞), andwhen applied entrywise tow ∈ W , it projects
w onto [0,∞)m . Our assumption that A(V ) = W means
that T (V ) = [0,∞)m , namely, the image is nonempty,
closed, and convex, and thus a Chebyshev set. Again
using Theorem 5, we can define a valid pseudo-inverse
T † : W → V , where for w ∈ W\[0,∞)m we have
T †(w) = T †(σ (w)), and for w ∈ [0,∞)m , T †(w) is a
solution to the optimization problem

min ‖v‖
s.t. (Av)i = wi ∀i wi > 0

(Av)i ≤ 0 ∀i wi = 0

(51)

which has a unique solution, as commented in part 2.
�

6.3 Wavelet Thresholding

Let V = W = R
n , let A be an n by n matrix represent-

ing the elements of an orthonormal wavelet basis, and let
σ : R → R be some thresholding operator. Wavelet thresh-
olding [28] takes as input a vector v ∈ R

n , which represents
a possibly noisy image. The image is transformed into its
wavelet representation Av ∈ W , and then the thresholding
operator σ is applied entrywise to Av. The result will be
written as σ(Av) or (σ A)(v). Finally, an inverse transform
is applied, and the result, A−1σ(Av), is the denoised image.
For the thresholding operator, we will be particularly inter-
ested in hard thresholding, ξa(x) = x · I {|x | ≥ a}, and soft
thresholding,ηa(x) = sgn(x)max{|x |−a, 0},wherea ∈ R

+
in both cases.

Claim 11 Let T : V → W , where T = σ A.
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1. If σ has a pseudo-inverse σ † : R → R, then T † =
A−1σ † is a pseudo-inverse of T , where all the pseudo-
inverses are w.r.t. the 2-norm.

2. If σ = ξa for any a ≥ 0, then T †T = A−1σ A. Namely,
wavelet hard thresholding is equivalent to applying T
and then its pseudo-inverse. In contrast, for σ = ηa (soft
thresholding), T †T = A−1σ A does not hold for a > 0.

Proof 1. Note first that the vector, or entrywise, view of
σ , σ : W → W , has a pseudo-inverse σ † : W → W ,
which is exactly the entrywise application of σ †. The first
part of the claim follows directly from applying part 2
of Claim 7 to σ A. Note that A−1 is norm-preserving
under the 2-norm as an orthogonal matrix, and hence
norm-monotone, and we take the identity operator as an
isometry.

2. From part 1, T †T = A−1σ †σ A. The pseudo-inverse
for both ξa and ηa is known (see Appendix B), so we
can directly determine σ †σ . For σ = ξa , σ †σ = σ ,
so T †T = A−1σ A. For σ = ηa with a > 0, how-
ever, σ †σ(x) = x · I {|x | > a} �= σ(x), so T †T =
A−1σ †σ A �= A−1σ A. The last inequality holds since
there is someu s.t.σ †σ(u) �= σ(u), soσ †σ(A(A−1u)) �=
σ(A(A−1u)), and further applying the injective A−1 to
both sides keeps the inequality.

�

We note that denoising in general is ideally idempotent,
and so is T †T for any T , since T †T T †T = T †T by MP2.

7 The Special Case of Endofunctions

In the next three sections, we focus on the particular case
where the domain and range of an operator are equal, namely,
T : V → V . Importantly, for such operators we may com-
pose an operator with itself, and if V is a vector space, even
discuss general polynomials of an operator.Wemayof course
apply our previous results to this particular setting, but will
be able to introduce new and interesting types of inverses as
well.

Let V be a nonempty set. We denote by O P(V ) the set
of all operators from V to itself. The set O P(V ) is equipped
with an associative binary operation (composition), making
it a semigroup. Furthermore, it has a two-sided identity ele-
ment, the identity operator I , making it amonoid.An element
T ∈ O P(V ) has a two-sided inverse element T −1 iff it is
bijective. The composition operation is generally not com-
mutative. Integer powers of an operator are well-defined by
induction: T n = T ◦ T n−1, T 1 = T , and T 0 = I . If T is
bijective, then T −n is defined similarly using T −1.

If V is also a vector space over a field F ,3 then addition
and scalar multiplication are defined in O P(V ) in a natural
way: for every two operators T1 and T2, (T1 + T2)(v) =
T1(v) + T2(v) for every v ∈ V , and for every a ∈ F ,
(aT )(v) = aT (v). We denote by 0 ∈ O P(V ) the opera-
tor that maps all vectors to 0 ∈ V . With respect to these
operations of addition and scalar multiplication, it is easy to
see that O P(V ) is a vector space over F . Namely, the oper-
ation + is commutative, associative, has an identity element
(0), and has an inverse, −T for every T ∈ O P(V ), and it
holds that a(T1+T2) = aT1+aT2, (a1+a2)T = a1T +a2T ,
(a1a2)T = a1(a2T ), and 1T = T .

Some additional properties are satisfiedwhen V is a vector
space:

1. For every a ∈ F , (aT1) ◦ T2 = a(T1 ◦ T2).
2. Right distributivity: (T1 + T2) ◦ T3 = T1 ◦ T3 + T2 ◦ T3.

Importantly, left distributivity does not generally hold:
T1 ◦ (T2 + T3) �= T1 ◦ T2 + T1 ◦ T3.

3. It holds that 0 ◦ T = 0, and if T (0) = 0, then T ◦ 0 = 0.
4. For every polynomial p ∈ F[x], p(x) = ∑m

i=0 ai xi , the
operator p(T ) is well-defined, as satisfying p(T )(v) =∑m

i=0 ai T i (v) for every v ∈ V .

The combined properties in the case where V is a vector
space make O P(V ) more than a right near-ring, not quite a
near field, and seemingly not a standard algebraic structure.
In particular, it is not an algebra or a ring, because it is not
left distributive.

7.1 AMotivating Example: Square Matrices

Let V be an n-dimensional vector space over a field F , and
let T be an n × n matrix over F (equivalently, a linear trans-
formation from V to V ). The characteristic polynomial of
T , pT (x) = det(x I − T ), is a degree n monic polyno-
mial whose constant term is (−1)n det(T ), and whose roots
are the eigenvalues of T . The Cayley–Hamilton theorem
states that pT vanishes in T , namely, pT (T ) = 0. Writ-
ing pT (x) = ∑n

k=0 ak xk , we thus have
∑n

k=0 ak T k = 0,
and rearranging, T (

∑n
k=1 ak T k−1) = (−1)n+1 det(T )I . If

T is invertible, we can apply T −1 to both sides and divide by
(−1)n+1 det(T ), yielding

T −1 = (−1)n+1 det(T )−1
n∑

k=1

ak T k−1. (52)

Namely, the inverse of an invertible matrix is a polynomial
expression in that matrix. This form is convenient both theo-

3 We assume that the field is nontrivial, that is, F �= {0}, and hence
0 �= 1.
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retically and computationally, and one may ask whether such
a result might be available for generalized inverses as well.

For the MP inverse the answer is in general negative.
Specifically, for an n×n matrix T over F = C, T † is express-
ible as a polynomial in T iff T and T † commute [29].4 Even
for the more general case of a {1, 2}-inverse, a polynomial
expressiondoes not necessarily exist.As shownbyEnglefield
[30], an n × n matrix T over C has a {1, 2}-inverse express-
ible as a polynomial in T iff rank T = rank T 2. One might
even produce matrices T for which a {1}-inverse cannot be
polynomial in T , as follows.

Claim 12 Let T �= 0 be a square matrix over a field F s.t.
T k = 0 for some k > 1. If X is a {1}-inverse of T , then it is
not equal to any polynomial in T .

