
Journal of Mathematical Imaging and Vision
https://doi.org/10.1007/s10851-024-01176-z

Assessing Hierarchies by Their Consistent Segmentations

Zeev Gutman1 · Ritvik Vij2 · Laurent Najman3 ·Michael Lindenbaum4

Received: 6 December 2023 / Accepted: 3 February 2024
© The Author(s) 2024

Abstract
Current approaches to generic segmentation start by creating a hierarchy of nested image partitions and then specifying a
segmentation from it. Our first contribution is to describe several ways, most of them new, for specifying segmentations
using the hierarchy elements. Then, we consider the best hierarchy-induced segmentation specified by a limited number of
hierarchy elements. We focus on a common quality measure for binary segmentations, the Jaccard index (also known as IoU).
Optimizing the Jaccard index is highly nontrivial, and yet we propose an efficient approach for doing exactly that. This way
we get algorithm-independent upper bounds on the quality of any segmentation created from the hierarchy. We found that the
obtainable segmentation quality varies significantly depending on the way that the segments are specified by the hierarchy
elements, and that representing a segmentation with only a few hierarchy elements is often possible.

Keywords Hierarchical segmentation · Image segmentation · Evaluation · Jaccard index

1 Introduction

Generic (i.e., non-semantic) image segmentation is widely
used in various tasks of image analysis and computer vision.
A variety of image segmentation methods are proposed in
the literature, including the watershed method [1], level-set
method [2], normalized cuts [3], and many others. Modern
generic segmentation algorithms use (deep) edge detectors
and watershed-like merging [4]. Augmenting the detected
edges with region descriptors improves segmentations [5].
Note that generic image segmentation, the topic we are
focusing on in this paper, is different from semantic image
segmentation, which provides segmentation of objects from

B Michael Lindenbaum
mic@cs.technion.ac.il

Zeev Gutman
szeg25@gmail.com

Ritvik Vij
ritvikvi@amazon.com

Laurent Najman
laurent.najman@esiee.fr

1 Rafael, Haifa, Israel

2 Amazon, Bengaluru, India

3 Univ Gustave Eiffel, CNRS, LIGM, F-77454
Marne-la-Vallée, France

4 CS Department, Technion, Haifa, Israel

specific classes with the help of (deep) image classifiers [6,
7].

Segmentation (generic or semantic) is useful for numerous
applications, such as image enhancement [8], image analysis
[9], and medical image analysis [10].

The dominant generic segmentation algorithms (e.g., [4])
are hierarchical and built as follows: first, an oversegmen-
tation is carried out, specifying superpixels as the elements
to be grouped. Then, a hierarchical structure (usually repre-
sented by a tree) is constructed with the superpixels as its
smallest elements (i.e., leaves). The regions specified by the
hierarchy are the building blocks from which the final seg-
mentation is decided. Restricting the building blocks to the
elements of the hierarchy yields simple, effective algorithms
at a low computational cost. Most segmentation methods
build the segmentation from the hierarchy by choosing a cut
from a limited cut set. Our first contribution is to generalize
this choice. We systematically consider all possible ways for
specifying a segmentation, using set operations on elements
of the hierarchy. Most of these methods are new.

We are also interested in the limitations imposed on the
segmentation quality by using the hierarchy-based approach.
These limitations depend on (1) the quality of the hierarchy,
(2) the number of hierarchy elements (nodes) that may be
used, and (3) the way that these elements are combined. We
investigate all these causes in this paper. The quality is also

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-024-01176-z&domain=pdf

Journal of Mathematical Imaging and Vision

influenced by the oversegmentation quality, which was stud-
ied elsewhere [11].

The number of hierarchy elements determines the com-
plexity of specifying a segmentation. Lower complexity is
advantageous by the minimum description length (MDL)
principle, which minimizes a cost composed of the descrip-
tion cost and the approximation cost, and relies on statistical
justifications [12–16]. Moreover, representation by a small
number of elements opens possibilities for a new type of seg-
mentation algorithms that are based on search, for example,
in contrast to the greedy current algorithms. The number of
elements needed also indicates, in a sense, how much infor-
mation about the segmentation is included in the hierarchy,
and thus, it provides a measure of quality for the hierarchy
as an image descriptor, as well as a global measure of the
associated boundary operator.

To investigate the hierarchy-induced limitations, we opti-
mize the segmentation from elements of a given hierarchy.
We consider binary segmentation, and use the Jaccard index
(IoU)measure of quality [17].More precisely, we use image-
dependent oversegmentation and hierarchies produced by
algorithms that have access only to the image. However, we
allow the final stage, which constructs the segmentation from
the hierarchy elements, to have access to the ground truth seg-
mentation. As a result, the imperfections of the optimized
segmentation correspond only to its input, i.e., to the hier-
archy. Thus, the results we obtain are upper bounds on the
quality that may be achieved by any realistic algorithm, that
does not have access to the ground truth, but relies on the
same hierarchy.

Optimizing the Jaccard index is highly nontrivial, but we
provide a framework that optimizes it exactly and effectively.
Earlier studies either use simplistic quality measures or rely
on facilitating constraints [18, 19].

The contributions of this work are as follows:

1. Four differentmethods for specifying a hierarchy-induced
segmentation. These methods are denoted (segmentation
to hierarchy) consistencies.

2. Efficient and exact algorithms for finding the best seg-
mentation (in the sense of maximizing the Jaccard index)
that is consistent with a given hierarchy. We provide four
algorithms1, one for each consistency. The algorithms are
fast, even for large hierarchies.

3. A characterization of the limits of hierarchy-induced seg-
mentation.Notably, this characterization is also ameasure
of the hierarchy quality.

This paper considers segmentation of images, but all the
results apply as well to the partition of general data sets.

1 Code is available at https://github.com/ritvik06/Hierarchy-Based-S
egmentation.

The paper continues as follows. First, we describe terms
and notations required for specifying the task (Sect. 2). In
Sect. 3, we present our goal and discuss the notion of consis-
tencies, which is central to this paper. In Sect. 4, we review
several related works. In Sect. 5, we develop an indirect opti-
mization approach that relies on the notion of co-optimality
and enables us to optimize certain quality measures. Sec-
tion6 provides particular optimization algorithms and the
corresponding upper bounds for the Jaccard index and the
different consistencies. The bounds are evaluated empirically
in Sect. 7, which also provides some typical hierarchy-based
segmentations. Finally, we conclude and suggest some exten-
sions in Sect. 8.

2 Preliminaries

2.1 Hierarchies

The following definitions and notations are standard, but are
presented here for the sake of completeness. Recall that a
partition of a set I is a set of non-empty subsets of I, such that
every element in I is in exactly one of these subsets (i.e., I is
a disjoint union of the subsets). In this paper, these subsets
are referred to as regions. Moreover, all examples are done
with connected regions, but the connectivity constraint is not
needed for the theory and algorithms.

Let π1 and π2 be two partitions of a pixel set I . Partition
π1 is finer than partition π2, denoted π1 ≤ π2, if each region
of π1 is included in a region of π2. In this case, we also
say that π2 is coarser than π1. Let � be a finite chain of
partitions �={πi | 0 ≤ i ≤ j ≤ n �⇒ πi ≤ π j } where
π0 is the finest partition and πn is the trivial partition of I
into a single region: πn = {I }. A hierarchy T is a pool of
regions of I , called nodes, that are provided by elements
of � : T = { N ⊂ I | ∃ πi ∈ � : N ∈ πi }. For any two
partitions from �, one is finer than the other, hence, any two
nodes N1, N2 ∈ T are either nested (N1 ⊂ N2 or N2 ⊂ N1),

or disjoint (N1∩N2= ∅); see Fig. 1.
Let N1 and N2 be two different nodes of T . We say that

N1 is the parent of N2 if N2 ⊂ N1 and there is no other node
N3 ∈ T such that N2 ⊂ N3 ⊂ N1. In this case, we also say
that N2 is a child of N1. Note that every node has exactly one
parent, except I ∈ πn,which has no parent. Hence, for every
node N ∈ T , there is a unique chain: N = N1 ⊂ . . . ⊂ Nk =
I , where Ni is the parent of Ni−1. Thus, the parenthood
relation induces a representation of T by a tree, in which the
nodes of π0 are the leaves, and the single node of πn is the
root; see Fig. 1. Hence, we also refer to T as a tree. When
each non-leaf node2 of T has exactly two children, T is a

2 Note that the term node may refer to the node in the tree but also to
the corresponding image region, when the context is clear.

123

https://github.com/ritvik06/Hierarchy-Based-Segmentation
https://github.com/ritvik06/Hierarchy-Based-Segmentation

Journal of Mathematical Imaging and Vision

Fig. 1 a The true segmentation (GT). (b–f) A chain of the image par-
titions: � = {π0, π1, π2, π3, π4}, which yields a hierarchy T =
{N1, . . . , N15}. Each πi is represented in the Binary Partition Tree
(representing T) by a set of colored nodes. (g) Another partition of the

image, denoted π ′. The nodes representing π ′ (shaded red) are a cut
of the hierarchy T , and are the leaves of a tree T ′ obtained by pruning
T . (h) The dendrogram representing T . Each partition of the above is
represented by a cut of the dendrogram (red dashed lines)

binary partition tree (BPT) [18–21]. In this paper, we focus
on BPTs, but our results hold for non-binary trees as well.

A hierarchy T can be represented by a dendrogram, and
every possible partition of I corresponds to a set of T ’s nodes
andmay be obtained by “cutting” the dendrogram; see Fig. 1.
In the literature, any partition of I into nodes of T is called
a cut of the hierarchy [22, 23]. Every πi ∈ � is a horizontal
cut of the hierarchy, but there are many other ways to cut the
hierarchy, and each cut specifies a partition of I .As we shall
see later, a hierarchy may induce other partitions of I .

