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Abstract
Deep neural network approaches to inverse imaging problems have produced impressive results in the last few years. In this
survey paper, we consider the use of generative models in a variational regularisation approach to inverse problems. The
considered regularisers penalise images that are far from the range of a generative model that has learned to produce images
similar to a training dataset. We name this family generative regularisers. The success of generative regularisers depends on
the quality of the generative model and so we propose a set of desired criteria to assess generative models and guide future
research. In our numerical experiments, we evaluate three common generative models, autoencoders, variational autoencoders
and generative adversarial networks, against our desired criteria. We also test three different generative regularisers on the
inverse problems of deblurring, deconvolution, and tomography. We show that restricting solutions of the inverse problem to
lie exactly in the range of a generative model can give good results but that allowing small deviations from the range of the
generator produces more consistent results. Finally, we discuss future directions and open problems in the field.

Keywords Inverse problems · Generative models · Machine learning · Imaging

1 Introduction

Solving an inverse problem is the process of calculating an
unknown quantity, x ∈ X , from observed, potentially noisy,
measurements, y ∈ Y . In this work,X and Y are assumed to
be real finite-dimensional vector spaces. The two are related
by a forward model, A : X → Y , that, for simplicity, is
assumed to be linear, giving the equation

y = Ax . (1)

Inverse problems are nearly always ill-posed: There does
not exist a unique solution or small deviations in the data
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lead to large deviations in the solution. In addition, mea-
surement errors or additional, poorly understood physical
processes mean that the observations can also come with
additional noise. For example, in the case of additive noise
(1) becomes Ax + ε = y for some noise, ε, an additional
unknown. We generally assume the noise model is known or
can be approximated. Addressing the ill-posedness is critical
for applications where the solution is used tomake decisions,
such as in medical imaging. Throughout this paper, we focus
on image reconstruction problems, where x ∈ X is an image,
but there are many other applications.

Generally, ill-posed problems are solved by incorporating
some prior information; this is often given in the form of a
regulariser in a variational regularisation framework [1–3].
Consider the optimisation problem

x∗ ∈ argmin
x

L y(Ax) + λR(x). (2)

The first term Ly : Y → [0,∞] is a similarity measure
that measures the distance between the observed data, y,
and reconstructed image, x , under the forward model, A.
The choice of L is often linked to the noise model assumed
for the data. The second term includes the regulariser, R :
X → [0,∞], that is small when some desired property
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of the image is fulfilled. The constant λ is a regularisation
parameter that balances between the data similarity term and
the regularisation term. As examples, Tikhonov regularisa-
tion encourages the reconstruction to be small in the 2-norm,
while Total Variation (TV) regularisation [4] allows large
gradients (e.g.edges) to occur only sparsely in the reconstruc-
tion. These hand-built regularisers are better suited to some
types of images over others, e.g.TV is tailored to piece-wise
smooth images. A natural question to ask is: given a set of
images, which regulariser would work well? Alternatively,
how can we produce regularisers that are tailored to specific
data or tasks?

There is awide body of research into learning regularisers.
Approaches include using a regulariser to force reconstruc-
tions to be sparse in some learned basis for feasible images
[5]. Others have included a network trained for denoising
[6–8] or removing artefacts [9–11] in the regulariser term,
favouring images that are unchanged by the network. More
recently, ‘adversarial regularisation’ [12] uses a neural net-
work trained to discriminate between desired images and
undesired images that contain artefacts. For a recent overview
of approaches to using deep learning to solve inverse prob-
lems, see for example [13].

In this paper, we consider the case where the regulariser
depends on a learned generative model. The assumption is
that the plausible reconstructions exhibit local regularities,
global symmetries or repeating patterns and so naturally lie
on some lower-dimensional manifold, a subset of X . A gen-
erator, G : Z → X , takes points from a latent space,
Z , where dim(Z) � dim(X ), and outputs images, param-
eterising this lower-dimensional manifold. In practice, the
generator is taken to be a parameterised function, Gθ , with
parameters θ , for example, a neural network trained such
that the generated points Gθ (z) ∈ X are similar to some
pre-defined training set. In this work, we investigate regu-
larisers [14–17] that penalise values of x ∈ X that are far
from the range of the generator, G, and call this generative
regularisers. A popular example [14], revisited in Sect. 3.1.1,
limits solutions to those that are exactly in the range of the
generator,

z∗ ∈ argmin
z

‖AG(z) − y‖22 + λ‖z‖22, (3)

x∗ = G(z∗).

Generative regularisers combine the benefits of both a
variational regularisation and a data-driven approach. The
variational approach builds on the advancements in model-
based inverse problems over the last century, while the
data-driven approach will provide more specific information
than a hand-crafted regulariser. The method remains flex-
ible as the machine learning element is unsupervised and
therefore independent of the forward model and the noise

type. In this work, we provide a thorough survey of gener-
ative regularisers and then go on to test different generative
regularisers, inspired by the literature, on deconvolution,
compressed sensing and tomography inverse problems. The
success of generative regularisers will depend on the quality
of the generator. We propose a set of criteria that would be
beneficial for a generative model destined for use in inverse
problems and demonstrate possible methods of testing gen-
erative models against these criteria. To conclude we identify
a number of avenues for future directions and open problems
in the field.

2 Generative Models

This section provides background on generators and gen-
erative models, focusing in particular on three approaches:
Autoencoders, Variational Autoencoders and Generative
Adversarial Networks.

2.1 Autoencoder (AE)

An AE has two parts, an encoder and a decoder. The encoder
encodes an image in some latent space and the decoder takes a
point in this latent space and decodes it, outputting an image.
The lower-dimensional latent space forces the network to
learn representations of the input with reduced dimension-
ality. For reference see e.g. chapter 14 of [18]. Denote the
encoder Eψ : X → Z and the decoder Gθ : Z → X , neural
networks with parametersψ and θ . The networks are trained
by minimising a reconstruction loss

Ex
∥
∥x − Gθ (Eψ(x))

∥
∥
2
2 . (4)

The expectation is taken empirically over the training dataset.
Post-training, the decoder can be used as a generator.With no
structure imposed on the latent space, generating from ran-
dom points in the latent space may not lead to outputs similar
to the training set. Furthermore, points close together in the
latent space may not lead to similar generated images. Nev-
ertheless, this method of training is simple and has recently
been used in learned singular valued decomposition and for
applications in sparse view CT [19, 20].