Proof Assume by way of contradiction that X = p(T )

for some polynomial p ∈ F[x]. By MP1, (XT )k =
(XT )k−2XT XT = (XT )k−1, and by induction, (XT )k =
XT . Since X = p(T ) and T commute, XT = (XT )k =
Xk T k = 0. Again by MP1, this implies that T = T XT = 0,
which is impossible. �
One such matrix is the n × n left-shift matrix defined as
L S(n)

i, j = I {i = j + 1} for 1 ≤ i, j ≤ n, where we require
n > 1.

This apparent shortcoming of {1}-inverses may be reme-
died by a different type of generalized inverse, the Drazin
inverse, which is described next. Introduced by Drazin [31]
in the very general context of semigroups, it will be handy in
the context of the semigroup O P(V ).

7.2 The Drazin Inverse for Semigroups

Let S be a semigroup, and let x ∈ S. A Drazin inverse of the
element x , denoted xD, is a {1k, 2, 5}-inverse in the sense of
satisfying the requirements:

MP1k : xk xDx = xk

MP2: xDxxD = xD

D5: xxD = xDx ,

where MP1k is a variant of MP1 for some integer k ≥ 1.5

The theorem below summarizes most of the main proper-
ties proved by Drazin for this generalized inverse.

Theorem 6 ([31]) Let S be a semigroup, and let x ∈ S.

1. If xD exists, then it is unique and commutes with any
element y ∈ S that commutes with x.

4 Equivalently, the matrix T is range-Hermitian that is, with equal
images for T and T ∗.
5 The original requirements in Drazin’s work are slightly different, but
equivalent.

2. If S has a unit and x has an inverse x−1, then xD = x−1.
3. If xD exists, then there is a unique positive integer, the

index of x, Ind x, s.t. xm+1xD = xm for every m ≥ Ind x,
but for no m < Ind x.

4. If xD exists, and k is a positive integer, then (xk)
D =

(xD)k , and Ind xk is the unique positive integer q that
satisfies 0 ≤ kq − Ind x < k.

5. If xD exists, then Ind xD = 1 and xDD = x2xD.
6. It holds that xDD = x iff x is Drazin-invertible with index

1.
7. If x is Drazin-invertible, then (xk)

DD = xk for every
integer k ≥ Ind x.

8. The element x is Drazin-invertible iff there exist a, b ∈
S and positive integers p and q s.t. x p = x p+1a
and xq = bxq+1. If the condition holds, then xD =
x M aM+1 = bM+1x M , where M = max{p, q}, and
Ind x ≤ min{p, q}.

9. If S has a (two-sided) zero, and xk = 0 for some positive
integer k, then xD = 0.

Since xD is unique when it exists, onemay refer to theDrazin
inverse of x .

7.2.1 Application to Matrices

As shown already by Drazin ([31], Corollary 5), when the
semigroup S is also a finite-dimensional algebra, xD always
exists and is a polynomial in x . This applies in particular to
square matrices over a field.

For a matrix T , one can give a polynomial expression
for the Drazin inverse using the minimal polynomial of T ,
mT (x), which is the unique monic polynomial with the least
degree that vanishes in T . The minimal polynomial exists
for every matrix T and divides every other polynomial that
vanishes in T .

To see this, we can write mT (x) = cxl(1− xq(x)), where
c �= 0, l ≥ 0, and q is a polynomial. Thus, 0 = mT (T ) =
cT l − cT l+1q(T ), and therefore, T l = T l+1q(T ). If l =
0, then we may multiply both sides by T , so in any case,
T k = T k+1q(T ) = q(T )T k+1, where k = max{l, 1} ≥ 1.
By part 8 of Theorem 6,

TD = T kq(T )k+1. (53)

For more on the Drazin inverse for matrices, see, e.g., [3].
In summary, for any field, there are matrices for which a

{1}-inverse cannot be a polynomial in the matrix, while the
Drazin inverse always is, making their values necessarily dif-
ferent. This is true in the particular case of matrices over the
complex numbers and the MP inverse. One such example is
the n×n right-shiftmatrix, defined by RS(n)

i j = I {i + 1 = j}
for 1 ≤ i, j ≤ n, whose MP inverse (and conjugate trans-
pose) is the already mentioned left-shift matrix L S(n). By

123



Journal of Mathematical Imaging and Vision

Claim 12 (or simple observation), L S(n) cannot be a polyno-
mial in RS(n) for n > 1. The Drazin inverse of RS(n) equals
0, as it is for any nilpotent element (Theorem 6 part 9).

8 Vanishing Polynomials of Nonlinear
Operators

We wish to prove results regarding generalized inverses for
nonlinear endofunctions that are in a similar spirit to those
shown for matrices. In other words, to express generalized
inverses by forward applications of the operator at hand,
specifically, using polynomials.

Inversion is generally hard to compute, certainly for non-
linear operators. Applying a forward operator, on the other
hand, is straightforward. This task is directly related to
inverse problems and to learning. For example, a neural net-
work for some image manipulation task is a highly complex
nonlinear operator T : V → V . An intriguing question is:
Can we approximate a generalized inversion of the network
by a polynomial containing only forward (inference) appli-
cations of the network? This motivates our study here.

A topic that is relevant to our investigation is that of vanish-
ing polynomials of nonlinear operators, which are interesting
in their own right, and will be discussed in depth in this sec-
tion. Generalized inverses that build on the results shown in
this section will be defined in the next section.

In this section, unless otherwise said, we assume that V is
a vector space over F . As already mentioned, for every p ∈
F[x] andT ∈ O P(V ), the operator p(T ) iswell defined.The
transformation p → p(T ) is linear, namely, if p, q ∈ F[x],
where p(x) = ∑n

i=0 ai xi , q(x) = ∑m
i=0 bi xi , and a ∈ F ,

then (p +q)(T ) = p(T )+q(T ) and (ap)(T ) = ap(T ). We
also have, even without left distributivity, that

(pq)(T ) =
⎛

⎝
m∑

i=0

n∑

j=0

a j bi xi+ j

⎞

⎠ (T ) (54)

=
m∑

i=0

n∑

j=0

a j bi T
i+ j (55)

=
m∑

i=0

bi p(T ) ◦ T i . (56)

The set ofhomogeneous operators, namely, operatorswith
0 as a fixed point, form a vector subspace of O P(V ) and are
closed under composition. Consequently, for any p ∈ F[x]
and homogeneous T , p(T ) is homogeneous.

Definition 5 (Vanishing polynomial) A polynomial p ∈
F[x] is a vanishing polynomial of T ∈ O P(V ) if p �= 0
and p(T ) = 0.6

Wewill sometimes say that a polynomial vanishes in or for an
operator in the same sense. We may already highlight some
elementary properties of vanishing polynomials.

Claim 13 Let T ∈ O P(V ), p ∈ F[x] vanishing in T ,
p(x) = ∑m

i=0 ai xi .

1. If a0 �= 0, then T is injective (equivalently, left invertible),
and a left inverse is given by S = −a−1

0

∑m
i=1 ai T i−1. If

T is also surjective, then it is a bijection, and S = T −1.
2. For any q ∈ F[x], (pq)(T )(v) = 0 for every v ∈ V , and

if q �= 0, then pq is vanishing in T .
3. If pi is vanishing in Ti , i = 1, . . . , k, then �k

i=1 pi is a
common vanishing polynomial of {Ti }i .

4. For every p1 ∈ F[x], p1(T ) = r(T ) for r ∈ F[x], where
either r = 0 or deg(r) < deg(p).

5. For any invertible linear P : V → V , p is vanishing in
P−1T P.

Proof 1. By right distributivity,

ST = (−a−1
0

m∑

i=1

ai T
i−1) ◦ T (57)

= −a−1
0 (p(T ) − a0 I ) = I . (58)

If T is surjective, then T −1 exists, and ST = I implies
S = T −1.