Pruning of a tree in some node N is a removal from the
tree of the entire subtree rooted in N , except N itself, which
becomes a leaf. Each cut of a hierarchy represents a tree T ′
obtained by pruning T , by specifying the leaves of T ′; see
Fig. 1. The converse is also true: the leaves of a tree obtained
by pruning T are a cut of the hierarchy. That is, a subset of
nodes N ⊂T is a cut of the hierarchy, if and only if N is the
set of leaves of a tree obtained by pruning T . More precisely,
N ⊂T is a cut of the hierarchy, if and only if for every leaf in
T , the only path between it and the root contains exactly one
node from N . Often, a segmentation is obtained by searching
for the best pruning of T . However, the cardinality of the set
of all prunings of T grows exponentially with the number
of leaves in T [18]. Thus, it is unfeasible to scan this set
exhaustively by brute force.

2.2 Coarsest Partitions

We use the following notations. The cardinality of a set is
denoted by | · |. The initial partition π0 of I , which is the
set of leaves of the tree T , is denoted by L. Let N ∈T ; we
denote by T N⊂T (resp. LN⊂L) the subset of nodes of T
(resp. L) included in N . Note that T N is represented by the

subtree of T rooted in N ; hence, we refer to T N also as a
subtree, and to LN as the leaves of this subtree.

Let Y ⊂ I be a pixel subset. We refer to any partition
of Y into nodes of T (namely, a subset of disjoint nodes of
T whose union is Y) as a T-partition of Y . Note that a
T -partition of Y does not necessarily exist. We refer to the
smallest subset of disjoint nodes of T whose union is Y as
the coarsest T-partition of Y . Obviously, N ⊂T is a cut of
the hierarchy if and only if N is a T -partition of I . N ⊂T
is a T -partition of a node N ∈T , if and only if N is the set
of leaves of a tree obtained by pruning T N. Obviously, the
coarsest T -partition of a node N ∈T is {N }.

Figure2 illustrates several ways of representing a region
using a hierarchy and the corresponding coarsest partition.

Property 1 A non-coarsest T -partition of a node N ∈T is a
union of T -partitions of its children.

In Fig. 1g, for example, the subset {N4, N5, N8, N10, N11} is
a non-coarsest T -partition of N15 whereas, {N4, N11} and
{N5, N8, N10} are T -partitions of the children of N15 : N13

and N14, respectively.

Lemma 1 (See Appendix 1 for the proof.)

i. A T -partition of a pixel subset Y ⊂ I is non-coarsest,
if and only if it contains a non-coarsest T -partition of
some node N ∈T that is included in Y (N ⊂ Y).

ii. When the coarsest T -partition of a pixel subset Y ⊂ I
exists, it is unique.

123

Journal of Mathematical Imaging and Vision

3 Problem Formulation

3.1 The General Task

As discussed in the introduction, we consider only segmenta-
tions that are consistent in some way with a given hierarchy,
and aim to find limitations on their quality.

Obviously, the quality improves with the number of
regions. More precisely,
General task: Given a hierarchy and a measure for estimat-
ing segmentation quality, we want to find a segmentation that
has the best quality, is consistent with the hierarchy, and uses
no more than a given number of regions from it.

To make this task well-defined, we now specify and
formalize the notion of segmentation consistencywith a hier-
archy.

3.2 Various Types of Consistency Between a
Segmentation and a Hierarchy

We consider segmentations whose (not necessarily con-
nected) segments are specified by set operations on the nodes
of T . The intersection between two nodes in a hierarchy is
either empty or one of the nodes. Therefore, we are left with
union and set difference. Complementing (with respect to I)
is allowed as well. By further restricting the particular oper-
ations and the particular node subsets on which they act, we
get different, non-traditional, ways for specifying segmen-
tation from a hierarchy. We denote these different ways as
(hierarchy to segmentation) consistencies.

Definition 1 Consistency. Let Y be a set of pixel subsets;
we denote by

•
Y ⊂ I the union of all elements of Y . We say

that:

(a) A segmentation s isa-consistentwithT if there is a subset
Ns ⊂ T such that each segment in s is a single node of
Ns .

(b) A segmentation s is b-consistent with T if there is a
subset Ns ⊂T such that each segment in s is a union of
some nodes of Ns .

(c) A segmentation s is c-consistentwith T if there is a sub-
set Ns ⊂T such that each segment in s, except at most
one, is a union of some nodes of Ns . One complement
segment, if it exists, is I\ •

Ns .
(d) A segmentation s is d-consistent with T if there is a

subset Ns ⊂ T such that each segment, except at most
one, is obtained by unions and/or differences of nodes of
Ns . One complement segment, if it exists, is I\ •

Ns .

Remark 1 Consistency of some type, with the subset Ns ,
implies consistency of a later, more general type, with the
same subset Ns .

Remark 2 We argue that these four consistency types sys-
tematically cover all possibilities. The first choice is whether
the nodes subset Ns should be limited to a hierarchy cut or
not. For the cut case (which is the popular choice in the lit-
erature), union is the only set operation that makes sense,
because set difference between disjoint nodes is empty and
the cut covers the full image, making the complement empty
as well. For the more general case, where the subset Ns is
not necessarily a cut, both the union and the set difference
are relevant. Unions without set difference is an important
special case that is simpler both conceptually and computa-
tionally. Set difference between two nodeswithout additional
unions does not seem to justify another consistency type (and
is included, of course, in d-consistency).

Figure3 illustrates the different consistencies. The a-
consistency is used in most hierarchy-based segmentation
algorithms, where some cut is chosen and all its leaves are
specified as segments; see [19, 24]. To the best of our knowl-
edge, the b-, c-, and d- consistencies were not used in the
context of hierarchical segmentation; see however [25] for
(c-consistency-like) node selection in a hierarchy of compo-
nents.

As specified above, the subset Ns , specified for a seg-
mentation s, is not necessarily unique; see Figs. 2 and 3c, d.
From this point forward in this paper, Ns is considered as
the minimal set so that all nodes in it are required to specify
s. As a result,

Property 2 If Ns ⊂T is a subset associated with some con-
sistency type a/b/c/d of a segmentation s, then

(a) s is a-consistent with T , if and only if Ns is a cut of T
such that each segment of s is a single node of Ns . The
subset Ns associated with a-consistency of s is unique.

(b) s is b-consistent with T , if and only if Ns is a cut of
T .

(c) s is c-consistent with T , if and only if Ns consists of
disjoint nodes of T .

(d) s is d-consistent with T , if and only if Ns consists of
(possibly overlapping) nodes of T .

Lemma 2 Every segmentation that is consistent with a hier-
archy in one of the types b/c/d is also consistent with the
hierarchy in the other two types.

Proof sketch: Following Remark 1, consistency of a segmen-
tation according to one type implies its consistency according
to the more general types. The converse is also true.

Consider a d-consistent segmentation s. Recall that every
node inT is a union of disjoint nodes of the initial partitionL.

A set difference of nested nodes is still a union of nodes of L
(which are a T -partition of this set difference); see Fig. 2a–c.
Hence, there is a subset Ns consisting of disjoint nodes. By
Property 2, s is also c-consistent.

123

Journal of Mathematical Imaging and Vision

A subset Ns consisting of disjoint nodes can be com-
pleted to a partition of I by adding some T -partition of
see Fig. 2d–e. Hence, there is another subset Ns that is a cut
of the hierarchy. By Property 2, s is also b-consistent. ��

Lemma 2 states the somewhat surprising result that b/c/d
consistencies are equivalent. Thus, the set of segmentations
consistent with T , using either b-, c-, or d- consistencies,
is common. Denote this set by S. Note that the set of
a-consistent segmentations, S1 ⊂ S, is smaller. The consis-
tencies may differ significantly, however, in the Ns subsets.
Let N a

s (resp. N b
s , N c

s , N d
s) be the smallest subset such

that s∈S is a- (resp. b-, c-, d-) consistent with this subset
The proof of the following lemma is straightforward.

Lemma 3 Let s ∈S , then |N b
s | ≥ |N c

s | ≥ |N d
s |. Further-

more, N b
s is unique, but not necessarily N c

s , N d
s .Moreover,

if s is a-consistent, then N a
s = N b

s .

Note that a segmentation is consistent with T (in some
consistency a/b/c/d), if and only if each of its segments is a
union of nodes from T ; that is, there is a T -partition for each
segment. For a segmentation s ∈S, we refer to the union of
the coarsest T -partitions of the segments of s (i.e., N b

s) as
the coarsest cut of the hierarchy for s. Lemma 3 implies that
for every s∈S there is a unique coarsest cut of the hierarchy.
The converse is not true. A cut of a hierarchy can be the
coarsest for several segmentations. For example, the same
cut is the coarsest for different segmentations (a) and (b) in
Fig. 3.

4 PreviousWork

The task considered here (and in [18, 26]) is to estimate
the limitation associated with hierarchy-based segmentation.
That is, to find the best s∈S, maximizing the qualityM(s),
that is consistent with the hierarchy for a limited size of Ns,

|Ns | ≤ k. This upper bound of the segmentation quality
is a function of the consistency type and k. We refer to the
segmentation maximizing the quality as a/b/c/d-optimal.

First, we emphasize again that this task is different from
the common evaluation of hierarchy-dependent segmenta-
tions, which provides precision recall curves and chooses
the best segmentation from them; see, e.g., [24, 27, 28].
This approach considers only the easily enumerable set of
segmentations associated with horizontal cuts, which are
parameterized by a single scalar parameter. Here, on the other
hand,wefind the best possible segmentation frommuchmore
general segmentation sets, and provide an upper bound on its
quality measure. The best segmentations from these larger
sets have often significantly better quality; see [28].

Only a few papers address such upper bounds. Most of
the upper bounds were derived for local measures. A local

measureM(s) of a segmentation s may be written as a sum
of functions defined over the components of the cut defining
s.

Local measures are considered in [18]. An elegant
dynamic programming algorithm provides upper bounds on
these measures for segmentations that are a-consistent with
a given BPT hierarchy. Unlike that work, we consider binary
segmentation, for which the a-consistent segmentation is
trivial. We extend this work by working with b,c, and d-
consistent segmentation and by optimizing each one for a
non-local measure: the Jaccard index.

The boundary-based Fb measure [29] was considered in
[19]. A method to evaluate the a-consistency performance of
a BPT hierarchy is proposed. The optimization was modeled
as a Linear Fractional Combinatorial Optimization problem
[30] and was solved for every possible size of a cut of a
hierarchy (from 1 till |L|). This process is computationally
expensive, and therefore is limited to moderate size hierar-
chies.