2.2 Probabilistic Models

In order to add greater structure and meaning to the latent
space and to discourage unrealistic outputs from the gen-
erator, we consider a probabilistic approach. Let P∗ be the
probability distribution of desired solutions to the inverse
problem. We consider a prior distribution, PZ , and push it
through the generator, G, to give a generated distribution PG
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on X . Sampling from the prior and then applying the gener-
ator allows samples to be taken from PG . The generator, G,
is chosen to minimise a distance between PG and P∗.

2.3 Generative Adversarial Network (GAN)

The choice of Wasserstein distance between PG and P∗ and
an application of the Kantorovich-Rubinstein duality leads
to the Wasserstein GAN [21], a popular generative model.
Following the derivation given in [21, 22], the task of min-
imising the Wasserstein distance becomes

min
θ

max
ψ

Ex∼P∗ Dψ(x) − Ez∼PZ Dψ(Gθ (z)). (5)

The generator Gθ : Z → X is as before, and we have
introduced a discriminator Dψ : X → R which must be 1-
Lipschitz, enforced by an additional term added to (5) [22].

In the game-theoretic interpretation of the GAN [23], a
generative model competes with a discriminative model. The
discriminator aims to accurately identify real images, max-
imising Ex∼P∗ Dψ(x), from generated images, minimising
Ez∼PZ Dψ(Gθ (z)). The generator tries to force the dis-
criminator to label generated images as real, maximising
Ez∼PZ Dψ(Gθ (z)).

For the numerical results in this paper, we choose to use a
Wasserstein GAN (5) as it is often more robust to a range of
network designs and there is less evidence of mode collapse,
when the generator learns just part of the target distribution,
compared to the ‘vanilla’ GAN [21].

2.4 Variational Autoencoder (VAE)

For another choice of distance between PG and P∗, take
the Kullback–Leibler (KL) divergence (dK L(P∗‖PG) =
∫

X log dP∗
dPG

d P∗) which leads to a VAE [24]. Following the
derivation in [24, 25], the VAE loss function can be written
as

Ex∼P∗

(

Ez∼Nx,ψ

[

‖x−Gθ (z)‖22
2ρ2

]

+dK L
(Nx,ψ‖PZ

)

)

(6)

where Nx,ψ := N (μψ(x), diag(σ 2
ψ(x))) and μψ, σ 2

ψ :
X → Z are the encoder mean and encoder variance, neural
networks with parameters ψ . The constant, ρ, is a hyper-
parameter chosen to reflect the ‘noise level’ in the training
dataset. TheKLdivergence is calculatedover the latent space,
Z .

We can interpret the two terms in (6) as a data fit and a reg-
ulariser term, respectively. In the first term, the reconstruction
and the original image are compared. Encoding to a distri-
bution, Nx,ψ , enforces that points close to each other in the
latent space should produce similar images. In the second

term, the KL divergence encourages the encoded distribu-
tions to be close to the prior, PZ . The prior is usually taken
to be the standard normal distribution. The balance between
the two terms is determined by the noise level ρ.

2.5 Other Generative Models

Generative modelling is a fast-growing field and there are
other examples of generative models. Autoregressive mod-
els [26] generate individual pixels based on a probability
distribution conditioned on previously generated pixels.
Normalising flows and, more generally, invertible neural net-
works [27], map between a latent space and an image space
of the same dimension and are designed to be bijective, with
a tractable Jacobian. They can provide a generated distribu-
tionwith tractable density. A recent invertible neural network
example is a GLOW network [28] which has been used in
regularisation of the form RG(x) = ‖G−1(x)‖22 [29]. Score-
based generative models, learn to approximate ∇ p∗, where
p∗ is a probability density over the desired image distribu-
tion, P∗, and can then be used to sample from P∗ using
Langevin dynamics [30]. They have also been used recently
as priors for inverse problems, allowing the approximate pos-
terior to be sampled usingMonte Carlo methods [31, 32].We
will consider desired properties of generativemodels inmore
detail in Sect. 4.

In this work, we focus on AEs, VAEs and GANs because
they satisfy the low-dimensional manifold assumption and
we hope that the lower dimensional manifold will have a
regularising effect. One concern, especially for use of invert-
ible neural networks for inverse problems, is whether they
might add more instabilities to the problem, rather than mit-
igate the original ill-posedness. There has been some work
looking at the instabilities of invertible neural networks [33].
This is a possible avenue for future research. Finally, is also
worth noting that, in this work, the training and application
of the generative model are separate, so that any function,
Gθ , can be included.

3 Generative Regularisers for Inverse
Problems

In this section, we bring together current approaches in the
literature that penalise solutions of an inverse problem that
are far from the range of the generator, G. We consider vari-
ational regularisation (2) and regularisers of the form

RG(x) = min
z∈Z

F(G(z) − x) + RZ (z) (7)
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where F : X → [0,∞] and RZ : Z → [0,∞].We consider
choices for F , which we call the generator fidelity.

3.1 Choices of Generator Fidelity

3.1.1 Restricting to the Range

The characteristic function of an arbitrary set C is defined as

ιC(t) =
{

0 for t ∈ C
∞ for t /∈ C .