2. If q(x) = ∑l
i=0 bi xi , then

(pq)(T )(v) =
(

l∑

i=0

bi p(T ) ◦ T i

)

(v) (59)

=
l∑

i=0

bi p(T )(T i (v)) = 0 . (60)

If q �= 0, then pq �= 0, satisfying the conditions for a
vanishing polynomial.

3. Immediate from the previous part.
4. If p1 = 0 the claim holds, so assume p1 �= 0. Divide

p1 by p with remainder, yielding p1 = pq + r , where
q, r ∈ F[x] and either r = 0 or deg(r) < deg(p). Since
(pq)(T ) = 0, p1(T ) = r(T ).

5. For every v ∈ V ,

p(P−1T P)(v) =
m∑

i=0

ai (P−1T P)i (v) (61)

6 Not to be confused with a vanishing polynomial of a ring, which
evaluates to zero on every element of the ring.
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=
m∑

i=0

ai P−1T i P(v) (62)

= P−1

(
m∑

i=0

ai T
i P(v)

)

(63)

= P−1(0) = 0 . (64)

Note that T = P(P−1T P)P−1, so the argument works
in the other direction as well.

�

8.1 TheMinimal Polynomial

For a square matrix T , there always exists a unique monic
vanishing polynomial with minimal degree that divides any
vanishing polynomial of T , such as the characteristic poly-
nomial, without remainder. We show that such an object also
exists for nonlinear operators with a vanishing polynomial.

Theorem 7 (Minimal polynomial) If T ∈ O P(V ) has a
vanishing polynomial, then there exists a unique monic poly-
nomial pm ∈ F[x] that is vanishing in T and has minimal
degree. Furthermore, for every vanishing polynomial p of T ,
pm |p.

Proof Let k be the minimal degree for a vanishing polyno-
mial of T , and let pm be such a polynomial, w.l.o.g. monic,
pm(x) = ∑k

i=0 ai xi with ak = 1. Let p be vanishing in T ,
so p = pmq + r , where q, r ∈ F[x], q(x) = ∑l

i=0 bi xi ,
and either r = 0 or deg(r) < k. Thus, p − r = pmq. We
have on the one hand that for every v ∈ V , (p − r)(T )(v) =
p(T )(v) − r(T )(v) = −r(T )(v). On the other hand, by
Claim 13 part 2, (pmq)(T )(v) = 0. Therefore, r(T )(v) = 0
for every v. If r �= 0, then it would be a vanishing poly-
nomial of T with deg(r) < deg(pm), which is impossible.
Therefore r = 0, and pm |p.

If p′
m is another monic vanishing polynomial of T with

minimal degree, then p′
m = hpm , where h ∈ F[x] and

deg(h) = 0, and since both pm and p′
m are monic, h = 1. �

It has already been shown that a nonzero free coefficient
of a vanishing polynomial of T implies that T is injective.
In the setting of square matrices, the free coefficient of the
minimal or characteristic polynomial of T (where its absolute
value is det(T )) is nonzero iff the operator is bijective. In that
setting, bijective, injective, or surjective are equivalent. The
following claim recovers some of these connections using
the minimal polynomial.

Claim 14 Let T ∈ O P(V ) have a vanishing polynomial, and
let pm(x) = ∑m

i=0 ai xi be its minimal polynomial. If T is
surjective, then a0 �= 0 and T is bijective/invertible.

Proof Assume by way of contradiction that a0 = 0. Then for
every v ∈ V ,

(∑m
i=1 ai T i−1

) ◦ T (v) = 0. Since T is surjec-
tive, then for every u ∈ V it holds that

(∑m
i=1 ai T i−1

)
(u) =

0. We have found a vanishing polynomial of T with degree
smaller than that of pm , which is impossible. Thus, a0 �= 0,
and by part 1 of Claim 13, T is also injective, and thus bijec-
tive. �

8.2 Existence of Vanishing Polynomials

In this subsection, we show cases where operators that may
be nonlinear have vanishing polynomials. In addition, we
derive vanishing polynomials in compound scenarios, such
as rational powers of operators and products of operators,
where the constituents have vanishing polynomials.

8.2.1 Examples by Possible Degree

There are no operators with a vanishing polynomial of degree
0 (for V �= {0}), and those with a degree 1 polynomial must
be of the form aI . We may give examples of vanishing poly-
nomials for nonlinear operators with any degree m > 1.

For m = 2, we have all idempotent operators, with the
polynomial x2−x , including nonlinear projections and oper-
ators of the form I {v ∈ A} · v for some A ⊂ V .

For any m ≥ 2, we can consider m − 1 strictly nested
nonempty closed and convex sets in a Hilbert space to obtain
a vanishing polynomial xm − xm−1. The operator simply
projects a point to the next convex set.

More generally, for any integer 0 ≤ k < m, we can obtain
a vanishing polynomial xm − xk for a scenario where V =⋃̇m

i=1 Ai , T |Ai is a bijection from Ai to Ai+1 for 1 ≤ i < m,
and T |Am = T |−1

Ak+1
◦ . . . ◦ T |−1

Am−1
, taking T |Am = I for

k = m−1. (Note that even for a plain set V , this construction
still yields T m = T k .) If we defined T |Am = 0 and 0 ∈ Am ,
we would have a vanishing polynomial xm .

8.2.2 Contraction Mappings

Let V be ametric space aswell a vector space, let∅ �= A ⊂ V
be bounded, and let T ∈ O P(V ) be a contraction mapping
on A. Clearly, the diameter of T k(A) becomes as small as we
wish as k grows. If for some 0 �= p ∈ F[x], p(T )(u) = 0
for every u ∈ T k(A), then (p(T )T k)(u) = 0 for every u ∈
A. If T l(V ) ⊆ A for some l, then p(x)xk+l is a vanishing
polynomial of T .

For example, letV beR
n with theEuclidean norm, let r1 >

r2 > 0, and let 0 ≤ a < 1. Any linear mapping S from R
n to

itself, whose singular values are all smaller than a in absolute
value, is a contraction mapping with parameter a. Let Sv be
such a contraction mapping chosen arbitrarily for each v ∈
V . Define T (v) as follows. If v /∈ B̄(0, r1), pick an arbitrary
value in B̄(0, r1); for v ∈ B̄(0, r1)\B̄(0, r2), T (v) = Sv(v);
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otherwise, T (v) = S0(v). By the above argument, T has a
vanishing polynomial.

8.2.3 Finite Images and Dimensions

When the image of an operator has finite cardinality (possibly
after several applications), then it has a vanishingpolynomial.
This applies to any actual implementation of operators, since
all practical data types are discrete.

Claim 15 Let T : V → V be an operator, and let l ≥ 0 be
an integer s.t. |T l(V )| = |T l+1(V )| = m < ∞. If V is a
vector space, then T has a vanishing polynomial of degree
at most m2 + l. If V is a plain set, then T m!+l = T l .