Extending those previous works, a hierarchy evaluation
framework was proposed [28]. It includes various types of
upper bounds corresponding to boundaries and regions, and
further extends the analysis to supervised, markers based,
segmentation. More recently, the study described in [31]
introduced some new measures that quantify the match
between hierarchy and ground truth. Both papers [28, 31]
address neither the exact optimization of the Jaccard index
nor the advanced (b, c, d) consistencies.

5 A Co-optimality Tool for Optimization

Given a quality measure M over a set S, we want to find
s ∈ S with the best score, M(s). Optimizing the quality
measures over all possible node subsetsmay be computation-
ally hard. One approach could be to optimize an equivalent
measure Q(s) instead. Measures are equivalent if they rank
objects identically. For example, the Jaccard index and the
object-based F-measure are equivalent [24] because they are
functionally related by a monotonically increasing function.

An equivalent measureQmay, however, be as difficult to
optimize. Recalling that we are interested only in the maxi-
mum ofM and not in the ranking of all subsets, we may turn
to a weaker, easier-to-optimize form of equivalence.

Definition 2 Let SM ⊂ S be the subset of the elements opti-
mizing M. We refer to measures M and Q as co-optimal
over S, if SM = SQ .

We now propose an optimization approach that is valid
for general finite sets S, including but not limited to hierar-
chical segmentations. Algorithm 1 uses a family of measures
{Qω }, ω ∈ [0, 1] over S. It works by iteratively alternat-
ing between assigning values to ω and optimizing Qω(s).

123

Journal of Mathematical Imaging and Vision

Fig. 2 A few examples illustrating how regions may be represented by
a hierarchy. We use the hierarchy described in Fig. 1. a Set difference
of nodes: N15\N11. The nodes covering the part of I that are included
in this set difference are shaded green. b A possible T -partition of

N15\N11 is shaded red. c The unique coarsest T -partition of N15\N11 ,
which is {N4, N14}, is shaded red. d A possible T -partition of the com-
plement I\(N4∪N14) is shaded blue. e The unique coarsest T -partition
of the complement I\(N4∪N14), which is {N11}, is shaded blue

Fig. 3 Examples of segmentations of various consistency types, all
consistent with the hierarchy described in Fig. 1, shown also in e. All
segmentations are specified by three nodes (although sometimes fewer
nodes suffice). Note that a segment is not necessarily connected. Except
for the a-consistency, the nodes in a cut of the hierarchy specifying each
segmentation are shaded with the colors of the segments in which they
are included. aAn a-consistent segmentation, into three segments, spec-
ified by a cut of the hierarchy: {N4, N11, N14}. b A segmentation that is
b-consistent with the same cut of the hierarchy as in (a). The nodes N4
and N14 are merged into one segment. cA segmentation, denoted s, that
is c-consistent with the subset Ns = {N1, N6, N9}. The burgundy seg-

ment is
•
Ns and the turquoise segment is the complement I\•

Ns . Note
that the T -partition of the burgundy segment is non-coarsest. Hence,
Ns �=N c

s and the specified cut of the hierarchy is non-coarsest for s.
The minimal number of disjoint nodes required to cover the turquoise
segment is four, while it is only two for the burgundy segment; hence,
N c

s = {N6, N11}. d The same segmentation s is d-consistent with the
subset Ns = {N4, N6, N14}. The turquoise segment is specified by

N4 ∪ {N14\N6}, the burgundy segment is the rest of the image: I\•
Ns .

The specified cut of the hierarchy is the coarsest for s. Note that repre-
senting this segment with N c

s ={N6, N11}, as specified above, is valid
and more node-economical

123

Journal of Mathematical Imaging and Vision

Algorithm 1: Generic optimization scheme
Data: A quality measure M, a set S, and a family of measures

{Qω }
Data: An initial ω0 ∈ [0, 1]
Result: An element sω

1 ω = M(argmax
s ∈S

Qω
0
(s))

2 do
3 sω = argmax

s ∈S
Qω (s)

4 ω0 = ω

5 ω = M(sω)

6 while ω > ω0

7 return sω

As Theorem 1 below shows, under some conditions on the
family {Qω }, the algorithm returns the segmentation that
maximizes the quality measure M, and the corresponding
maximal value ̂M.

Theorem 1 Let M be a quality measure over a finite set
S, receiving its values in [0, 1]. Let ̂M be the (unknown)
maximal value ofM over S. Let {Qω }, ω∈[0, 1] be a family
of measures over S, satisfying the following conditions:

1. Qω= ̂M and M are co-optimal measures over S.
2. For 0 ≤ ω < ̂M and s′ ∈ S, if there is s ∈

SM s.t.Qω(s) ≤ Qω(s′), then M(s′) > ω.

Then Algorithm 1 returns s ∈ SM after a finite number of
iterations.

Proof Suppose that ω0 ∈ [0, ̂M]. Then the iterative scheme
in each iteration finds sω ∈SQω

and specifies a new value for
ω to be M(sω). Condition 2 is fulfilled trivially for s′ = sω
since sω maximizes Qω . Hence, ω < M(sω); i.e., ω strictly
increases from iteration to iteration while ω < ̂M . S is
finite, hence, ω reaches ̂M after a finite number of iterations.
When that happens, ŝω= ̂M ∈ SM since, by condition 1,
Qω= ̂M and M are co-optimal. The iterations stop when ω

no longer increases. Hence, to prove the theorem, we show
that ω does not change after it reaches ̂M.

�⇒�⇒�⇒ Suppose that ω = ̂M. Since ŝω= ̂M maximizes both
M, Qω= ̂M , we have ̂M = M(sω) ⇒ ω = ̂M =
M(sω).

⇐�⇐�⇐� Conversely, suppose that ω = M(sω), i.e., ω does not
change at line 5 of the algorithm. All values of ω spec-
ified in scheme 1 are values of M; hence, ω ≤ ̂M. If
ω< ̂M, then by condition 2 ω<M(sω), which contra-
dicts the current assumption. Hence, ω = ̂M.

Suppose now that the condition required above, ω0 ∈
[0, ̂M], is not satisfied (i.e., ω0 > ̂M). Then, line 1 returns
some ω which must be lower than the maximal ̂M. Then the

algorithm proceeds and reaches the optimum according to
the proof above. ��

Given a quality measure 0 ≤ M ≤ 1 over S, we refer
to a family {Qω } ω ∈ [0, 1] of measures over S, as a family
of auxiliary measures for M if {Qω } contains at least one
measure Q

ω′ that is co-optimal with M over S, and there
is some iterative process that finds Q

ω′ from {Qω }. We refer
to Q

ω′ as a co-optimal auxiliary measure, and we refer to
an algorithm that can optimize every member of {Qω } as an
auxiliary algorithm.

In scheme 1, the auxiliary algorithm is written in the most
general form: argmax Qω . In the next section, we provide
a family of auxiliary measures and corresponding auxiliary
algorithms, suitable for optimizing the Jaccard index, for dif-
ferent consistencies and constraints of the node set size.

6 Optimizing the Jaccard Index

After setting the framework and developing the necessary
new optimization tool, we shall now turn to the main goal
of this paper: Finding a tight upper bound on the obtainable
Jaccard index.

6.1 The Jaccard Index

The Jaccard index (or the intersection over union measure)
is a popular segmentation quality measure, applicable to a
simple segmentation into two parts: foreground (or object)
and background.

Let (BGT ,FGT) and (Bs,Fs) be two foreground-backgro
und partitions corresponding to the ground truth and a seg-
mentation s∈S . The Jaccard index J is given by:

J (s) = |FGT ∩ Fs |
|FGT ∪ Fs | (1)

Given a hierarchy, we shall find, for each consistency and
node subset size |Ns |, the segmentation that maximizes the
Jaccard index. This segmentation also maximizes the object-
based F-measure, as the two measures are equivalent [24].

For two-part segmentation, only one segmentation is a-
consistent with a BPT hierarchy: the two children of the root.
We ignore this trivial case in the following discussion.

6.2 Segmentation Dimensions

Let S2⊂S be the subset of all possible 2-segment segmenta-
tions, consistent with the hierarchy. Denote the areas of the
ground truth parts by B=|BGT | , F =|FGT |. Let Xs be one
segment of a segmentation s∈S2 . Considering this segment
as foreground, denote its areas inside the ground truth’s parts

123

Journal of Mathematical Imaging and Vision

by (bs =|Xs ∩ BGT | , fs =|Xs ∩ FGT |). The Jaccard index is
then

J (s) = |FGT ∩ Xs |
|FGT ∪ Xs | = fs

F + bs
= �(bs, fs). (2)

Alternatively, the foreground can be specified by the com-
plementary segment I\Xs . The corresponding areas inside
the ground truth’s parts are (B − bs, F − fs). The Jaccard
index associated with this foreground is

J c(s) = �(B − bs, F − fs) = F − fs
F + B − bs

. (3)

Optimizing J (s) for b-consistency provides a cut in tree
Ns . Both Fs and Bs are unions of nodes of this cut. The
c/d consistencies allow one segment to be specified as the
complement of the other. The hierarchy may match better
either FGT or BGT . Thus, we optimize both J (s) and J c(s)
(for the same size of Ns) and choose the better result.

The values (bs, fs) are the main optimization variables.
We refer to them as segmentation dimensions.

6.3 Applying Co-optimality for Optimizing J(s)

6.3.1 Geometrical Interpretation

Our goal is to find

(̂J , ŝ) = (max , argmax)
s ∈S2

J (s). (4)

Akey idea is to observe that the J (s) valuemay be interpreted
geometrically using the graph of segmentation dimensions
(b, f). Selecting the segment Xs , every segmentation s∈S2

corresponds to a point (bs, fs) inside the rectangle (0, B) ×
(0, F). J (s) is tan(αs), where αs is the angle between the b
axis and the line connecting the point (bs , fs)with the point (-
F, 0) ; see Fig. 4. The geometry implies that tan(αs) ∈ [0, 1],
consistently with tan(αs) = J (s) ∈ [0, 1].