Taking F(x) = ι{0}(x) and RZ (z) = ‖z‖22 in (7) gives (3) and
describes searching over the latent space for the encoding that
best fits the data. Their choice RZ (z) reflects the Gaussian
prior placed on the latent space. Bora et al. [14] first proposed
this strategy, applying it to compressed sensing problems.
There are a number of interesting applications using this
method, such as denoising [17], semantic manipulation [34],
seismic waveform inversion [35], light field reconstruction
[36], blind deconvolution [37] and phase retrieval [38]. Bora
et al. [14] assume the existence of an optimisation scheme
that can minimise (3) with small error and from this prob-
abilistically bound the reconstruction error. However, the
non-convexity introduced by the generator makes any the-
oretical guarantees on the optimisation extremely difficult.
Assuming the forward operator is aGaussianmatrix (the gen-
erator weights have independent and identically distributed
Gaussian entries) and the layers of the generator are suffi-
ciently expansive in size, there exist theoretical results on
the success of gradient descent for optimising (3) [39–41].

This formulation can also be optimised by projected gra-
dient descent [42, 43]:

wt+1 = xt − ηAT (Axt − y)

zt+1 = argmin
z

‖wt+1 − G(z)‖2
xt+1 = G(zt+1). (8)

With analogies to the restricted isometry property in com-
pressed sensing [44], Shah and Hegde [42] introduce the
Set Restricted Eigenvalue Condition (S-REC). If the S-REC
holds, then the operator A preserves the uniqueness of sig-
nals in the range of G. Theoretical work considers the case
where A is a randomGaussianmatrix, and shows, under some
assumptions, it satisfies the S-REC with high probability. In
addition, if the generator is an untrained network, then the
projected gradient descent approach with sufficiently small
step size converges to x∗, where Ax∗ = y [42, 43, 45].

3.1.2 Relaxing Constraints

Returning to Bora et al. [14], the authors note that as they
increase the number of compressed sensing measurements,
the quality of the reconstruction levels off rather than con-
tinuing to improve. They hypothesise that this occurs when
the ground truth is not in the range of the generator. One
could consider relaxing the constraint that the solution is in
the range of the generator, for example, setting F(x) = ‖x‖22
allows for small deviations from the range of the generator.
One could also encourage the deviations to be sparse, for
example by taking F(x) = ‖x‖1 [15, 46]. Some theoretical
considerations for this softly constrained approach are given
in [11]. This approach is similar to the approaches of [9,
10] where they take G ◦ E : X → X an encoder–decoder
network and define RG(x) = ‖x − G(E(x))‖22. The idea
is that this regulariser approximates the distance between
x and the ideal data manifold. Less explicitly, there are a
number of approaches that extend the range of the original
generator, through optimisation of intermediate layers of the
network [47–49] or tweaking the generative model training
in response to observed data [50, 51].

3.2 Additional Regularisation

Additional regularisation on Z is given by RZ in (7). The
most common choice is RZ (z) = ‖z‖22 [14, 37] but there
are other possibilities, for example RZ (z) = ι[−1,1]d (z) [17],
where d = dimZ . Often, the regularisationmatches the prior
on the latent space used in generator training. Menon et al.
[47] discuss that RZ (z) = ‖z‖22 forces latent vectors towards
the origin. However, most of the mass of the d-dimensional
standard normal the prior on their latent space is located
near the surface of a sphere of radius d. Instead, they use a
uniform prior on dSd−1. This idea has also been explored
for interpolations in the latent space [52]. In addition, the
prior on the latent space may not be a good model for the
post-training subset of z that maps to feasible images. For a
VAE there may be areas of the latent space that the generator
has not seen in training and for a GAN, there could be mode
collapse. A few recent papers consider how to find the post-
training latent space distribution [53, 54].

Other regularisation choices could be based on features of
the image, x = G(z). For example VanVeen et al. [55] use
RZ (z) = TV(G(z)). For a GAN generator, it is possible to
take the regularisation term to be the same as the generator
loss RZ (z) = log(1 − D(G(z))). This regulariser utilises
the discriminator, D, which has been trained to differentiate
generated from real data. Examples include inpainting [56,
57] and reconstruction froman unknown forwardmodel [58].
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3.3 Other Approaches

There are a number of ideas that are linked to earlier dis-
cussions in this section but we will not cover them in detail.
A major benefit of (2) is the flexibility to changes in the
forward model. We have therefore ignored conditional gen-
erative models [59–65] and those that train with a specific
forward model in mind [9, 66, 67]. We also exclude work
that uses an untrained neural network, for example, Deep
Image Priors [55, 68, 69] or [16].

4 Generative Model Evaluation

Typically the aim of a generator has been to produce high
fidelity images. However, the success of (7) relies not just on
the ability of the generator to produce a few good images but
to be able to produce every possible feasible image. In this
section, we discuss desired properties for a generator trained
for use in inverse problems and numerically explore methods
to test these properties.

4.1 Desired Properties

To evaluate a generative model, in the context of inverse
problems, we consider two overall aims which we will go on
to further decompose:

A Samples from the generator are similar to those
from the target distribution.

B Given a forward model and an observation, the
image in the range of the generator that best fits the
observation can be recovered using descent meth-
ods.

We split aim A into a set of properties:

A1 The generator should be able to produce every pos-
sible image in the target distribution. That is, for all
x ∈ X such that x is similar to images in the train-
ing dataset, there exists z ∈ Z such that G(z) = x .

A2 The generator should not be able to produce images
far from the target distribution. That is, for all x ∈
X such that x is not similar to images in the training
dataset, then there does not exist z ∈ Z such that
G(z) = x .

A1 includes that the generator should be robust to mode col-
lapse and that the model should not trivially over-fit to the
training data.

In the probabilistic case, with a prior over the latent space,
property A becomes:

A That samples from the latent space, when mapped
through the generator, will produce samples that

approximate a target distribution. We should have
that d(P∗, PG) is small for some distance measure
d.

We also note that in the probabilistic case, A1 and A2 are not
independent. By assigning probability mass to parts of the
image space close to the target distribution, it is less likely
that images far from the target distribution can be generated.
In the probabilistic case, a third property is added:

A3 The generator should map high-probability vectors
in the latent space distribution to high-probability
images in the target distribution.

It is possible that A1 and A2 are satisfied but not A3. Note
that these properties may not be possible to achieve for a
given dataset.

We define two properties for property B, these are

B1 The generator should be smooth with respect to the
latent space, Z .