Proof Let T l(V ) = {v1, . . . , vm}, so for every i ≥ 1, T i−1

permutes this set. Assume V is a vector space. Define an
m2 + 1 by m2 matrix A by

Ai,( j−1)m+k =
{
1, T i−1(v j ) = T (vk)

0, otherwise,
(65)

where 1 ≤ j, k ≤ m. We thus have for every 1 ≤ i ≤ m2+1
and 1 ≤ j ≤ m that

T i−1(v j ) =
m∑

k=1

Ai,( j−1)m+k T (vk). (66)

Since A has more rows than columns, there is a vector 0 �=
a ∈ Fm2+1 s.t. a� A = 0, and for every 1 ≤ j ≤ m we have
that

m2+1∑

i=1

ai T
i−1(v j ) (67)

=
m2+1∑

i=1

ai

m∑

k=1

Ai,( j−1)m+k T (vk) (68)

=
m∑

k=1

⎛

⎝
m2+1∑

i=1

ai Ai,( j−1)m+k

⎞

⎠ T (vk) (69)

= 0 . (70)

For every v ∈ V there is some 1 ≤ j ≤ m s.t. T l(v) = v j ,
and hence T l+i−1(v) = T i−1(v j ) for every i ≥ 1. Therefore,
∑m2+1

i=1 ai T l+i−1(v) = ∑m2+1
i=1 ai T i−1(v j ) = 0, proving

the first part.
If V is a mere set, then we still have that T i permutes

{v1, . . . , vm} for i ≥ 0, corresponding to some permuta-
tion in the symmetric group Sm . By Lagrange’s theorem,
T m!(v j ) = I (v j ), for every 1 ≤ j ≤ m. For every v ∈ V ,
T l(v) = v j for some j , so T m!+l(v) = T l(v). �

Corollary 3 Every operator with a finite number of values
has a vanishing polynomial.

Corollary 4 If V is finite, then every operator has a vanishing
polynomial.

Claim 16 Let T ∈ O P(V ). The span of {T i : i ≥ 0} has a
finite dimension over F iff T has a vanishing polynomial.

Proof If the dimension is k ∈ N, then I , T , . . . , T k are lin-
early dependent, yielding a vanishing polynomial.

If T has a vanishing polynomial p, then for every p1 ∈
F[x], p1(T ) = r(T ) for r ∈ F[x], where either r = 0 or
deg(r) < deg(p) (Claim 13 part 4). Therefore, the span of
{T i : i ≥ 0} has a finite dimension. �

Finally, one may show a nonexistence result for all poly-
nomial functions over an infinite field, such asR.Members of
this important family of approximation functions overR thus
never have a vanishing polynomial.At the same time, discrete
functions with a finite number of values, another impor-
tant family of approximation functions, have been shown to
always have a vanishing polynomial (Corollary 3). It is there-
fore possible to approximate operators with others that have
vanishing polynomials, even if many do not have a vanishing
polynomial themselves.

Claim 17 Let p : F1 → F1 be a polynomial with deg(p) >

1, and let |F | = ∞. Then, p does not have a vanishing
polynomial.

Proof Assume, bywayof contradiction, thatq ∈ F[x] is van-
ishing in p. Since p, q ∈ F[x], it holds that q(p) ∈ F[x].
Write q(x) = ∑n

i=0 bi xi and p(x) = ∑m
i=0 ai xi , where

m = deg(p) and n = deg(q) ≥ 1. The coefficient of the
highest power in q(p) is bnan

m �= 0, so q(p) �= 0. Note
that when q(p) is evaluated on v ∈ F1, its free coefficient
becomes linear in v. However, since deg(p) > 1, the highest
power of v in q(p)(v) cannot be cancelled this way as can
happen for a linear p (which indeed has a vanishing polyno-
mial).

Thus, q(p)(v) is a nonzero polynomial in v, and the num-
ber of its roots is bounded by its degree. Since |F | = ∞,
there must be v ∈ F1 with q(p)(v) �= 0, contradicting the
fact that q is vanishing in p. �

8.2.4 Affine Mappings

If T (v) = A(v) + b, where A is linear and b ∈ V , then for
any polynomial p(x) = ∑m

i=0 a0xi and v ∈ V , p(T )(v) =
p(A)(v) + c, where c ∈ V is independent of v. Therefore,

p2(T )(v) =
(

m∑

i=0

ai p(T ) ◦ T i

)

(v) (71)
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=
m∑

i=0

ai p(T )(T i (v)) (72)

=
m∑

i=0

ai (p(A)(T i (v)) + c) (73)

=
m∑

i=0

ai c + p(A)

(
m∑

i=0

ai T
i (v)

)

(74)

= p(1)c + p(A)(p(T )(v)) . (75)

If, in addition, p vanishes in A, then

p2(T )(v) = p(1)c = p(1)p(T )(v) , (76)

yielding the following:

Claim 18 Let T (v) = A(v)+b, where A is linear and b ∈ V .
If p is vanishing in A and deg(p) ≥ 1, then p2 − p(1)p is
vanishing in T .

Corollary 5 If A ∈ Fn×n is a matrix and b ∈ Fn, then
T ∈ O P(Fn), defined as T (v) = Av + b, has a vanish-
ing polynomial.

8.2.5 Rational Powers

We start by considering the inverse of a bijection.

Definition 6 (Reciprocal polynomial) If p ∈ F[x], p(x) =∑m
i=0 ai xi , then the reciprocal polynomial of p is defined as

p∗(x) = ∑m
i=0 ai xm−i .

Informally, p∗(x) equals xm p(1/x). For an invertible
matrix A with characteristic polynomial pA, it is known that
pA−1 = pA(0)−1 p∗

A.

Claim 19 If T is invertible and p(x) = ∑m
i=0 ai xi is vanish-

ing in T , then p∗(x) is vanishing in T −1. If pm is the minimal
polynomial of T , then pm(0)−1 p∗

m is the minimal polynomial
of T −1.

Proof For every v ∈ V , p(T )(T −m(v)) = 0, so
∑m

i=0
ai T i−m(v) = 0. Equivalently, p∗(T −1)(v) = 0, as required.
By Claim 14, since T is surjective, we have that pm(0) �= 0,
and thus, pm(0)−1 p∗

m is a monic polynomial and vanishing
in T −1. By the same argument, if qm is the minimal polyno-
mial of T −1, then qm(0)−1q∗

m is monic and vanishing in T .
Therefore, deg(qm) = deg(pm), and pm(0)−1 p∗

m is in fact
the minimal polynomial of T −1. �
Claim 20 Let T have a vanishing polynomial p(x) =∑m

i=0 ai xi , and let T1 be an operator satisfying T l
1 = T k,

where k, l ∈ N, l > 0 (informally, T1 = T k/l ). Then T1 has
a vanishing polynomial of degree at most ml.

Proof If p1(x) = ∑n
i=0 bi xi vanishes in T k , then

∑n
i=0 bi xil

vanishes inT1. Thus, it suffices tofind avanishingpolynomial
for T k of degree at most m.

For k = 0orm = 0 the claim is obvious, so assume k, m ≥
1. For every 0 ≤ j ≤ m, we have x jk = q j (x)p(x) + r j (x),
where q j , r j ∈ F[x] and either r j = 0 or deg(r j ) < m. The
set {r ∈ F[x] : deg(r) < m} ∪ {0} is a vector space that
is isomorphic to Fm , so r0, . . . , rm are linearly dependent,
namely,

∑m
j=0 α j r j = 0 for some α0, . . . , αm ∈ F that are

not all 0. Therefore,
∑m

j=0 α j (T k) j = ∑m
j=0 α j ((q j p)(T )+

r j (T )) = 0, and we are done. �

Corollary 6 If T is bijective, with a degree m vanishing poly-
nomial, and T1 = T k/l where k ∈ Z, l ∈ N, l > 0, then T1
has a vanishing polynomial of degree at most ml.

8.2.6 Product Operators

Given several vector spaces over the same field and operators
over each,wemay define the product operator on the product,
or direct sum, of the spaces. It is easy to observe that if each
operator has a vanishing polynomial, then so does the product
operator.

Claim 21 Let Ti : Vi → Vi , i = 1, . . . , n, where Vi are
vector spaces over F, and define T : ⊕

i Vi → ⊕
i Vi as the

componentwise application of Ti . If pi is vanishing for Ti ,
then �i pi is vanishing for T .