6.3.2 A Family of Auxiliary Measures

For every ω ∈ [0, 1], let

Pω(s) = fs − ω · bs (5)

be a measure over S2. Note that, geometrically, Pω(s) is the
oblique projection at the arctan(ω) angle of point (bs, fs)
onto the f axis. The following two observations imply that
J (s) and the projection (at arctan(̂J) angle) P̂

J
(s) are co-

optimal measures.

1. J (s) and PJ (s)(s) are equivalent measures.

2. PJ (s)(s) and P̂
J
(s) are co-optimal measures.

The first observation is clear: ranking the elements of S2

by J (s) = tan(αs) is equivalent to ranking them by their
projection at angle αs, i.e., by PJ (s)(s); see Fig. 4.

The second observation states that there is a constant angle
arctan(ω) with ω = ̂J (not depending on s), such that the
projection Pω(s) at this angle and PJ (s)(s) are co-optimal. By
the first observation, PJ (s)(s) is maximized by ŝ. Every non-
optimal segmentation corresponds to a point below the line
[(−F, 0)−(b̂s, f̂s)] and its constant angle projection satisfies
Pω(s) < Pω (̂s). Pω(s) is maximized only by points lying on
this line, as is also the case with PJ (s)(s).

Thanks to these two observations, the family {Pω} is a
family of auxiliary measures for the Jaccard index. The opti-
mization process (Algorithm 1) maximizes this auxiliary
measure in every iteration:

(̂Pω , ŝω) = (max , argmax)
s ∈S2

Pω(s) (6)

Note that Pω(s) is linear in (bs, fs), which simplifies its
maximization. To use scheme 1 to find ŝ (and ̂J), the second
condition of Theorem 1, which guarantees that ω strictly
increases at every iteration while ω< ̂J , must be met as well.

Figure5 geometrically proves this property. Indeed, let
ω ∈ [0, ̂J) and ŝ, s′ ∈S2 such that Pω (̂s)≤ Pω(s′). Observe
that the angle αs′ must be larger than the projection angle of
Pω , i.e., arctan(ω). The detailed proof is left to the reader.
Therefore, by Theorem 1

Theorem 2 ForM= J , {Qω }={Pω }, and ω∈[0, 1], scheme
1 (starting from ω0 ∈ [0, ̂J]) returns the best segmentation
ŝ after a finite number of iterations.

Remark 3 Optimizing J c(s) is similarly done.

6.4 Optimizing J(s) for Hierarchical Segmentation

Using scheme 1 reduces the optimization of J (s) to itera-
tions where auxiliary measures are optimized. The auxiliary
algorithm provides a foreground-background segmentation
s ∈ S2 whose dimensions (bs, fs) maximize the auxiliary
measure corresponding to the current iteration. In this work,
we use the hierarchy for this optimization, and the auxiliary
algorithm returns the best segmentation s∈S2 together with
the corresponding subset Ns ⊂ T , which both depend on
the required consistency of s with T .

6.4.1 SpecifyingN s and the segmentation s for Various
Consistencies

Here, we specify the relation between the hierarchy and the
segmentation for each of the different consistencies consid-
ered in this paper.

123

Journal of Mathematical Imaging and Vision

Fig. 4 A geometrical interpretation: the Jaccard index J (s) is the tangent of the angle αs

Fig. 5 An illustration showing that ω strictly increases from iteration to iteration, while ω < ̂J .

a-consistency: Trivial and not considered here, as discussed
above.
b-consistency: Ns is a partition of I . A segmentation s is
specified by assigning some nodes of Ns to the foreground
Fs, and the rest to the background Bs .

c-consistency: The nodes of Ns are disjoint, but their union
is not the full image. The segments of s are

•
Ns (the union

of the regions corresponding to the nodes in Ns) and the
complement I\ •

Ns .

d-consistency: Not all nodes of Ns are necessarily disjoint,
and their union is not necessarily the full image. The seg-
ments of s are specified as follows:

Let N ⊂ T be a subset of nodes. Because the nodes
belong to a hierarchy, each pair of nodes is either disjoint or
nested. Denote by K0

N ⊂N the subset of disjoint nodes that
are not nested in any other node fromN .Recursively, denote
byKi

N ⊂N the subset of disjoint nodes that are not nested in

any other node fromN \{∪i−1
j=0 K j

N }.We refer to each Ki
N as

a layer of N . Note that
•
Ki

N ⊂ •
K j

N ∀ i > j (each subsequent

layer is nested in any previous layer); hence,
•
K0

N = •
N . Let

i NN , be the index of the layer in which the node N lies. Note
that the set of layers is a partition of N , i.e., every node
N ∈ N is associated with exactly one index i NN . Note that
i NN is the number of nodes in N in which N is nested. Let
imax
N be the largest index corresponding to a nonempty layer.
The segmentation is specified from

DN =
{

Di
N | Di

N = •
K2·i

N \•
K2·i+1

N ,

0 ≤ i ≤ �∗� i
max
N

2

}

(7)

123

Journal of Mathematical Imaging and Vision

Each Di
N is the set difference of the layers 2 · i and 2 ·

i + 1. Since each subsequent layer is nested in any previous
layer, all Di

N are disjoint. The segments of s are
•
DNs

and the

complement I\•
DNs

; see Fig. 6.

6.4.2 Calculation of Segmentation Dimensions for Various
Consistencies

To calculate the segmentation dimensions (bs , fs) efficiently,
we use a tree data structure to represent the tree hierarchy.
For each node N of the tree, we store the area of the node
inside the ground truth’s parts (bN =|N ∩ BGT | , f N =|N ∩
FGT |). Similarly to the segmentation dimensions, specified
above, we refer to these values as node dimensions. Note
that the dimensions of a union of disjoint nodes are equal to
the sumof the dimensions of all nodes from the union, and the
dimensions of a set difference of two nested nodes are equal
to the difference of their dimensions. Given a segmentation
s = (Xs , I\Xs) ∈ S2

, the calculation of its dimensions
(bs, fs) (which are the dimensions of the segment Xs) from
the dimensions of the nodes of a subset Ns depends on the
required consistency of s with Ns :

b-consistency: (Xs =Fs). (bs, fs) are calculated by the
sum of the dimensions of the nodes assigned to Fs .

c-consistency: (Xs = •
Ns). (bs, fs) are calculated by the

sum of the dimensions of Ns .

d-consistency: (Xs = •
DNs

). By the observations above
about the sums and difference of dimensions and Equation
(7), the dimensions (bs, fs) are calculated by the sum of
the dimensions of all nodes from Ns , each multiplied by
an appropriate sign: −1 to the power of i NNs

. More formally,
we can write (bs, fs) as the expression below. Note that for
the b/c consistencies, Ns consists of a single layer: i NNs

=
0 ∀N ∈Ns . Therefore, this expression is valid for all (b/c/d)
consistencies.

A unified expression of segmentation dimensions:

bs =
(

∑

N∈Ns :
Ns specifies Xs

bN · (−1)
i
N
Ns

) (8a)

fs =
(

∑

N∈Ns :
Ns specifies Xs

f N · (−1)
i
N
Ns

)

(8b)

Remark 4 Since for a segmentation s ∈S2 the subset Ns is
not necessarily unique, we could ask whether the expression
(8) is well-defined, i.e., whether we get the same area (bs =
|Xs ∩ BGT | , fs = |Xs ∩ FGT |) for different subsets Ns . The
answer to this question is positive, due to the properties of

node dimensions for the union of disjoint nodes and for the
set difference of nested nodes.

6.4.3 Auxiliary Measures Additivity

A particularly useful property of the auxiliary measures is
their additivity. Consider some attribute defined on every
node in the tree. If the attribute of each non-leaf node is
the sum of the attributes of the node’s children, then we say
that this attribute is additive.

For a specific projection Pω , the two dimensions of a node

may be merged into one attribute, A
Pω
(N) = f N −ω ·bN . By

inserting (8a) and (8b) into Pω(s) = fs − ω · bs (5), we get
a closed form, simplified linear expression for the auxiliary
measure of the segmentation s.Wemay refer to this measure,
alternatively, as the benefit of the corresponding node setNs :

Pω(s) = B[Ns] =
∑

N∈Ns :
Ns specifies Xs

A
Pω
(N) · (−1)

i
N
Ns (9)

Note that each non-leaf node N is the union of its disjoint
children; hence, the dimensions (bN

, f N
) are the sum of the

dimensions of the children of N ,which implies the additivity
for A

Pω
(N). The additivity property holds for all projections.

For simplification, we refer to the attribute of N as A(N).
The auxiliary algorithms search for the subset of nodes

maximizing the benefit (9). These optimization tasks are per-
formed under the constraint: |Ns | ≤ k.

While (9) provides a general expression for all consisten-
cies, in practice we use the following consistency-dependent
expressions, which are equivalent and more explicit.

Property 3 (Equivalent benefit expressions)

b-consistency: N is a partition of I and
B[N] = ∑

N∈N :
A(N) > 0

A(N)

c-consistency: N consists of disjoint nodes and B[N] =
∑

N∈N
A(N)

d-consistency: B[N] = ∑

N∈N
A(N) · (−1)

i
N
N

Here and below, we prefer to use the more general N (over
Ns), when the discussion applies to general sets of nodes
from the tree.

The proposed auxiliary algorithms (described below) are
not restricted to the auxiliary measures discussed above; they
would work for any additive measure Q. The additivity is
crucial, because otherwise the score Q(s) is ill-defined, i.e.,

123

Journal of Mathematical Imaging and Vision

Fig. 6 Specification of a segmentation that is d-consistent with the
subset N = {N4, N7, N10, N14} consisting of nodes from the hierar-

chy described in Fig. 1. The segments are
•
DN and the complement

I\•DN corresponds to the index imax
N = 2. The layers are as follows:

a K0

N = {N4, N14} b K1

N = {N10} c K2

N = {N7}. The set differences
between subsequent layers are d D0

N =K0

N\K1

N e D1

N =K2

N\∅. The

final segmentation is specified by f
•
DN =D0

N ∪D1

N ; see Sect. 6.4.1

it may result in different score values for different subsetsNs

specifying the same s∈S2
.