B2 The area of the latent space, Z , that corresponds to
images similar to those in the training set should be
known.

Property B1 ensures that gradient-based optimisation meth-
ods can be used. Continuity is also desirable: we wish that,
in some way, points close together in the latent space should
produce similar images. B2 considers that we need to have a
distribution on or subset of Z to sample from in order to use
the generator to sample images. This distribution may not
necessarily be equal to any priors on the latent space used
during training. We recognise that B1 and B2 are perhaps
vague, and are potentially not sufficient for property B. It is
an area for future work to consider making these statements
precise enough to support theoretical work.

4.2 Generative Model EvaluationMethods

There are a wide range of existing generative model evalua-
tionmethods [70], focusedmostly on property A.We assume
the availability of some test data drawn from the same dis-
tribution as the training data and unseen by the generative
model. The average log likelihood [23] of test data under
the generated distribution is a natural objective to maximise.
There is evidence, however, that the likelihood is generally
unrelated to image quality and is difficult to approximate in
higher dimensions [71]. To calculate a distance between gen-
erated and desired distributions, one possibility is the earth
movers distance (EMD) [72], a discretised version of the
Wasserstein distance. One could also encode the generated
and unseen data in a lower-dimensional space before tak-
ing distance calculations, for example by taking the outputs
of one layer of any neural network trained for classification
[73, 74]. A model that overfits to the training data would
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perform perfectly in these distance measures. Also, the low-
dimensional representation used for the evaluation is likely
to have the same inherent problems and drawbacks as the
embedding learnt by the generative model. Similarly, a num-
ber of tests train an additional, separate, neural network
discriminator to distinguish between test data and generated
data [21, 75]. Failure to classify the two is a success of the
generative model. For testing a GAN, the new discrimina-
tor is unlikely to be able to pick up failures that the original
discriminator, used in training, missed. Finally, Arora et al.
[76] estimate the size of the support of the generated distribu-
tion. A low support size would suggest mode collapse. Their
technique depends on manually finding duplicate generated
images which can be time-consuming and require expert
knowledge.

Property B is less explored in the literature. One approach
is to directly attempt to reconstruct test data by finding a
latent space vector that when pushed through the generator,
matches the data. With these found latent vectors, analysing
their locations could check property B2. To test the smooth-
ness of the generator with respect to the latent space, property
B1, many previous papers, including the original GAN and
VAE papers [23, 24], interpolate through the latent space,
checking for smooth transitions in the generated images.

4.3 Numerical Experiments

In this section, we evaluate AE, VAE and GAN models
against the desired properties given in Sect. 4.1. We con-
sider experiments on two datasets. Firstly, a custom-made
Shapes dataset with 60,000 training and 10,000 test 56×56
grey-scale images. Each image consists of a black back-
ground with a grey circle and rectangle of constant colour.
The radius of the circle; the height andwidth of the rectangle;
and the locations of the two shapes are sampled uniformly
with ranges chosen such that the shapes do not overlap. This
dataset is similar to the oneused in [60]. Secondly, theMNIST
dataset [77] consists of 28 × 28 grey-scale images of hand-
written digits with a training set of 60,000 samples and a test
set of 10,000 samples. For examples of both datasets, see the
ground truth images in Fig. 2.

Architecture details are given in the appendix. We chose
to use the same generator network for all three models, for
comparison. Architecture choices were guided by [22, 24,
78]. All models have gone through a similar amount of opti-
misation of hyperparameters, including the noise level ρ in
the VAE decoder (6); the latent dimension; the number of
layers; choice of convolution kernel size; drop out proba-
bility; leaky ReLU coefficient and learning rate. In order
to select hyperparameters we manually inspected generated
images. Models were built and trained using Tensorflow [79]
in Python and made use of the Balena High-Performance
Computing Service at the University of Bath. The models

were trained using a single Dell PowerEdge C8220X node,
with two Intel E5-2650 v2 CPUs, 64 GB DDR3-1866 MHz
Memory and an Nvidia K20X GPU, 6 GB memory. The
MNIST and Shapes VAE models take approximately 25
and 45min to train, respectively.

There has been expansive research in generative models
over the past few years including a variety of extensions
or adaptations to VAEs and GANs. The exploration in this
section is not meant to be exhaustive but instead to both
illustrate experiments assessing the desired criteria that could
be repeated on other datasets and also to demonstrate some
general conclusions about the basic class of AEs, VAEs and
GANs applied to these fairly simple but illustrative datasets.

4.3.1 Reconstructing a Test Dataset

Property A1 asks that the generator is able to produce every
image in the target distribution. Gradient descent with back-
tracking line search (Algorithm 1, in the appendix) is used
to approximate

z∗(x) ∈ argmin
z

‖G(z) − x‖22, (9)

for each x ∈ Xtest, an unseen test dataset. For the AE and
VAE, the algorithm is initialised at the (mean) encoding of the
test image, Eψ(x) andμψ(x), respectively. For the GAN, we
take 4 different initialisations, drawn from a standard normal
distribution, and take the best result. We find empirically,
especially for the GAN, that different initialisations lead to
different solutions.

Figure1 shows ‖G(z∗(x)) − x‖2/‖x‖2, the normalised
root mean squared error (NRMSE) for reconstructions on
Shapes and MNIST for the three different generator mod-
els. We see that, for both datasets, the AE and VAE have
almost identical reconstruction results and the GAN results
are comparatively worse. For the Shapes dataset the differ-
ence in results between the three generative models is less
stark. In addition, NRMSE values are given for three differ-
ent latent dimensions to show that the results are not sensitive
to small changes in the latent dimension. Latent dimensions
of 8 and 10 for MNIST and Shapes, respectively, are used
in the rest of this paper. Figure2 also shows reconstruction
examples providing context to the results in Fig. 1. Numer-
ical values on the image use the Peak-Signal-to-Noise-Ratio
(PSNR, see definition 3.5 in [80]). The non-circular objects
in the GAN results for Shapes could be a failure of the
discriminator to detect circles.