8.3 Interpretation as a Linear Operator on a
Nonlinear Embedding

Let T have a vanishing polynomial p of degree n ≥
1. We can always make p monic, so w.l.o.g., p(x) =
xn + ∑n−1

i=0 ai xi . Define an embedding ϕT : V →⊕n
i=1 V , by ϕT (v) = (v, T (v), . . . , T n−1(v))�. Thus,

ϕT (T (v)) = (T (v), . . . , T n−1(v),−∑n−1
i=0 ai T i (v))� =

C�
p ϕT (v), where C p is the companion matrix of p,

C p =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −an−1

⎞

⎟⎟⎟⎟⎟
⎠

(77)

A known property ofC p is that its characteristic andminimal
polynomials are equal to p.

Thus, the possibly nonlinear T may be represented as a
linear transformation from

⊕n
i=1 V to itself, restricted to

ϕT (V ).
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8.4 Vanishing Polynomials and Eigenvalues

For a linear operator T , the characteristic polynomial is a
vanishing polynomial in T and is also solved by the eigen-
values of T . In this subsection we examine the existence of
such a phenomenon for nonlinear operators.

For T ∈ O P(V ), 0 �= v ∈ V is an eigenvector of T with
eigenvalue λ ∈ F , if T (v) = λv. Throughout this subsection
we will assume V �= {0}. For the special values λ = 0, 1
we can draw a general connection to the roots of a vanishing
polynomial.

Claim 22 Let T ∈ O P(V ) have a vanishing polynomial p.

1. If T has an eigenvector with λ = 1 (a nonzero fixed
point), then p(λ) = 0.

2. If T is homogeneous and has an eigenvector with λ = 0,
then p(λ) = 0.

Proof 1. If v is a fixed point of T , then T k(v) = v for every
k ≥ 0, so 0 = p(T )(v) = (

∑m
i=0 ai )v = p(1)v. Since

v �= 0, p(1) = 0.
2. If v is an eigenvector with λ = 0, then T k(v) = 0 for

every k ≥ 1, so 0 = p(T )(v) = a0v. Since v �= 0, it
follows that a0 = 0, and hence p(0) = 0.

�
This result of course holds for the minimal polynomial in
particular.

To illustrate, let V be a Hilbert space, and let PC be the
projection onto a nonempty closed convex set C . The poly-
nomial p(x) = x2 − x is vanishing in PC and also minimal,
every 0 �= v ∈ C is an eigenvector of PC with λ = 1, and
indeed p(1) = 0. Even though 0 is also a root of p, it is not
necessarily an eigenvalue, for example, if 0 /∈ C . To demon-
strate the second part of the claim, for any vector space V and
a set A, {0} � A � V , define T as T (v) = I {v ∈ A} ·v. This
operator too has p(x) = x2 − x as a vanishing and minimal
polynomial. Every 0 �= v /∈ A is an eigenvector with λ = 0
and we have that p(0) = 0. In addition, every 0 �= v ∈ A is
an eigenvector with eigenvalue 1, so here all roots of p are
eigenvalues.

In general, though, eigenvalues are not necessarily roots
of the minimal polynomial, even in elementary cases, such
as nilpotent operators. For nilpotent operators, p(x) = xm

is a minimal polynomial for some m ≥ 1, and any 0 �=
v ∈ T m−1(V ) is an eigenvector with λ = 0, which is
indeed a root of p. However, even for V = R, with T (v) =
I {v ∈ (0, a)} (v + 1) for some 0 < a < 1, there are also
eigenvectors for every λ ∈ (1/a + 1,∞).

One case where we may hope for a more intricate relation
between eigenvalues and roots of a vanishing polynomial of
T is that of γ -homogeneous operators.

Definition 7 (γ -homogeneity) Let T ∈ O P(V ). Given γ ∈
N, T is γ -homogeneous if for every 0 �= a ∈ F and v ∈ V ,
T (av) = aγ T (v). If F = R or C and γ ∈ [0,∞), T is
absolutely γ -homogeneous if T (av) = |a|γ T (v) for every
a �= 0 and v ∈ V . If F = R and γ ∈ [0,∞), T is positively
γ -homogeneous if T (av) = aγ T (v) for every a > 0 and
v ∈ V .

Note that if aγ �= 1 for some 0 �= a ∈ F , then a γ -
homogeneous T satisfies T (0) = 0. If γ �= 0, then T (0) = 0
is implied by absolute and positive γ -homogeneity. We may
state the following.

Claim 23 Let T ∈ O P(V ) have a vanishing polynomial, and
a minimal polynomial p.

1. If T is nilpotent and γ - or absolutely γ -homogeneous,
then its only eigenvalue is the only root of p, namely, 0.

2. If T is not nilpotent and F is infinite, then T cannot be γ -,
absolutely γ -, or positively γ -homogeneous if γ /∈ {0, 1}.

3. Let γ = 1. If T is γ -homogeneous and |F | > 2, then any
eigenvalue λ of T satisfies p(λ) = 0. If T is absolutely
γ -homogeneous, then p(|λ|) = 0 for any eigenvalue λ,
and in addition p(0) = 0.

4. Let γ = 0, and let T be γ -homogeneous (vanilla,
absolute, or positive). If p(1) �= 0, then the only fea-
sible eigenvalue (nonnegative eigenvalue for positive
homogeneity) is λ = 0. In addition, except for vanilla
γ -homogeneity with |F | = 2, p(0) = 0.

Proof 1. Let p(x) = xm be the minimal polynomial of
T . As already argued, every 0 �= v ∈ T m−1(V ) is an
eigenvector with λ = 0. If there were v �= 0 with some
eigenvalue 0 �= λ ∈ F , then it is easily shown by induc-

tion that T m(v) = λ
∑m−1

i=1 γ i
λv for a γ -homogeneous

T or T m(v) = |λ|
∑m−1

i=1 γ i
λv for an absolutely γ -

homogeneous T . In both cases, since T m(v) = 0, we
get λ = 0 and a contradiction.

2. Consider first a γ -homogeneous T where γ ∈ N. Since
T is not nilpotent, p = ∑m

i=0 ai xi has some element
a j �= 0 where j �= m. For every 0 �= a ∈ F and v ∈ V ,

it is easy to see that T i (av) = aγ i
T i (v), so p(T (av)) =

∑m
i=0 ai aγ i

T i (v). We may divide by aγ m
and obtain the

vanishing polynomial
∑m

i=0 ai aγ i −γ m
T i (v). This poly-

nomial is monic and has the same degree as p, so by the
uniqueness of the minimal polynomial, aγ j −γ m = 1. If
γ /∈ {0, 1}, then aγ m−γ j = 1 has at most γ m − γ j solu-
tions, so in an infinite F we may choose a �= 0 that is not
such a solution. This leads to a contradiction.
For positive and absolute γ -homogeneity, we can choose
a = 2 and use the same argument except that now
aγ m−γ j = 1 cannot not hold by simple observation.
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3. Let v �= 0 be an eigenvector with eigenvalue λ and let T
be 1-homogeneous. For λ �= 0, 0 = p(T )(v) = p(λ)v so
p(λ) = 0. For λ = 0, note that there exists a ∈ F\{0, 1},
so T (0) = 0, and by part 2 of Claim 22, again p(λ) = 0.
If T is absolutely 1-homogeneous, then for every 0 �=
a ∈ F and v ∈ V ,

0 = p(T )(av) = a0av +
m∑

i=1

ai |a|T i (v) (78)

= a0(a − |a|)v + |a|p(T )(v) (79)

= a0(a − |a|)v . (80)

Taking v �= 0 and a = −1, we obtain a0 = 0, so
p(0) = 0. Now, let v �= 0 be an eigenvector with eigen-
value λ. If λ = 0, then p(|λ|) = 0, and if λ �= 0, then
0 = p(T )(v) = (

∑m
i=1 ai |λ|i−1λ)v = sgn(λ)p(|λ|)v,

so p(|λ|) = 0, and we are done.
4. For all γ -homogeneity types, it holds that for every v ∈ V

and permissible 0 �= a ∈ F ,

0 = p(T )(av) = a0av +
m∑

i=1

ai T
i (v) (81)

= a0(a − 1)v + p(T )(v) (82)

= a0(a − 1)v . (83)

If v �= 0 and |F | > 2, there is a permissible a /∈ {0, 1},
yielding a0 = 0, so p(0) = 0.
If v has eigenvalue λ �= 0 (λ > 0 for positive homo-
geneity), then 0 = p(T )(v) = ∑m

i=1 aiλv + a0v =
p(1)λv + a0(1− λ)v = p(1)λv. The last equality holds
since either a0 = 0 or |F | = 2, soλ = 1. Thus, p(1) = 0,
and the result follows.