6.4.4 Using the Tree Structure for Maximizing the Auxiliary
Measures

The maximization of the benefit (property 3) results in a sub-
set of nodes subject to the consistency constraints, with the
maximal benefit in T .The key observation in thismaximiza-
tion is that a subset with the maximal benefit in a subtree T N

can be obtained from subsets with the maximal benefit in the
subtrees of children of N . That is, we can use the recursive
structure of the tree T to maximize the benefit.

Let N ′ ⊂ N ⊂ T . We say that N ′ is best if it has the
highest benefit relative to every other subset of N with the
same number of nodes. Depending on the context, N ′ should
also have the properties associated with the consistency; i.e.,
being a partition (for b-consistency) or belong to a single
layer (c-consistency). Interestingly, we also need the notion
of worst subsets. N ′ is worst if it has the minimal benefit
relative to other subsets of N of the same size.

Remark 5 Note that within the same consistency type, there
can be several best/worst subsets in N , having the same
benefit but not necessarily of the same size.

Thus, a subset N maximizes the benefit (property 3), if
and only ifN is a best subset in T . Below, by referring toN
as best without specifying in which subset of T the subset
N is best, we mean that N is best in the entire T .

The following claim readily follows from the additivity
properties of the dimensions (Sect. 6.4.3).

Lemma 4 (a) LetN1andN2 be subsets of nodes, such that
•
N1

and
•
N2 are disjoint, then: B[N1∪N2]= B[N1]+B[N2]

(b) Let N be a node and N be a subset of nodes, such that
•
N ⊂ N then: B[{N } ∪ N]= A(N) − B[N]
Lemma 4(b) applies only to the d-consistency, in the case

where
•
N and N are not disjoint. The set of nodes {N } ∪ N

corresponds to a segment that is the set difference between
N and the segment specified byN , which leads to the claim
on the benefit.

The children of a non-leaf node are disjoint and nested in
the node, which implies the following claim.

Lemma 5 Let N ∈T be a non-leaf node:N =Nr ∪Nl ,where
Nr (right), Nl (left) are its children. Let N Nbe a subset of T N

and let N Nr, N Nl be (possibly empty) subsets of N N from
T Nr and T Nl respectively. Then:

(a) If N /∈ N N then: N N is best/worst in T N ⇒
N Nr, N Nl are best/worst in T Nr, T Nl

(b) If N ∈ N N then: N N is best/worst in T N ⇒
N Nr, N Nl are worst/best in T Nr, T Nl

Proof Assume the opposite about any N Nr , N Nl . Lemma 4
implies that N N can be improved/worsened, which contra-
dicts N N being best/worst. ��

Lemma5 specifies the necessary condition for a best/worst
subset in T N. With its help, the search for the best subsets in
T N can be significantly reduced, making this search feasi-
ble. Namely, for finding a best subset in T N, it is enough to
examine only those subsets that are best/worst in the subtrees

123

Journal of Mathematical Imaging and Vision

of the children of N . The following (trivial) sufficient con-
dition for best/worst subset in T N is to examine all possible
candidates.

Lemma 6 Let N ∈T be a non-leaf node. The subsetN ⊂T N

having the largest/smallest benefit from the following is a
best/worst subset in T N :

(a) The union of best/worst subsets in T Nr and inT Nl,having
the maximal/minimal benefit among all such unions of
size |N |.

(b) N itself and the union of worst/best subsets in T Nr and
in T Nl, having the minimal/maximal benefit among all
such unions of size |N | − 1.

We can now describe the auxiliary algorithms. From a
high-level point of view, they work as follows: At the outset
of the run, each auxiliary algorithm specifies each leaf of
T as both the best and the worst subset (of size 1) in the
trivial subtree of the leaf. Then, each auxiliary algorithm
visits all non-leaf nodes of T once, in a post-order of tree
traversal which guarantees visiting every node after visiting
its children. When visiting a node N , each algorithm finds
the best/worst subsets in T N using Lemma 6.

6.5 The Auxiliary Algorithms

6.5.1 Preliminaries

Generally, the algorithm works as follows: Starting from the
hierarchy leaves, the algorithms calculates the maximal aux-
iliary quality measure for every node and for every budget
(up to k) in its subtree. When reaching the root, the deci-
sion about the particular nodes used for the optimal auxiliary
measure is already encoded in the hierarchy nodes and is then
explicitly extracted. Like [18], it is a dynamic programming
algorithm.

The following variables and notations are used within the
algorithms:

1. N1, N2, N3, . . . , N|T | is the set of all nodes, ordered in
a post-order of tree traversal.

2. Nl (left) and Nr (right) are the children of a non-leaf
node N .

3. A(N) is an additive attribute of a node N . Recall that
A(N) = A(Nr) + A(Nl).

4. k ∈N is a constraint specifying the maximal size of the
best subset (1≤k≤|L|).

5. t(N) = min(k, |LN |) is the maximal allowed size of a
best/worst subset in T N, which is limited by k or by the
number of leaves in T N.

6. r is the number of nodes in the node subset associated
with the right child of N . It depends on N and is opti-

mized by the algorithms. The range of r values is denoted
(rmin , rmax).

7. HN+(i) /HN−(i) i = 1, . . . , t(N) are best/worst subsets
of size i in T N. The best subset HRoot+ [k], denoted H,

is the output of the auxiliary algorithm, maximizing the
benefit; see however remark 7. These subsets are used
to describe the algorithm, but are not variables of the
algorithm.

8. BN+ [i] / BN− [i] i = 1 . . . t(N) are vector variables
stored in node N , holding the benefits ofHN+(i) /HN−(i).

9. RN+ [i] / RN− [i] i = 1 . . . t(N) are vector variables
stored in node N , holding the number of those nodes
in HN+(i) /HN−(i), which belong to T Nr (the subtree of
Nr). The number of nodes in T Nl follows.

10. Q is queue data structure, used to obtain H from the
vectors RN+ / RN− .

To find the best subset consisting of a single layer (as is
the case for b/c consistency), we need to examine only the
corresponding best subsets and disregard the worst subsets.
In this case, we simplify the notation and use BN , RN ,HN

instead of BN+ , RN+ ,HN+ .

Remark 6 Different optimal subsets for different k are asso-
ciated with different ω parameter values. Therefore, the set
of subsets {HRoot (i); i < k} obtained with the best subset
HRoot (k) are not optimal as well.

6.5.2 b-consistency

The auxiliary algorithm for b-consistency is formally given
in Algorithm 2.

A best subset (for b-consistency) (def. 3),HN(i), must be
a T -partition of

•
T N = N . Hence, N ∈ HN(i), if and only

if i = 1. Thus, BN [1] is the benefit of the node N itself. To
calculate BN [i] for i > 1, we need only the condition (a)
of Lemma 6 , which implies that BN [i] is the maximum of
BNr [r]+ BNl [i − r], over all possible values of r . This part
is carried out in lines 1–5 of Algorithm 2.

The best subsetH = HRoot [k] and its subset of nodeswith
a positive attribute, denoted G, are specified from the vectors
RN. The number of nodes in H that belong to the subtree
of the root’s right child is RRoot [k] (recall that t(Root) =
k), and their number in the subtree of the left child is k −
RRoot [k]. The same consideration is applied recursively to
every node N , stopping when RN [i] is equal to zero. This
part is carried out in lines 6–16 of Algorithm 2.

Notes:

1. The range (rmin , rmax) is calculated as follows: i is the
number of nodes in the subset associated with N . The
number of nodes, r , associated with the right child should
satisfy 1 ≤ r ≤ t(Nr). (Note that the lower limit is 1 and

123

Journal of Mathematical Imaging and Vision

Algorithm 2: Auxiliary algorithm for b-consistency

1 for N = N1, N2, N3, . . . , N|T | do // See note 2, Sec. 6.5.2

2 (BN , RN)[1] = (max
(

A(N) , 0
)

, 0)

3 for i = 2, . . . , t(N) do // See note 1, Sec. 6.5.2
4 (rmin , rmax) = (max(1 , i − t(Nl)) , min(t(Nr) , i − 1))

5 (BN , RN)[i] = (max , argmax)
rmin ≤ r ≤ rmax

(BNr [r] + BNl [i − r])

6 (H, G) = (∅, ∅)

7 Q.Enqueue(Root , t(Root))

8 do
9 (N , i) = Q.Dequeue()

10 if (RN [i] == 0) then
11 if (A(N) > 0) then G ← N H ← N
12 else
13 Q.Enqueue(Nr , RN [i])
14 Q.Enqueue(Nl , i − RN [i])
15 while Q is not empty
16 return (H, G)

not 0, because for b-consistency Ns is a cut.) The number
of nodes i −r associated with the left child should satisfy
1 ≤ i − r ≤ t(Nl), which implies that r should satisfy
i − t(Nl) ≤ r ≤ i − 1. Therefore r should be in the range
(rmin , rmax) = (max(1 , i − t(Nl)) , min(t(Nr) , i −
1)).

2. H is a cut of T (Sect. 2.1), which implies that the deepest
node is no deeper than |H|−1. Hence, Algorithm 2 can be
accelerated by processing only those nodes whose depth
is less than k.

6.5.3 c-consistency

A similar auxiliary algorithm for c-consistency is given in
Algorithm 3.

Note that a c-best subsetHN(i) consists of disjoint nodes,
but their union is not necessarily N . For example, forHN(1),
there are three possibilities: the best node from T Nr, the best
node from T Nl, and N itself, which are marked by ad-hoc
values of 1, 0, and −1, respectively, in RN [1].
Notes:

1. The calculation of (rmin , rmax) is as above, but the
ranges of both children start from 0.

2. For coding convenience, we added a cell BN [0], which
always takes the value 0.

3. The algorithm should preferably select only nodes with
a positive attribute. If the number of nodes with a posi-
tive attribute (in one layer) is less than k, then nodes with
a non-positive attribute are selected as well. In this case,
however, there is a subset with fewer nodes andwith a big-
ger benefit, which can be specified from (BRoot , RRoot);
see Remark 7.

6.5.4 d-consistency

The auxiliary algorithm for d-consistency is formally given
in Algorithm 4.