4.3.2 Distance Between PG and P∗

To investigate property A3, the EMD [72] is calculated
between empirical observations of the generated and the data
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(a) MNIST dataset (b) Shapes dataset

Fig. 1 NRMSE between values of G (argminz ‖G(z) − x‖2) and x and plotted as a histogram for all x ∈ Xtest . The horizontal lines show the
median and range and the shaded area is a histogram. Note the brown colour is the result of the overlapping orange (VAE) and blue (AE) (Color
figure online)

Fig. 2 Example reconstructions for the MNIST and Shapes dataset with eight ten-dimensional generative models, respectively. In each sub-figure,
the top row shows the ground truth, the second row the reconstruction and the third row the difference between the two (Color figure online)

distributions PG and P∗. For the sets of test and generated
images,Xtest = {x1, . . . , xN } and {G(z1), . . . ,G(zN ) : zi ∼
N (0, I )}, the EMD between their empirical distributions is
defined as

min
f

N
∑

i, j=1

fi, j‖xi − G(z j )‖22 (10)

where 0 ≤ fi, j ≤ 1,
N

∑

i=1

fi, j = 1 and
N

∑

j=1

fi, j = 1.

The EMD is calculated using the Python Optimal Transport
Library [81] with N = 10, 000, the full test set. The results
are given in Fig. 3. In both the MNIST and Shapes exam-
ples, the VAE has a lower EMD across the latent dimensions.
The AE is added to this plot for comparison purposes but, as
there is no prior on the latent space, zi ∼ N (0, I ) may not
be a suitable choice to sample from.
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Fig. 3 EMD between the test dataset and samples from a trained gen-
erator (Color figure online)

4.3.3 Latent Space Visualisations

PropertyB2 requires that the area of the latent space thatmaps
to feasible images is known. There is no prior on the latent
space enforced for AEs and a N (0, I ) prior is imposed for
VAEs and GANs. In Fig. 4, gradient descent with backtrack-
ing (Algorithm 1 in the appendix) is used to approximate (9),
finding a latent vector z∗(x) for each x ∈ Xtest. For compari-
son, the values z∗(x) for the test set and 10,000 vectors drawn
from a standard normal distribution are randomly projected
into 2 dimensions. The encodings in the latent space match

Fig. 5 Images generated far from the high-probability region of the
prior distribution

the prior N (0, I ) for VAEs and GANs. For AEs, there are
examples in lower latent dimensions, where the area covered
by the encodings does not match a standard normal distribu-
tion.

4.3.4 Generating Far from the Latent Distribution

A known latent space gives known areas to sample from to
produce new images. Figure5 shows image examples gen-

Fig. 4 Comparisons of the latent space encodings of a test dataset with a standard normal distribution by projecting the vectors into 2 dimensions.
Encodings of the test dataset are in orange and the standard normal vectors are in blue (Color figure online)
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erated far from a standard normal distribution. The images
are not recognisable as similar to the training datasets. This
emphasises the importance of property B2, that the area of
the latent space that corresponds to images similar to those
in the training set should be known.

4.3.5 Latent Space Interpolations

We consider interpolating between points in the latent space,
testing property B1. We hope to see smooth transitions
between interpolated images, and that generated images are
similar to those seen in training. We take three images from
the test data, x1, x2 and x3, find z1, z2 and z3, their encod-
ings in the latent space, using (9) and then plot interpolations
G(z1 + α1(z2 − z1) + α2(z3 − z1)) for α1, α2 ∈ [0, 1].
Figure6 shows one example for each model and dataset for
α1, α2 = {0, 0.25, 0.5, 0.75, 1}. For the AE and VAE, you
see transitions that are smooth but blurry. The GAN images
appear sharper but some outputs are not similar to training
data examples, for example, in Fig. 6f there are a set of images
that contain no rectangle. These images could be evidence of
a discriminator failure: The discriminator has not yet learnt
that these images are not similar to the training set.

4.3.6 Discussion

As expected, none of the three generator models, AE, VAE
and GAN, fulfill properties A and B fully. For A, the GAN
does poorly in the reconstruction results of Figs. 1 and 2. The
lack of an encoder makes this more challenging. There is evi-
dence of mode collapse, where parts of the training data are
not well reconstructed and discriminator failure, where the
images produced are not realistic, see Figs. 2 and 6. The VAE
does consistently better, demonstrated by the lower EMD
between generated and test data in Fig. 3. The lack of prior
on the AE, and thus a known area of the latent space to sam-
ple from, is a problem. Figure5 demonstrates that sampling
from the wrong area of the latent space gives poor results.

Pulling apart the cause of a failure to recover an image
is difficult. It could be that the image is not in the range of
the generator, a failure of property A, or that the image is in
the range of the generator but the image cannot be recovered
using descent methods, a failure of property B. For property
B1, the mathematical properties of continuity or differen-
tiability of a network, depending on the architecture. The
interpolations in Fig. 6 show some evidence of large jumps
between images in the GAN cases, but in general, the inter-
polations are reasonable. For both the GAN and the VAE, in
Fig. 4, the encodings of the test images in the latent space
seem to match the prior, property B2.

Considering the objective functions for the AE, VAE and
GAN in (4), (6) and (5), respectively, much of these results
are expected. There is no requirement in the GAN objective
to cover the range of the training distribution, allowing for
mode collapse, or that points close in the latent space map to
similar images. In contrast, the expectation over the training
set and expectation over the encoded distribution encourage
these properties for the VAE. We might have expected some
visually better images for theGANbut note that they are often
difficult to train [78]. The AE results are more surprising,
giving similar results to the VAE in many experiments. This
is potentially due to the simplicity of the test datasets but may
also point towards evidence of implicit regularisation on the
AE from the architecture choices and training algorithms.