�
Thus, for (absolutely) 1-homogeneous operators, if a

vanishing polynomial exists, its roots must contain the
eigenvalues (their absolute value), under proper conditions.
However, not all the roots must be eigenvalues. Consider, for
example, T : R

2 → R
2, defined (using polar coordinates) as

T ((r , θ)) =
{

(r , θ + π
2 ), θ ∈ [0, π

2 ) ∪ [π, 3π
2 )

(r , θ − π
2 ), otherwise.

(84)

This operator is 1-homogeneous and has a vanishing (and
minimal) polynomial x2 − 1, whose roots are ±1. Never-
theless, it has no eigenvectors at all. Another example is
T (v) = |v|with V = R, which is absolutely 1-homogeneous
with a minimal polynomial x2 − x , whose roots are {0, 1},
but only the eigenvalue 1 has an eigenvector.

An example of a positive 0-homogeneous operator is
T (v) = v/‖v‖ (where T (0) = 0) in R

n . Every v �= 0 is

an eigenvector with λ = 1/‖v‖, yielding every eigenvalue in
(0,∞). Theminimal polynomial of T is x2−x , so p(1) = 0.
By part 4 of Claim 23 we cannot limit the eigenvalues, and
indeed, they attain infinitely many values.

9 Generalized Inverses of Nonlinear
Endofunctions

It is natural to consider the Drazin inverse as a generalized
inverse for the setting of endofunctions over any set V . Of
course, {1, 2}-inverses and the MP inverse may be applied to
the special case V = W exactly as they are in general.

The next theorem gives a necessary and sufficient con-
dition for the existence of the Drazin inverse along with an
exact formula. We will need a small lemma first.

Lemma 3 Let T ∈ O P(V ) satisfy that for some integer k ≥
0, there exists G ∈ O P(V ) s.t. GT k+1 = T k. Then, S =
T |T k (V ) is injective.

Proof Suppose that v1, v2 ∈ T k(V ) and S(v1) = S(v2) = v.
There are u1, u2 ∈ V s.t. v1 = T k(u1) and v2 = T k(u2),
and thus T k+1(u1) = T k+1(u2) = v. It holds that G(v) =
GT k+1(u1) = T k(u1) = v1 and G(v) = GT k+1(u2) =
T k(u2) = v2, so v1 = v2. �

Theorem 8 If T ∈ O P(V ), then T has a Drazin inverse
iff there is k ∈ N s.t. S : T k(V ) → T k(V ), defined as
S = T |T k (V ), is bijective. If the condition holds, then T D =
S−(k+1)T k.

Proof If TD exists, then for some positive k, T k = T k+1TD.
Thus, T k(V ) = (T k+1TD)(V ) ⊆ T k+1(V ), but since we
always have T k(V ) ⊇ T k+1(V ), it holds that T k(V ) =
T k+1(V ). Thus S is surjective. Now, since TDT k+1 = T k ,
then by Lemma 3, S is injective, and being also surjective, it
is a bijection.

In the other direction, assume that for some k ≥ 0, S
is bijective. Thus, S has a two-sided inverse. We will define
G = S−(k+1)T k and show that it is a Drazin inverse.We have
GT = S−(k+1)T k+1 = S−k T k = T G, so D5 holds. MP1k is
true since T k GT = T k+1G = T k , implying MP1k+1. MP2
holds since GT G = T k+1S−2k−2T k = S−(k+1)T k = G, so
G is a {1k+1, 2, 5}-inverse, and the proof is complete. �

The exact setting for the existence of a Drazin inverse
is shown in Fig. 3a. While it holds for any operator that
V = T 0(V ) ⊇ T 1(V ) ⊇ . . ., Drazin-invertible operators
are those for which the containment becomes an equality at
some point, and furthermore, T becomes bijective (not only
surjective).
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Fig. 3 Necessary and sufficient
settings for Drazin-invertibility
and left-Drazin invertibility. For
a Drazin-invertible operator, the
operator T becomes bijective
after a finite number of
iterations (here, k = 4). The
Drazin inverse is then
TD = (T |T k (V ))

−(k+1)T k . For a
left-Drazin-invertible operator,
the setting is looser: the operator
becomes injective after k
iterations (here, k = 3). An
inverse T LD with parameter k
(for k ≥ 1) may be then defined
as (T |T k (V ))

−1 on T k+1(V ) and
arbitrarily elsewhere

(a) A Drazin-invertible operator (b) A left-Drazin-invertible operator

9.1 Some Example Scenarios

The following scenarios serve to further investigate and high-
light the concept and properties of the Drazin inverse for
operators.

An operator containing a loop. Let T ∈ O P(V ) satisfy
T n = T k , where V is some set and k, n ∈ N satisfy n > k ≥
0. This holds for any operator on a finite V (see Claim 15)
and all examplesmentioned inSect. 8.2.1, such as idempotent
operators and nested projections.

All these operators have TD = T (n−k)(k+1)−1. To see
this, we can use part 8 of Theorem 6, with a = b = T n−k−1

and M = p = q = k. Assuming that k > 0, we obtain
TD = T k T (n−k−1)(k+1) = T (n−k)(k+1)−1. For k = 0,
T n−1 is clearly the true inverse of T , and thus also the
Drazin inverse. A simple example of this scenario for a one-
dimensional operator is illustrated in Fig. 4.

The bijection of Tk(V ) is a unitary matrix. If V = R
n ,

T k(V ) = B(0, r), andT |T k (V ) is a unitarymatrix, thenTheo-
rem 8 implies that T is Drazin-invertible. This unitary matrix
has a vanishing polynomial p of degree at most n, which can
be non-trivial (even a rotation in R

2 does not generally have
a vanishing polynomial of the form xm − xk = 0). The poly-
nomial p(x)xk vanishes in T .

The bijection of Tk(V ) is arbitrary. Using the previous
example except that the bijection is completely arbitrary, we
cannot expect that the bijection will vanish for some polyno-
mial. Drazin-invertibility may thus exist without necessarily
having a vanishing polynomial.

A simple operator without a Drazin inverse. Let V =
[0, 1], and let T : V → V be defined as T (v) = v/2.
Since T k(V ) � T k+1(V ) for every k, then by Theorem 8, a
Drazin inverse does not exist. In contrast, the pseudo-inverse
of T with the Euclidean norm is easily seen to be min{2v, 1}.
Note that this linear operator has the vanishing polynomial
x − 1/2 = 0.

9.2 The Left-Drazin Inverse

The examples given in the previous subsection showed that
an operator with a vanishing polynomial does not necessar-
ily have a Drazin inverse. For some very simple cases, such
as T n = T k , a Drazin inverse can be shown to be poly-
nomial in the operator. In general, however, this cannot be
expected. The D5 requirement means that an operator and its
Drazin inverse should commute. While T and a polynomial
in T commute for linear operators, they do not commute in
general.