Unlike the other consistencies, a d-best subsetmay contain
nested nodes, which requires additional variables. Unlike the
algorithms for the other consistencies, here we use all the
vectors BN+ , BN− , RN+ , and RN− , including the additional cells
BN+ [0], BN− [0], RN+ [0] and RN− [0] which always take the
value 0. By Lemma 6, and using the notations introduced in
Sect. 6.5.1, HN+(i) is the subset having the maximal benefit

from C1+
i =HNr+ (r) ∪ HNl+ (i−r) and C2+

i ={N } ∪ HNr− (r) ∪
HNl− (i−1−r), over all possible values of r .

For gettingHN−(i), the subset having the minimal benefit,
we use similar expressions; see Algorithm 4. It may happen
that the calculation of BN+ [i] using BN− [i −1] includes A(N)

twice. To avoid this problem, we calculate BN+ [i], BN− [i] in
two passes through all values of i , the second pass being in
decreasing order of i (see lines 6–18 in Algorithm. 4).

The d-best subset H is specified from RN as before.
However, since both a node N and nodes that are nested
in it, may be included in H, we added an indicator
BelongN+ [i] / BelongN− [i] i = 1, . . . , t(N) (Boolean vec-
tor variables stored in a node N), indicating whether N
belongs toHN+(i) /HN−(i). In addition, for every node N ∈H,

the index i NH (Sect. 6.4.1) is calculated, soAlgorithm4 returns
a subset ˜H, which is a subset of the pairs (N , i NH).

Remark 7 H is not necessarily of minimal size, and in
extreme case, when the number of nodes with positive
attribute is too small, it does not provide the best benefit.
(See Remark 5 and Note 3 in Sect. 6.5.3). The best subset
with the best benefit and minimal size is always associated
with the maximal value in BRoot. It can be specified by run-

123

Journal of Mathematical Imaging and Vision

Algorithm 3: Auxiliary algorithm for c-consistency

1 for N = N1, N2, N3, . . . , N|T | do
2 BN [0] = 0
3 if (N is not a lea f) then // Skip the leaves
4 for i = 1, . . . , t(N) do // See note 1, Sec. 6.5.3
5 (rmin , rmax) = (max(0 , i − t(Nl)) , min(t(Nr) , i))

6 (BN , RN)[i] = (max , argmax)
rmin ≤ r ≤ rmax

(BNr [r] + BNl [i − r])

7 if (N is a lea f or A(N) ≥ BN [1]) then
// If N is not a leaf, BN[1] is already initialized

8 (BN , RN)[1] = (A(N) , −1)

9 H = ∅

10 Q.Enqueue(Root , t(Root))

11 do
12 (N , i) = Q.Dequeue()
13 if (RN [i] == −1) then H ← N else
14 if (RN [i] > 0) then Q.Enqueue(Nr , RN [i]) if (RN [i] < i) then Q.Enqueue(Nl , i − RN [i])
15 while Q is not empty
16 return H

Algorithm 4: Auxiliary algorithm for d-consistency

1 for N = N1, N2, N3, . . . , N|T | do
2 (BN+ , BN− , RN+ , RN−)[0] = (0 , 0 , 0 , 0)

3 if (N is a lea f) then
4 (BN+ , RN+ , BelongN+ , BN− , RN− , BelongN−)[1] = (A(N) , 0 , true , A(N) , 0 , true)

5 else
6 for i = 1, . . . , t(N) do // The first pass
7 (rmin , rmax) = (max(0 , i − t(Nl)) , min(t(Nr) , i))

8 (BN− , RN−)[i] = (min , argmin)
rmin ≤ r ≤ rmax

(BNr− [r] + BNl− [i − r])
9 (BN+ , RN+)[i] = (max , argmax)

rmin ≤ r ≤ rmax

(BNr+ [r] + BNl+ [i − r])

10 if (N is not the Root) then
11 for i = t(N), . . . , 1 do // The second pass in decreasing order
12 if (A(N) − BN+ [i − 1] ≥ BN− [i]) then BelongN− [i] = f alse else

(BN− , RN− , BelongN−)[i] = (A(N) − BN+ [i − 1] , RN+ [i − 1] , true) if (A(N) − BN− [i − 1] ≤ BN+ [i]) then
BelongN+ [i] = f alse else (BN+ , RN+ , BelongN+)[i] = (A(N) − BN− [i − 1] , RN− [i − 1] , true)

13 else
14 if (A(Root) ≤ BRoot+ [1]) then BelongRoot+ [1] = f alse else (BRoot+ , RRoot+ , BelongRoot+)[1] = (A(Root) , 0 , true)

15 ˜H = ∅

16 Q.Enqueue(Root , t(Root) , 0)

17 do
18 (N , i , i NH) = Q.Dequeue()

19 if (i NH is even) then (belong , r) = (BelongN+ [i] , RN+ [i]) else (belong , r) = (BelongN− [i] , RN− [i]) if (belong) then
˜H ← (N , i NH++) ; // Post-Increment of i NH

20 if (r > 0) then Q.Enqueue(Nr , r , i NH) if (r + belong < i) then Q.Enqueue(Nl , i − belong − r , i NH) ;
// belong : true = 1 , false = 0

21 while Q is not empty
22 return ˜H

123

Journal of Mathematical Imaging and Vision

ning the queue starting from Q.Enqueue(Root , k′) (k′
replaces t(Root)), where k′ is the minimal index such that
the value BRoot [k′] is the maximal in BRoot.

6.5.5 Time Complexity

For our auxiliary algorithms, the vector variable size is
bounded by k. The vector variables of a node N may be
calculated in O(min(k, |LNr |)·min(k, |LNl |)) time. For the
common case, where k << |L|, this amounts to O(k2), and
is independent of the tree size. The algorithm linearly scans
all the nodes and requires O(|L| · (min(k, log |L|))2) time.
This includes the time required to get the best subset from
the node vectors.

The full algorithm starts by calculating the node dimen-
sions (bN

, f N
). First, these dimensions are calculated for the

leaves of T in O(|I |) time, and then propagated to the rest
of the nodes in linear time. Overall, this calculation takes
O(|I | + |T |) = O(|I | + |L|) time.

Thus, the total time complexity is O(|I | + n · |L| ·
(

min(k, log |L|))2), wheren is the number of iterationsmade
by scheme 1. The straightforward (and least tight) upper
bound on n is the number of segmentations s∈S with differ-
ent scoresM(s) (themeasuremaximized in scheme 1), since
M(s) strictly increases from iteration to iteration (Sect. 5).
However, in practice, we found that only a few iterations are
required (no more than five).

6.5.6 The Best Segmentation Specified by a Subset of
Unlimited Size

Sometimes, we are interested in a segmentation s∈S achiev-
ing the best scoreM(s), regardless of the size of a subsetNs .

Then, the auxiliary algorithm becomes linear, and is signifi-
cantly simpler. Lemma 2 implies that in this case, optimizing
M yields s ∈S with the same score M(s), for each of the
consistency types b/c/d.By simply discarding the node subset
size parts, the b-consistency algorithm can be simplified to be
particularly efficient. Algorithm 5 provides the full descrip-
tion.

In every node N , we store only the maximal benefit over
all b-best subsets in T N, regardless of their sizes. That is, we
need only a scalar variable pN, storing the maximal value
in the vector BN in Algorithm 2. After the values pN are
calculated for all nodes, the b-best subset H is found as the
optimal cut of T . In this case, H has the minimal size (see
Remark 7), i.e., there is no b-best subset in T , that has the
same benefit, while being smaller.

Processing of each node is in O(1); hence, the time com-
plexity of this algorithm is O(|T |) = O(|L|). Note that
Algorithm 5 returns two subsets: H and G ⊂ H (the nodes
with a positive attribute).

Algorithm 5: Auxiliary algorithm for finding the best
segmentation specified by an unlimited subset

1 for N = N1, N2, N3, . . . , N|T | do
2 if (N is a lea f) then
3 pN = max(A(N) , 0)

4 else pN = pNr + pNl

5 (H, G) = (∅, ∅)

6 Q.Enqueue(Root)
7 do
8 N = Q.Dequeue()
9 if (max(A(N) , 0) ≥ pN) then

10 if (A(N) > 0) then G ← N H ← N
11 else
12 Q.Enqueue(Nr)

13 Q.Enqueue(Nl)

14 while Q is not empty
15 return (H, G)

6.5.7 Auxiliary Algorithms’ Correctness

Theorem 3 The auxiliary algorithms optimize the auxiliary
measure (9) subject to the corresponding consistency, and
the constraint on the maximal number of nodes in Ns .

As each of the auxiliary algorithms recursively applies
Lemma 6, the proof readily follows by induction on Height
(T).

6.5.8 A Note on the Implementation

Each of the auxiliary algorithms calculates the benefit of node
subsets by performing arithmetic operations with natural
numbers bN

, f N and the real number ω. To avoid numeri-
cal error in the accumulation, we use integer arithmetic. We
represent the benefitwith two natural numbers, each ofwhich
is a linear combination of bN and f N values, with ±1 coeffi-
cients. To compare the benefits of different subsets, we need
only a single operation involving ω.

7 Experiments

The contribution of this paper is mostly theoretical, in pro-
viding, for the first time, effective algorithms for bounding
the obtainable Jaccard index quality of a segmentation. These
bounds, depending on the hierarchy, the consistency, and the
number of nodes, are experimentally illustrated below.

To the best of our knowledge, the optimization of the Jac-
card indexwas not considered before,which prevents us from
comparing our empirical results with prior work.