5 Numerical Results for Inverse Problems

In this section, we apply the AE, VAE and GAN models,
evaluated in the previous section, on three inverse problems.
Firstly tomography, the X-ray transform [82] with a paral-
lel beam geometry. Secondly, deconvolution with a 5 × 5
Gaussian kernel. Lastly, compressed sensing where y = Ax
is an under-determined linear system where A is an R

m×n

Gaussian random matrix, x ∈ R
n is a vectorised image and

n � m, see for example [83]. In each case, zero-mean Gaus-
sian noise with standard deviation σ is added to the data.
The forward operators were implemented using the opera-
tor discretisation library (ODL) [84] in Python, accessing
scikit–learn [85] for the tomography back-end.

Weconsider variational regularisationmethods in the form
of (2) and (7) with Ly(Ax) = ‖Ax − y‖22. To match the lit-
erature themes, we compare three different methods: hard,
F(u) = ι{0}(u) and RZ (z) = ‖z‖22; relaxed, F(u) = ‖u‖22
and RZ (z) = μ‖z‖22; and sparse, F(u) = ‖u‖1 and
RZ (z) = μ‖z‖22, where μ is an additional regularisation
parameter. We compare with regularisers independent of the
generator: Tikhonov regularisation, RG(x) = ‖x‖22, for the
convolution and tomography examples andTV regularisation
[4], for the compressed sensing example.

The optimisation algorithms are given in the appendix.
Hard and Tikhonov are optimised using gradient descent
with backtracking line search, Algorithm 1. TV regularisa-
tion is implemented using the Primal-Dual Hybrid Gradient
method [86]. For relaxed, alternating gradient descent with
backtracking is used, see Algorithm 2. Finally, for sparse,
the 1-norm is not smooth, and so Proximal Alternating
Linearised Minimisation (PALM) [87] with backtracking,
Algorithm 3, is used to optimise the equivalent formulation
minu∈X ,z∈Z ‖A(G(z) + u) − y‖22 + λ

(‖u‖1 + μ‖z‖22
)

. In
all cases, initial values are chosen from a standard normal
distribution.
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Fig. 6 Interpolation ability of an AE, VAE and GAN. The highlighted top left, bottom left and top right latent space values were chosen close to
the test dataset and the other images are computed via linear combinations in the latent space (Color figure online)

5.1 Deconvolution

Figure7 shows solutions to the deconvolution inverse prob-
lem with added Gaussian noise (standard deviation σ = 0.1)
on the MNIST dataset. We test the relaxed, hard and sparse
methods with a GAN against Tikhonov and try a range
of regularisation parameters. Each reconstruction used the
same realisation of noise affecting the data. Hard gives good
PSNR results despite not reaching the Morozov discrepancy
value, the expected value of the L2 norm of the added Gaus-
sian noise [88]. For the hard constraints reconstructions are
restricted to the range of the generator and we do not expect
the data discrepancy to go to zero as λ decreases. In the
relaxed and sparse constrained reconstructions, for smaller
values of λ the solutions tend towards a least squares solution
which fits the noise and is affected by the ill-posedness of the
inverse problem. The additional variation in the choice of μ,
as shown by the additional coloured dots, has little effect on
smaller values of λ.

Figure8 again shows a deconvolution problemwith added
Gaussian noise (standard deviation σ = 0.1) on the MNIST
dataset. We choose the hard reconstruction for the three
different generator models and show three random initial-

isations in Z . Regularisation parameters were chosen to
maximise PSNR. The best results are given by the AE and
the VAE. The GAN has failed to find a good value in the
latent space to reconstruct the number three. The choice of
the initial value of z significantly affects the outcome of the
reconstruction in the GAN case.

5.2 Compressed Sensing

Consider the compressed sensing inverse problem (m = 150
measurements) with added Gaussian noise (standard devia-
tion σ = 0.05) on MNIST images. We choose regularisation
parameters that optimise PSNR over 20 test images. Figure9
includes a table with the PSNR results on an additional 100
test images. Due to the cartoon-like nature of the MNIST dig-
its, TV regularisation is particularly suitable, however, VAE
and AE hard and VAE relaxed are competitive with TV. For
more context, example plots for the VAE and TV reconstruc-
tions are given in Fig. 9.

To give an indication of computational cost, Tikhonov
reconstruction on the compressed sensing inverse problem
on the MNIST dataset took on average 32 iterations of back-
tracking until the relative difference between iterates was
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Fig. 7 Solution of the deconvolution problem on MNISTwith an eight-
dimensional GAN. The plot shows the L2 reconstruction loss against
regularisation parameter choice λ in comparison with the Morozov dis-

crepancy value in black. Differing choices forμ are plotted as additional
markers. The image plots correspond to the parameter values shown by
the grey lines and include the PSNR values (Color figure online)

Fig. 8 Comparisons between the three generators, with eight-
dimensional latent space, for the deconvolution problem. Reconstruc-
tions use the hard method. The plot shows 3 different initialisations

for each generator. The ground truth (GT) is given on the left, the top
line shows the reconstruction and the bottom line the residuals with the
PSNR values (Color figure online)

less than 10−8. In comparison, the hard and relaxed took on
average 54 and 325 backtracking steps, respectively, without
random restarts. TV reconstruction uses a primal-dual hybrid
gradient optimisation scheme and is not directly comparable.
The algorithms took up to 1 s for Tikhonov, 5 s for hard and
10s for relaxed.

5.3 Tomography

Taking the tomography inverse problem with added Gaus-
sian noise (standard deviation σ = 0.1), Fig. 10 includes a
table which gives the average and standard deviation for the
PSNR of 100 reconstructed Shapes images. The regular-
isation parameters were set to maximise the PSNR over a
separate dataset of 20 test images. The GAN has a partic-
ularly poor performance but the AE and VAE results are
all competitive with TV. Example reconstructions for the
AE methods and TV reconstruction are given in Fig. 10.
The generative regulariser gives a clear rectangle and cir-
cle while the TV reconstruction gives shapes with unclear

outlines and blob-like artefacts. In terms of computational
cost, Tikhonov took on average 157 iterations of backtrack-
ing until the relative difference between iterates was less than
10−8. In comparison, the hard and relaxed took on average
37 and 255 iterations, respectively, without random restarts.
The algorithms took up to 40s for Tikhonov, up to 12s for
hard and up to 60s for relaxed.