This is a bit counter-intuitive, since for an operator with
a vanishing polynomial q(x)xk+1 + ak xk , where ak �= 0,
the expression −a−1

k q(T ) is “inverse-like”. Specifically,
−a−1

k q(T ) ◦ T k+1 = T k . Together with the fact that the
Drazin inverse was shown to be undefined for an elementary
case, this motivates a possibly weaker but more permissive
generalized inverse definition, given next.

Definition 8 (Left-Drazin inverse) An operator T ∈ O P(V )

has a left-Drazin inverse G ∈ O P(V ) if there is a positive
integer m s.t. GT m+1 = T m . The minimal such integer is
referred to as the left index of T .

Having a left-Drazin inverse is referred to by Drazin as
“left π -regularity” and is in turn inspired by Azumaya [32].
Clearly, the Drazin inverse of T , where it exists, is also a left-
Drazin inverse of T (see Theorem 6 part 8). In addition, if a
parameterm satisfies the definition then so does anym′ ≥ m.

The next theorem characterizes the left-Drazin inverse in
the context of endofunctions and shows that it exists as a
polynomial in the operator whenever a vanishing polynomial
exists.

Theorem 9 Let T ∈ O P(V ).

1. It holds that T has a left-Drazin inverse T LD iff there
is k ∈ N s.t. S : T k(V ) → T k+1(V ), defined as S =
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Fig. 4 The Drazin inverse of a one-dimensional operator containing
a loop. A step operator T : [0, 1] → [0, 1] is defined using n = 14
points, where vn = 0.999, vi−1 = v2i = T (vi ) for i = 2, . . . , n, and
T (v) = vn for v ≤ v1, which closes the loop. For any other v, T (v) is

defined as T (vi ), where vi is nearest to v on its left. Since T n+1 = T , it
holds that TD = T 2n−1 = T n−1 is the Drazin inverse of T . The dashed
lines are the functions f (v) = v2 (of which T is a certain discretization)
on the left and its inverse f −1(w) = √

w on the right

T |T k (V ), is injective. If the condition holds and k ≥ 1,
then a left-Drazin inverse with parameter k exists, must
coincide with S−1 on T k+1(V ), and may be arbitrary
elsewhere.

2. Let V be further a vector space and p = ∑m
i=0 ai xi a

vanishing polynomial of T , where k is smallest index s.t.
ak �= 0. Then −a−1

k

∑m
i=k+1 ai T i−k−1 is a left-Drazin

inverse of T with parameter max{k, 1}.

Proof 1. The existence ofT LD implies that S is injective (for
some k) immediately by Lemma 3. In the other direction,
we may define T LD as S−1 on T k+1(V ) and arbitrarily
elsewhere. It then holds that T LDT k+1 = T k as required
(for k = 0, note that also T LDT k+2 = T k+1). The last
claim is immediate.

2. Since T k =
(
−a−1

k

∑m
i=k+1 ai T i−k−1

)
T k+1, the claim

follows for k > 0. For k = 0 we may multiply both sides
by T on the right.

�
The characterization of left-Drazin invertibility is depicted

in Fig. 3b. Part 1 of the theorem directly yields the following.

Corollary 7 If T ∈ O P(V ) is bijective, then T LD = T −1.

Going back to the example of T (v) = v/2 on V = [0, 1],
we have that T is injective on T 0(V ), so a left-Drazin inverse
exists, which with parameter 1 is constrained to be 2v on
[0, 0.25]. The same conclusion might be reached by a minor
adaptation of the proof of part 2 of the above theorem using
the vanishing polynomial p(x) = x − 0.5.

Note that again by the above theorem, the operator T (v) =
2v · I {v < 1/2} + v · I {v ≥ 1/2} with V = [0, 1] does not
have a left-Drazin inverse, since it is not injective on T k(V )

for any k. The pseudo-inverse of T with the Euclidean norm
exists and is v/2.

10 Discussion and Conclusion

Inversion and pseudo-inversion are essential in machine
learning, image processing and data science in general. In
this work we attempt to establish a broad and coherent theory
for the generalized inverse of nonlinear operators. From an
axiomatic perspective, the first two axioms (MP1, MP2) can
be directly extended to a very general setting of the nonlinear
case, yielding a set of admissible {1, 2}-inverse operators. It
is shown that (MP3, MP4) are requirements which can hold
only in the linear case. A procedure to construct a {1, 2}-
inverse is given, along with some essential properties. In
order to obtain a stricter definition, which fully coincides
in the linear setting with the four axioms MP1–4, normed
spaces are assumed. The pseudo-inverse is defined through a
minimization problem, as well as MP2. We note that such a
minimization can be thought of as the limit of Tikhonov reg-
ularization, where the weight of the regularization term tends
to zero. This analogy applies in particular to regularized loss
minimization (see Appendix C for details). We give explicit
formulations of the nonlinear pseudo-inverse for several test
cases, relevant to learning and to image processing.

Finally, we focus on operators with equal domain and
range, and in particular on expressing inverse and gener-
alized inverse by using vanishing polynomials, following
the Cayley–Hamilton theorem for linear operators. We show
why the Drazin inverse is relevant in this case and suggest
a relaxed version, more suitable for obtaining polynomial
inverse expressions for nonlinear operators. The use of
polynomials allows realizing inversion using only forward
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applications of the operator, yielding a constructive and pos-
sibly efficient way for inverse computation.
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Appendix A Additional Claims

Claim 24 Let V and W be inner-product spaces over F (R
or C). If T : V → W has an adjoint operator, then T is
linear.

Proof For every v1, v2 ∈ V ,w ∈ W , and a1, a2 ∈ F , it holds
that

〈T (a1v1 + a2v2), w〉 (A1)

= 〈a1v1 + a2v2, T ∗(w)〉 (A2)

= a1〈v1, T ∗(w)〉 + a2〈v2, T ∗(w)〉 (A3)

= a1〈T (v1), w〉 + a2〈T (v2), w〉 (A4)

= 〈a1T (v1) + a2T (v2), w〉 . (A5)

Taking w = T (a1v1 + a2v2) − a1T (v1) − a2T (v2) and
rearranging, we obtain that 〈w,w〉 = 0, therefore w = 0,
yielding that T has to be linear. �
Claim 25 If T : V → W is a bijection, then T −1 is its unique
pseudo-inverse.

Proof Apseudo-inverse is a {1, 2}-inverse, and by Lemma 1,
T −1 is the unique {1, 2}-inverse of T . For every w ∈ W ,
v = T −1(w) is the sole minimizer of ‖T (v) − w‖, so the
BAS property is satisfied by T −1 as well. �

The following lemma and theorem are well known. Their
statements below extend the original ones to spaces over C

as well as R, so the proofs are given for completeness.

Lemma 4 ([33]) Let C be a convex set in a Hilbert space
over R or C. If a point b ∈ C is nearest a point a, then
Re〈x − b, b − a〉 ≥ 0 for every x ∈ C.

Proof For every t ∈ [0, 1], t x + (1 − t)b ∈ C , and thus
‖a − b‖2 ≤ ‖a − t x − (1 − t)b‖2. Now,

‖a − t x − (1 − t)b‖2 (A6)

= ‖t(b − x) + (a − b)‖2 (A7)

= ‖t(x − b) + (b − a)‖2 (A8)

= t2‖x − b‖2 + 2tRe〈x − b, b − a〉 (A9)

+ ‖a − b‖2 , (A10)

therefore, t2‖b − x‖2 + 2tRe〈x − b, b − a〉 ≥ 0. If Re〈x −
b, b − a〉 < 0, then this inequality would be violated for a
small enough t , so we are done. �
Theorem 10 ([33]) The projection P onto a nonempty closed
convex set C in a Hilbert space over R or C satisfies the
Lipschitz condition ‖P(x) − P(y)‖ ≤ ‖x − y‖.