For the experiments, we consider four BPT hierarchies.
The first, denoted geometric tree, is image independent and
serves as a baseline. The other three hierarchies are created as

123

Journal of Mathematical Imaging and Vision

Fig. 7 Hierarchy consistent
optimal segmentations for the
HED hierarchy. a original image
(a cat image from the Weizmann
database), b ground truth, c the
saliency map for the HED
hierarchy. The segmentations
are calculated for the three b-,
c-, and d-consistencies and for
several numbers of nodes. Note
that for a low number of nodes
(e.g., 5) the b-consistent
segmentation g is of lower
quality than the other
segmentations (h, i). Note also
that the c-consistent
segmentation h is slightly worse
than the d-consistent one (i).
The differences decrease when
the number of nodes increases

123

Journal of Mathematical Imaging and Vision

Fig. 8 An illustration of the maximal Jaccard index, obtainable for
a given number of nodes. Every one of the plots correspond to one
of the segmentation-hierarchy consistencies. The curves correspond to
averages over all images in the Weizmann DB, to the four hierarchies.
Filtered hierarchies are used. The use of d-consistency clearly requires

a significantly lower number of nodes for the same quality, relatively
to the c-consistency, which, in turn, requires a lower number of nodes
than the usage of the b-consistency. Also, as expected, the hierarchy
built using the HED edge detector gives better results than the other
hierarchies demonstrated here

theminimumspanning tree of a super-pixels graph,where the
nodes are SLIC superpixels [11]. Theweights of the graph are
specified by different types of gradients. More specifically,
we consider the following hierarchies:

1. Geometric Tree (image-independent baseline)—Starting
from the root node (the entire image), each node split into
two equal parts (the node children), horizontally or verti-
cally, depending on whether the height or the width of the
node is larger. Note that the geometric tree is independent
of the image content.

2. L2 Tree—based on traditional, low quality non-learned
gradient: the L2 difference between the RGB color vec-
tors.

3. SED Tree—based on learned, Structured Forests Edge
detection, which can be considered medium quality [32].

4. HED Tree—Modern, high quality, deep learning based,
Holistically-Nested Edge Detector [33].

A common issue with hierarchical image segmentation is
the presence of small regions (containing few pixels) at lower
depths in the hierarchy. These small regions are found more
frequently when generating the HED and SED trees, as their
gradient generally contains thick boundaries. It is therefore
common to filter the hierarchy and to remove such small
unwanted regions; see, e.g., the implementation of [34] and
[35, 36]. We followed this practice and use the Higra [37]
area-based filtering algorithm proposed in [36].

The leaves of the image independent, geometric-tree are
the image pixels, which makes this tree large (and regular).
The other trees are smaller, as they use super pixels, and also
benefit from the filtering process, when applied.

Wecalculated the best segmentations thatmatch the differ-
ent hierarchies, and show how they depend on the particular

hierarchy that is used, and on the consistency type. First, we
show several examples of such best segmentations, corre-
sponding to the same image, using the HED hierarchy; see
Fig. 7. As expected, the segmentation quality improves with
the number of nodes that are used, and with the consistency
type (b < c < d).

Figure8 confirms this observation, and shows that the
average Jaccard index, over an image dataset, grows with
the number of hierarchy nodes. It also shows that requir-
ing d-consistency allows us to use a relatively small number
of nodes for getting good segmentation, with a high Jac-
card index. C-consistency follows, and b-consistency is last.
The differences between the consistencies are clearly seen in
Fig. 9. It is also clear that better hierarchies, obtained with
more accurate edge detectors, providemuch higher quality of
segmentation with lower number of nodes. These plots show
the average Jaccard index over 100 images of the Weizmann
database [38]. Every image in this database contains a single
object over a background, which match the applicability of
the Jaccard index.

The average Jaccard index curves are smooth.Weobserved
however that for particular images, the curves have stair-like
behavior, implying that the same Jaccard index is achieved
for different k values,which happens, e.g., when adding a few
nodes to Ns does not change the foreground specification.

Note that for b-consistency the geometric, image-indepen
dent tree is better than say the L2 tree. This happens because
in the L2 tree, we have many spurious small nodes that
are close to the root, even after the filtering process. B-
consistency chooses a set of nodes which is a cut in the tree;
when taking a cut that contains the important nodes needed
to approximate the GT segment, some spurious nodes must
be included, which significantly increases the node count (k).

123

Journal of Mathematical Imaging and Vision

Fig. 9 Comparing the segmentation quality obtainable using the three
segmentation-hierarchy consistencies. The comparison is carried out
for each of the four different types of hierarchies. Note that the perfor-

mance with c and d consistencies is similar for the best, HED, tree. For
better visibility, we used a different scale in the x-axis, for each of the
hierarchy

The best results (in terms of lowest node count) are
achieved with d-consistency. This holds for all hierarchies.
For the higher quality hierarchies, the node count needed
for excellent quality is remarkably low (only four on aver-
age). We found that even if the hierarchy contains errors
such as incorrect merges and small nodes near the root, seg-
mentations specified by d-consistency still require a small
node count. To illustrate this robustness property, consider

the case where one incorrect merge was done; see Fig. 10.
This merge leads to a sequence of modes that are not purely
foreground or background. In this example, the b-consistent
foreground segment is specified by the cut containing 6 nodes
(A,B,…,F), c-consistency requires one node less (A,B, …,
E), while d-consistency requires only 2 nodes (K and F).
This robustness is significant because the hierarchy is con-
structed usually by an error-prone, greedy process. By using

123

Journal of Mathematical Imaging and Vision

Fig. 10 Consistency-robustness against incorrectmergings—Anexam-
ple of a hierarchy, with several nodes in the foreground (A,…,E) and
one node in the background (F), which is merged incorrectly with E.
Expressing the foreground using this hierarchy requires 6,5, and 2 nodes
in the b-,c-, and d-consistency, respectively; see text

d-consistency, the harm made by the greedy process can be
compensated to some extent. Note that when using the geo-
metric tree, the segmentation qualities obtained by c and d
consistencies are not very different; see Fig. 9. The merging
errors made by the geometric tree are numerous and happen
in all hierarchy levels; therefore, they cannot be corrected by
a few set difference operations.

The experiments are meant only to be illustrative and are
not the main contributions of this paper. Several surprising
findings are observed, however. First, it turned out that for
approximating a segment, in the Jaccard index sense, the
geometric tree provide reasonable results, which are often as
good as some of the others trees (but not of the modern HED
tree). Note that while all the nodes in this case are image-
independent rectangles, the nodes that were selected for the
approximation are based on the (image-dependent) ground
truth segmentation. We also found that the hierarchies based
on the SED edge detector are not as good as we could have
expected. This was somewhat surprising because previous
evaluations of the SED show good results (F-number=0.75,
on BSDS [32]). Overall, these results imply that hierarchies
built greedily are sensitive to the gradient that is used.

8 Conclusions

This paper considered the relation between the hierarchi-
cal representation of an image and the segmentation of this
image. It proposed that a segmentation may depend on the

hierarchy in 4 different ways, denoted consistencies. The
higher level consistencies aremore robust to hierarchy errors,
which allows us to describe the segmentation in a more eco-
nomical way, use fewer nodes, relative to the lower-level
consistencies that are commonly used.

While the common a-consistency requires that every seg-
ment is a separate node in a hierarchy cut, using b-consistency
allows to describe segments that were split between differ-
ent branches of the hierarchy. The c- and d-consistency no
longer require that the segmentation is specified by a cut,
and this way can ignore, non-important small nodes. The d-
consistency can even compensate for incorrect merges that
occurred in the (usually greedy) construction of the hierar-
chy.We found, for example, that fairly complicated segments
can be represented by only 3–5 nodes of the tree, using the
hierarchy built with a modern edge detector (HED [33]) and
d-consistency. This efficient segment representation opens
the way to new algorithm for analyzing segmentation and
searching for the best one.Developing such algorithms seems
nontrivial and is left for future work.

The number of nodes required to describe a segmentation
is a measure of the quality of the hierarchy. A segmentation
may be accurately described by a large number of leaves of
almost any hierarchy. For describing the segmentation with a
few nodes, however, the hierarchy should contain nodes that
correspond to the true segments, or at least to a large fraction
of them. Thus, this approach is an addition to the variety of
existing tools that were proposed for hierarchy evaluation.

Technically, most of this paper was dedicated to deriving
rigorous and efficient algorithms for optimizing the Jaccard
index. For this complex optimization, the co-optimality tool
was introduced. We argue that with this tool, other mea-
sures of segmentation quality, such as the boundary-based
Fb measure [29] considered in [19], may be optimized more
efficiently and propose that for future work as well.

Acknowledgements Thisworkwas donewhen the first authorwaswith
the Math dept., Technion, Israel, and the second author was with CSE.
dept., IIT Delhi.

Funding Open access funding provided by Technion - Israel Institute
of Technology.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Mathematical Imaging and Vision

Appendix A Proof of Lemma 1

Lemma 1 (repeated)

i. A T -partition of a pixel subset Y ⊂ I is non-coarsest,
if and only if, it contains a non-coarsest T -partition of
some node N ∈T that is included in Y (N ⊂ Y).

ii. When the coarsest T -partition of a pixel subset Y ⊂ I
exists, it is unique.

Proof of Lemma 1: i . Let N ⊂T be a T -partition of Y ⊂
I .

�⇒�⇒�⇒ Suppose that N is non-coarsest. Let N ′ ⊂ T be the
coarsest T -partition of Y ⊂ I (|N ′| < |N |). Any two
nodes are either nested or disjoint, hence,N is finer than
N ′: N ≤ N ′ , i.e., every node of N is included in some
node of N ′ (otherwise the size of N ′ can be reduced
which contradicts that N ′ is the coarsest). Hence, there
exists a node N in N ′ that contains several nodes of N ,
i.e., N contains a non-coarsest T -partition of N .

⇐�⇐�⇐� Suppose that N contains a non-coarsest T -partition of
some node N ⊂ Y . Replacing this T -partition of N by N
itself yields another T -partition of Y , which is coarser
then N . Hence, N is non-coarsest.

i i . If N and N ′ are two coarsest T -partitions of Y ⊂ I ,
then the size of each of them is minimal, which implies
that N ≥ N ′ and N ≤ N ′ (since any two nodes either
nested or disjoint). Hence, N = N ′.