5.4 Out-of-Distribution Testing

We augment the Shapes dataset, creating a shapes+
dataset, with the addition of a bright spot randomly located
in the circle. We then take the Tomography inverse problem
on the shapes+ dataset with added Gaussian noise (stan-
dard deviation σ = 0.05). For a generative regulariser we
use sparse, with F(x) = ‖∇x‖1, the TV norm. Crucially,
the VAE generator used was trained only on the standard
Shapes dataset, without bright spots. We compare to stan-
dard TV reconstruction. The regularisation parameters were
chosen to maximise the PSNR on 20 ground truth and recon-

123



48 Journal of Mathematical Imaging and Vision (2024) 66:37–56

Generative Model
Method AE VAE GAN None
Relaxed 19.31 ± 2.26 20.07 ± 1.66 17.12 ± 1.67
Sparse 19.52 ± 2.72 21.08 ± 3.16 17.06 ± 2.5
Hard 21.84 ± 4.09 22.33 ± 4.17 16.93 ± 2.57
TV 21.54 ± 1.32

Fig. 9 Results compare the three different regularisers and three differ-
entmethods against the unlearned TV reconstruction on the compressed
sensing inverse problem. The table shows the mean and standard devi-
ations of PSNR values of 100 reconstructions. The plots show three

example solutions, comparing the VAE reconstructions to TV recon-
struction. The left column shows the ground truth, even columns the
reconstructed images and odd columns the residuals with the PSNR
values (Color figure online)

Generative Model
Method AE VAE GAN None
Relaxed 30.70 ± 1.59 28.79 ± 0.71 24.20 ± 0.49
Sparse 33.12 ± 0.80 33.09 ± 0.89 22.72 ± 1.80
Hard 33.17 ± 0.80 32.92 ± 0.95 22.92 ± 2.10
TV 29.94± 0.75

Fig. 10 Results compare the three different regularisers and three differ-
entmethods against the unlearnedTV reconstruction on the tomography
inverse problem. The table shows the mean and standard deviations
of PSNR values of 100 reconstructions. The plots show five example

reconstructions, comparing the AE and TV reconstructions. The left
column shows the ground truth, even columns the reconstructions and
odd columns the residuals with the PSNR values (Color figure online)
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Fig. 11 Tomography inverse
problem on random images
from the shapes+ dataset. It
compares the use of sparse
method, where sparsity is
measured in the TV-norm, with
a standard TV reconstruction.
The generator is a
ten-dimensional VAE trained on
Shapes images. In the final
column, the part of the
reconstruction lying in the range
of the generator is coloured red
and the sparse addition is green
(Color figure online)

structed images. ThemeanPSNRover 100 test images for the
sparse case is 32.83 with a standard deviation of 0.65 and for
the TV reconstruction is 32.01 with a standard deviation of
0.67. Figure11 shows five reconstructions. The sparse devi-
ations allow reconstruction of the bright spot demonstrating
that generative regularisers can also be effective on images
close to, but not in, the training distribution.

5.5 FastMRIDataset

We also train a VAE to produce knee FastMRI images.
The VAE architecture is based on Narnhofer et al. [50]. The
FastMRI knee dataset contains data 796 fully sampled knee
MRI magnitude images [89, 90], without fat suppression.
We extract 3,872 training and 800 test ground truth images
from the dataset, selecting images from near the centre of the
knee, resizing the images to 128 × 128 pixels and rescaling
to the pixel range [0, 1]. The FastMRI VAE models took
approximately 12h to train on the same system as above.

Results for the tomography inverse problem with added
Gaussian noise of varying standard deviation are given in Fig.
12. For each image and noise level, the same noise instance
is used for each reconstruction method, and additionally, for
each method, a range of regularisation parameters are tested,
and the reconstruction with the best PSNR value is chosen.
The plot shows how the PSNR values, averaged over 50 test

images, vary with the noise level. The relaxedmethod gives
the best PSNR values, outperforming Tikhonov although
with a larger variance. The sparsemethod curve has a similar
shape to Tikhonov, but performs consistently worse suggest-
ing that this choice of deviations from the generator is not
suited to this dataset, generator or inverse problem. We see
that for the hardmethod the results are consistent across the
range of noise levels, not improving with reduced noise. The
example images reflect the data with the hard reconstruction
doing comparatively better with larger noise levels, but the
relaxedmethod captures more of the fine details at the lower
noise level.

6 Conclusions and Open Problems

We considered the use of a generator, from a generative
machine learning model, as part of the regulariser of an
inverse problem, generative regularisers. Generative regu-
larisers link the theoretically well-understood methods of
variational regularisationwith state-of-the-artmachine learn-
ing models. The trained generator outputs data similar to
training data and the regulariser restricts solutions (close)
to the range of the generator. The cost of these generative
regularisers is in the need for generative model training,
the requirement for a large amount of training data and the

123



50 Journal of Mathematical Imaging and Vision (2024) 66:37–56

Fig. 12 Reconstructions of the tomography inverse problem with addi-
tive Gaussian noise of varying standard deviations. Regularisation
parameters are chosen tomaximise the PSNR value for each image. The

left shows the average PSNR values, taken over 50 test images, with the
standard deviation in the error bars and the right shows one particular
example reconstruction with PSNR values (Color figure online)

difficulty of the resulting non-convex optimisation scheme.
Weighing up the costs and benefits will depend on the inverse
problem and the availability of data.

We compared three different types of generative regularis-
ers which either restrict solutions to exactly the range of the
generator or allow small or sparse deviations. We found that
in simpler datasets the restriction to the range of the generator
was successful. Where the ground truth was more complex
then allowing small deviations produced the best results. A
keybenefit of generative regularisers over other deep learning
approaches is that paired training data is not required, mak-
ing the method flexible to changes in the forward problem.
We demonstrated the use of generative regularisers on decon-
volution and fully sampled tomography problems, both with
gradually decaying singular values of the forward operator;
and compressed sensing, with a large kernel and non-unique
solutions.