Proof By Lemma 4, A ≡ Re〈P(x) − P(y), P(y) − y〉 ≥ 0
and B ≡ Re〈P(y) − P(x), P(x) − x〉 ≥ 0. Rearranging
terms in the inequality A + B ≥ 0, we have

Re〈P(y) − P(x), y − x〉 (A11)

≥ Re〈P(y) − P(x), P(y) − P(x)〉 (A12)

= ‖P(y) − P(x)‖2 . (A13)

Then, by the Cauchy–Schwartz inequality,

‖P(y) − P(x)‖ · ‖y − x‖ (A14)

≥ |〈P(y) − P(x), y − x〉| (A15)

≥ Re〈P(y) − P(x), y − x〉 (A16)

≥ ‖P(y) − P(x)‖2 . (A17)

Therefore, ‖P(y) − P(x)‖ ≤ ‖y − x‖. �

Appendix B Pseudo-Inverse Calculations for
Table 1

In all the examples below, T : V → W and V = W = R.
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Let T (v) = v2. For w > 0 there are two sources, v =
±√

w, with the same norm. For w < 0 there is no source,
and the closest element in the image is 0, whose only source
is 0. By BAS, a pseudo-inverse T † must satisfy T †(w) =
±√

max{w, 0}, where the sign for each w is arbitrary. Each
such choice produces a {1, 2}-inverse by Lemma 1, since
T †(w) is a source of w for w ∈ T (V ), and a pseudo-inverse
of an element in T (V ), otherwise.

Let T (v) = v · I {|v| ≥ a}, a ≥ 0 (hard thresholding).
Assume that a > 0. By BAS, a pseudo-inverse T † must
satisfy T †(w) = w if |w| ≥ a, T †(w) = a if a

2 <

w < a, T †(w) = −a if −a < w < − a
2 , and T †(w) =

0 if |w| ≤ a
2 . More compactly, T †(w) = sgn(w) ·

I
{|w| > a

2

}
max(a, |w|}. MP2 may be verified directly, so

T † is valid and also unique. If a = 0, then T (v) = v, and the
uniquepseudo-inverse of this bijection is clearlyT †(w) = w,
which agrees with the pseudo-inverse expression given for
the case a > 0.

Let T (v) = sgn(v)max{|v| − a, 0}, a ≥ 0 (soft thresh-
olding). ByBAS, any candidate pseudo-inverse T † must have
T †(w) = w + a for w > 0, T †(w) = w − a for w < 0 and
T †(0) = 0. More compactly, T †(w) = sgn(w)(|w| + a).
MP2 is easily verified directly, so our unique candidate is
also valid.

Let T (v) = tanh(v). The image of T is (−1, 1), and as
a result, for w /∈ (−1, 1) there is no nearest element in the
image, and the pseudo-inverse cannot be defined for such w.
If we rather choose W = (−1, 1), then T is a bijection, and
therefore T † = T −1 = arctanh.

Let T (v) = sgn(v). For w < − 1
2 , the nearest value in

T (V ) is −1, but there is no source with minimal norm. A
similar situation holds for w > 1

2 . For w = ± 1
2 there are

two nearest elements in T (V ), and the source with minimal
norm is 0. For w ∈ (− 1

2 ,
1
2 ) the nearest element in T (V ) is

0 and its single source is 0. To define a pseudo-inverse T †

we must restrict its domain to [− 1
2 ,

1
2 ]. We have seen that to

satisfy BAS, necessarily T †(w) = 0. That is a {1, 2}-inverse
by Lemma 1, since for w = 0, T †(0) is a source, and for
w �= 0, T †(w) = T †(0).

Let T(v) = sgnε(v), 0 < ε ∈ R. Recall that sgnε(v) =
min{1,max{−1, v/ε}}. Here, T (V ) = [−1, 1], and every
w ∈ (−1, 1) has the single source, εw. For w = 1, the
source with minimal norm is ε, and for w = −1, the source
with minimal norm is −ε. In addition, for every w there is
a single nearest point in T (V ). By Claim 4, there exists a
unique pseudo-inverse, T † : R → R. For w ∈ [−1, 1], it
must satisfy T †(w) = εw, as already seen. For w > 1, BAS
necessitates that T †(w) = ε, and similarly for w < −1, that
T †(w) = −ε. Thus,

T †(w) = ε min{1,max{−1, w}} (B18)

= ε sgn1(w) , (B19)

and this pseudo-inverse is valid and unique.
Let T (v) = exp(v). The image of T is (0,∞), and for

w ≤ 0 there is no nearest element in the image, and T †(w)

cannot be defined. Since T is bijective from R to (0,∞), for
w ∈ (0,∞), T †(w) = log(w).

Let T (v) = sin(v). The image of T is [−1, 1]. Every ele-
ment in the image has infinitely many sources, but the one
with the smallest norm is arcsin(w) ∈ [−π

2 , π
2 ]. Everyw has

a single nearest point in [−1, 1], so by Claim 4, there exists
a unique pseudo-inverse T † : R → R. By BAS, it has to
be arcsin(1) for w > 1 and arcsin(−1) for w < −1, and in
summary, T †(w) = arcsin(min{1,max{−1, w}}).

Appendix CRelation toRegularized LossMin-
imization

There is an interesting connection between the BAS property
and Tikhonov regularization. For an operator T : R

k → R
m ,

given w ∈ R
m , BAS seeks v ∈ R

k that minimizes ‖T v −w‖
and among such minimizers, then seeks to minimize ‖v‖.
As noted by Ben-Israel and Greville [3] in the context of
linear operators, Tikhonov regularization seeks a different,
yet related, goal of minimizing ‖T v − w‖2 + λ‖v‖2, where
λ ∈ R

+. Namely, the two-stage minimization process is
replaced by a single step combining both, which in this case
describes ridge regression.

Tikhonov regularization for nonlinear operators is cen-
tral to modern machine learning, as part of the framework
of regularized loss minimization (RLM). Briefly, in a super-
vised learning task, a learner is given a training set S =
{(xi , yi )}m

i=1, typically with xi ∈ X = R
n and yi ∈ Y = R

or {−1, 1}. The learner outputs a predictor p(·|v) : X → Y
that is parametrized by a vector v ∈ R

k and is identified with
it. The goal of the learner is tominimize the loss, �(v, (x, y)),
on unseen test examples (x, y), where � is a given non-
negative function. For various reasons (see, e.g., [34]), RLM
may obtain this goal by minimizing L S(v) + R(v), where
L S(v) = 1

m

∑m
i=1 �(v, (xi , yi )) is the training loss and

R : R
k → R is a regularization term.

Consider then the operator T : R
k → R

m , defined
by T (v) = (p(x1|v), . . . , p(xm |v)). Let both spaces be
equippedwith theEuclideannorm, and letw = (y1, . . . , ym).
Then, v = T †(w) should minimize ‖T (v) − w‖, which
is equivalent to minimizing

∑m
i=1(p(xi |v) − yi )

2, or mL S ,
where �(v, (x, y)) = (p(xi |v) − yi )

2 is the squared loss.
Among minimizers, one with minimal norm is chosen. This
may be approximated byminimizing

∑m
i=1(p(xi |v)− yi )

2+
mλ‖v‖2, where mλ is positive and sufficiently small. That
way, the loss term is dominant, and the regularization term is
effective only as a near-tie breaker. Of course, this is implied
by the BAS property alone, and a pseudo-inverse should also
satisfy MP2.
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