��

References

1. Beucher, S., Lantuejoul, C.: International Workshop on Image
Processing: Real-Time Edge and Motion Detection/Estimation.
Rennes, France (1979)

2. Osher, S., Sethian, J.A.: Fronts propagating with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formula-
tions. J. Comput. Phys. 79(1), 12–49 (1988)

3. Shi, J.,Malik, J.: Normalized cuts and image segmentation.Depart-
mental Papers (CIS), 107 (2000)

4. Maninis,K.-K., Pont-Tuset, J.,Arbeláez, P.,VanGool, L.:Convolu-
tional oriented boundaries: From image segmentation to high-level
tasks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 819–833
(2017)

5. Isaacs, O., Shayer, O., Lindenbaum, M.: Enhancing generic seg-
mentation with learned region representations. In: Proceedings of
the IEEE/CVFConference onComputerVision and PatternRecog-
nition, pp. 12946–12955 (2020)

6. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using
deep learning techniques. Neurocomputing 338, 321–348 (2019)

7. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz,
N., Terzopoulos, D.: Image segmentation using deep learning: A
survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

8. Jam, J., Kendrick, C., Walker, K., Drouard, V., Hsu, J.G.-S., Yap,
M.H.: A comprehensive review of past and present image inpaint-
ing methods. Comput. Vis. Image Underst. 203, 103147 (2021)

9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: unified, real-time object detection. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 779–788 (2016)

10. Chen, X., Pan, L.: A survey of graph cuts/graph search based med-
ical image segmentation. IEEE Rev. Biomed. Eng. 11, 112–124
(2018)

11. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.:
SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

12. Cook, D.J., Holder, L.B.: Substructure discovery using minimum
description length and background knowledge. J. Artif. Intell. Res.
1, 231–255 (1993)

13. Grünwald, P.D.: TheMinimumDescription Length Principle. MIT
Press, Cambridge (2007)

14. Rissanen, J.: Modeling by shortest data description. Automatica
14(5), 465–471 (1978)

15. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the min-
imum description Lenght principle. Inf. Comput. 80(3), 227–248
(1989)

16. Veras, R., Collins, C.: Optimizing hierarchical visualizations with
the minimum description length principle. IEEE Trans. Vis. Com-
put. Gr. 23(1), 631–640 (2016)

17. Jaccard, P.: Étude comparative de la distribution florale dans une
portion des alpes et des jura. Bull. Soc. Vaud. Sci. Nat. 37, 547–579
(1901)

18. Pont-Tuset, J., Marques, F.: Upper-bound assessment of the spa-
tial accuracy of hierarchical region-based image representations.
In: 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 865–868. IEEE (2012)

19. Pont-Tuset, J.,Marques, F.: Supervised assessment of segmentation
hierarchies. Comput. Vis.-ECCV 2012, 814–827 (2012)

20. Salembier, P., Garrido, L.: Binary partition tree as an efficient rep-
resentation for image processing, segmentation, and information
retrieval. IEEE Trans. Image Process. 9(4), 561–576 (2000)

21. Lu, H., Woods, J.C., Ghanbari, M.: Binary partition tree analysis
based on region evolution and its application to tree simplification.
IEEE Trans. Image Process. 16(4), 1131–1138 (2007)

22. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analy-
sis. Int. J. Comput. Vis. 68(3), 289–317 (2006)

23. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical seg-
mentation using tree-based shape space. IEEE Trans. Pattern
Anal. Mach. Intell. 39(3), 457–469 (2017). https://doi.org/10.
1109/TPAMI.2016.2554550

24. Pont-Tuset, J., Marques, F.: Supervised evaluation of image seg-
mentation and object proposal techniques. IEEE Trans. Pattern
Analy. Mach. Intell. 38(7), 1465–1478 (2016)

25. Passat,N.,Naegel,B.: Selectionof relevant nodes fromcomponent-
trees in linear time. In: Discrete Geometry for Computer Imagery,
pp. 453–464. Springer (2011)

26. Ge, F., Wang, S., Liu, T.: Image-segmentation evaluation from the
perspective of salient object extraction. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 1,
pp. 1146–1153 (2006)

27. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection
and hierarchical image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 33(5), 898–916 (2011)

28. Perret, B., Cousty, J., Guimaraes, S.J.F., Maia, D.S.: Evaluation of
hierarchical watersheds. IEEE Trans. Image Process. 27(4), 1676–
1688 (2017)

29. Martin, D.R.: An Empirical Approach to Grouping and Segmen-
tation. University of California, California, Computer Science
Division (2003)

30. Radzik, T.: Newton’s method for fractional combinatorial opti-
mization. In: 33rd Annual Symposium on Foundations of Com-
puter Science, pp. 659–669. IEEE (1992)

123

https://doi.org/10.1109/TPAMI.2016.2554550
https://doi.org/10.1109/TPAMI.2016.2554550

Journal of Mathematical Imaging and Vision

31. Randrianasoa, J.F., Cettour-Janet, P., Kurtz, C., Desjardin, E.,
Gançarski, P., Bednarek, N., Rousseau, F., Passat, N.: Supervised
quality evaluation of binary partition trees for object segmentation.
Pattern Recognit. 111, 107667 (2021)

32. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection.
In: 2013 IEEE International Conference on Computer Vision, pp.
1841–1848 (2013). https://doi.org/10.1109/ICCV.2013.231

33. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings
of IEEE International Conference on Computer Vision (2015)

34. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based
image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

35. Baltaxe, M., Meer, P., Lindenbaum, M.: Local variation as a statis-
tical hypothesis test. Int. J. Comput. Vis. 117(2), 131–141 (2016)

36. Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman,
L.: Removing non-significant regions in hierarchical clustering and
segmentation. Pattern Recognit. Lett. 128, 433–439 (2019)

37. Perret, B., Chierchia, G., Cousty, J., Guimarães, S.J.F., Kenmochi,
Y., Najman, L.: Higra: hierarchical graph analysis. SoftwareX 10,
100335 (2019)

38. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation
by probabilistic bottom-up aggregation and cue integration. IEEE
Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Zeev Gutman received B.Sc. in
Applied Mathematics from Tech-
nion. He studied for M.Sc. in
Applied Mathematics at the Fac-
ulty of Computer Science at the
Technion, under the direction of
Michael Lindenbaum. Currently,
he works at Rafael Ltd.

Ritvik Vij received a Bachelors
and a Masters in Computer Sci-
ence and Engineering from Indian
Institute of Technology, Delhi,
India in 2022. At IIT Delhi, his
research work spans multiple areas
such as image processing, com-
puter vision and forecasting algo-
rithms. He is currently working as
a ML Applied Scientist at Ama-
zon India where his focus area
is building large-scale recommen-
dation systems for Amazon cus-
tomers. His current research inter-
est focuses on building recom-

mender systems that effectively model human behaviour by capturing
the effect of both the intrinsic and extrinsic patterns and stimuli.

Laurent Najman received the
Habilitation á Diriger les
Recherches in 2006 from the Uni-
versity of Marne-la-Vallée, a Ph.D.
in applied mathematics from Paris-
Dauphine University in 1994 with
the highest honor (Félicitations du
Jury) and an “Ingénieur” degree
from the Ecole des Mines de Paris
in 1991. After earning his engi-
neering degree, he worked in the
Central Research Laboratories of
Thomson-CSF for three years,
working on some problems of
infrared image segmentation using

mathematical morphology. He then joined a start-up company named
Animation Science in 1995, as director of research and development.
The technology of particle systems for computer graphics and sci-
entific visualization, developed by the company under his technical
leadership received several awards, including the “European Informa-
tion Technology Prize 1997” awarded by the European Commission
(Esprit program) and by the European Council for Applied Science
and Engineering and the “Hottest Products of the Year 1996” awarded
by the Computer Graphics World journal. In 1998, he joined OCÉ
Print Logic Technologies, as senior scientist. He worked there on var-
ious problem of image analysis dedicated to scanning and printing. In
2002, he joined the Computer Sciences Department of ESIEE, Paris,
where he is full professor and the leader of the A3SI team of the
Laboratoire d’Informatique Gaspard Monge, Université Gustave Eif-
fel. His current research interests include the study of the topology of
discrete structures (such as graphs, hierarchies, and simplicial com-
plexes), using discrete mathematical morphology and discrete opti-
mization.

Michael Lindenbaum received
his B.Sc, M.Sc. and D.Sc. in the
department of Electrical engineer-
ing at the Technion, Israel, in 1978,
1987 and 1990 respectively. From
1978 to 1985 he served in the
IDF in R&D positions. He did
his post-doc at the NTT Basic
research Labs in Tokyo, Japan,
and from 1991, he is with the
department of Computer science,
Technion. He was also a consul-
tant to HP labs. Israel, and spent
sabbaticals in NEC Research Insti-
tute, NJ USA (in 2001), in Tele-

com ParisTech (in 2011) and in ESIEE (Paris Est, in 2019). He also
spent shorter research periods in ATR (Kyoto) and NII (Tokyo). He
served on several committees of computer vision conferences, and
was an associate editor of IEEE Transactions of Pattern Analysis
and Machine. He worked in digital geometry, computational robotics,
point cloud, learning, and diverse aspects of Computer Vision and
Image processing. Currently, his main research interest is Computer
Vision, and especially statistical analysis of object recognition and
grouping processes.

123

https://doi.org/10.1109/ICCV.2013.231

	Assessing Hierarchies by Their Consistent Segmentations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Hierarchies
	2.2 Coarsest Partitions

	3 Problem Formulation
	3.1 The General Task
	3.2 Various Types of Consistency Between a Segmentation and a Hierarchy

	4 Previous Work
	5 A Co-optimality Tool for Optimization
	6 Optimizing the Jaccard Index
	6.1 The Jaccard Index
	6.2 Segmentation Dimensions
	6.3 Applying Co-optimality for Optimizing J(s)
	6.3.1 Geometrical Interpretation
	6.3.2 A Family of Auxiliary Measures

	6.4 Optimizing J(s) for Hierarchical Segmentation
	6.4.1 Specifying calNs and the segmentation s for Various Consistencies
	6.4.2 Calculation of Segmentation Dimensions for Various Consistencies
	6.4.3 Auxiliary Measures Additivity
	6.4.4 Using the Tree Structure for Maximizing the Auxiliary Measures

	6.5 The Auxiliary Algorithms
	6.5.1 Preliminaries
	6.5.2 b-consistency
	6.5.3 c-consistency
	6.5.4 d-consistency
	6.5.5 Time Complexity
	6.5.6 The Best Segmentation Specified by a Subset of Unlimited Size
	6.5.7 Auxiliary Algorithms' Correctness
	6.5.8 A Note on the Implementation

	7 Experiments
	8 Conclusions
	Acknowledgements
	Appendix A Proof of Lemma 1
	References