The training of the generator is crucial to the success of
generative regularisers, and a key contribution of this report
is a set of desirable properties for a generator. Numerical tests
linked to these properties were discussed and applied to three
generative models: AEs, VAEs and GANs. None of these
models fulfils the criteria completely. We observed known
issues such as mode collapse and discriminator failure in the
GAN, blurry images in the VAE and the lack of a prior in the
AE. In the inverse problem experiments in this paper, the AE
and the VAE yielded the most consistent results. The success
of the AE, despite the lack of prior on the latent space, sur-
prised us.We suspect the implicit regularisation of the model
from the architecture and initialisations helped make the AE
a usable generator. The GANmodels did worst in the inverse

problem examples: they generally seemed more sensitive to
the initialisation of the non-convex optimisation, making the
optimal point in the latent space difficult to recover.

6.1 Future Outlook

We identify three key areas for future growth in the field.
Firstly, the desired criteria set out in Sect. 4 for a generative
model to be an effective regulariser are useful guidelines but
they are not mathematically precise. The field of generative
modelling is growing quickly and generators are improving
every day. For safety-critical inverse problems, such asmedi-
cal imaging, being able to assess the quality of a given trained
generator quantitatively, would be hugely beneficial. Future
work could consider refining these criteria into mathemati-
cally precise statements that could be used to assess a given
regulariser.

Secondly, we note that the hard, soft and sparse
methods are not always regularisers in the strict mathemat-
ical definition of a linear regulariser (see definition 4.2 of
[3]). For example for X = Y = R

2, A = I , Z = R and
G(z) = (z, z2)T , and observed data y = (0, 4)T , due to
the non-convexity of the range of the generative model, for
small values of μ, all three regularisers would not give a
unique solution to the optimisation task and would be sensi-
tive to noise in the first coordinate of Y . Future work could
consider conditions on the generator to indeed yield a con-
vergent regularisation method.

Finally, generative models are currently trained first and
subsequently applied to an inverse problem. The benefit of
this split approach is that the model does not need retraining
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if there are changes in the forward problem. However, future
work could consider how to train generative models with
inverse problems inmind. For example, linking to the desired
criteria, if property B1 was refined to require Lipschitz con-
tinuity with a small coefficient, then with suitable choices of
architecture and loss function, this could be ensured. Simi-
larly, if convexity of the generator was required, then convex
architectures could be considered. With a specific inverse
problem in mind, one could also consider training the gen-
erator with a penalty for producing images with artefacts or
by choosing a loss function to encourage a smooth transition
between images from the same subject.
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Appendix A: Optimisation Algorithms

Algorithm 1 Gradient Descent with Backtracking to solve
minz f (z).
1: Initialise z0, L > 0, 0 < η0 < 1, η1 > 1.
2: for i = 1, ..., K do
3: Let z̃(L) := zi−1 − 1

L ∇ f (zi−1)

4: while f (z̃(L)) ≥ f (zi−1) − 1
2L ‖∇ f (zi−1)‖22 do

5: L = Lη1
6: end while
7: zi = z̃ and L = Lη0.
8: end for

Algorithm 2Alternating gradient descent with backtracking
to solve minz,x f (z, x).
1: Initialise z0 and x0, Lz > 0,Lx > 0, 0 < η0 < 1 and η1 > 1
2: for i = 1, ...., K do
3: Let z̃(Lz) := zi − 1

Lz
∇ f (zi , xi )

4: while f (z̃(Lz), xi ) ≥ f (zi , xi ) − 1
2Lz

‖∇ f (zi , xi )‖22 do
5: Lz = Lzη1
6: end while
7: Let zi+1 = z̃(Lz) and then Lz = Lzη0

8: Let x̃(Lx ) := xi − 1
Lx

∇ f (zi+1, xi )

9: while f (zi+1, x̃(Lx )) ≥ f (zi+1, xi ) − 1
2Lx

‖∇ f (zi+1, xi )‖22 do
10: Lx = Lxη1
11: end while
12: Let xi+1 = x̃(xL ) and Lx = Lxη0
13: end for

Algorithm 3 PALM with backtracking to solve
minz,u f (z, u) + g1(z) + g2(u). Define proxh(z) =
argminx {h(x) + 1

2‖x − z‖22}.
1: Initialise z0, u0, Lz > 0, Lx > 0, 0 < η0 < 1 and η1 > 1.
2: for i = 1, ...K do
3: Let z̃(Lz) := prox 1

Lz
g1

(zi − 1
Lz

∇z f (zi , ui ))

4: while f (z̃(Lz), ui ) > f (zi , ui ) + ∇z f (zi , ui )T (z̃(Lz) − ui ) +
Lz
2 ‖z̃(Lz) − zi‖22 do

5: Lz = Lzη1
6: end while
7: Let zi+1 = z̃(Lz) and then Lz = Lzη0

8: Let ũ(Lu) := prox 1
Lu

g2
(ui − 1

Lu
∇u f (zi+1, ui ))

9: while f (zi+1, ũ(Lu)) > f (zi+1, ui )+∇u f (zi+1, ui )T (ũ(Lu)−
ui ) + Lu

2 ‖ũ(Lu) − ui‖22 do
10: end while
11: Let ui+1 = ũ(Lu) and then set Lu = Luη0
12: end for
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Appendix B: Generative Model Architectures

The architectures for the three different generative models,
for the different datasets, are given in this Appendix (Figs.
13, 14, 15, 16).

Fig. 13 Definitions used in Figs. 14, 15 and 16 (Color figure online)

Fig. 14 The architectures for the 3 generative models, AE, VAE and GAN, for the MNIST dataset. The convolution block definitions are given in
Fig. 13 (Color figure online)
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Fig. 15 The architectures for the 3 generative models, AE, VAE and GAN, for the Shapes dataset. The convolution block definitions are given
in Fig. 13 (Color figure online)

Fig. 16 The architectures for
the knee dataset VAE. The
convolution block definitions
are given in Fig. 13 (Color
figure online)
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