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Abstract
Periodic Geometry studies isometry invariants of periodic point sets that are also continuous under perturbations. The motiva-
tions come from periodic crystals whose structures are determined in a rigid form, but any minimal cells can discontinuously
change due to small noise in measurements. For any integer k ≥ 0, the density function of a periodic set S was previously
defined as the fractional volume of all k-fold intersections (within a minimal cell) of balls that have a variable radius t and
centers at all points of S. This paper introduces the density functions for periodic sets of points with different initial radii
motivated by atomic radii of chemical elements and by continuous events occupying disjoint intervals in time series. The con-
tributions are explicit descriptions of the densities for periodic sequences of intervals. The new densities are strictly stronger
and distinguish periodic sequences that have identical densities in the case of zero radii.
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1 Motivations for the Density Functions of
Periodic Sets

This work substantially extends the previous conference
paper [3] in Discrete Geometry and Mathematical Morphol-
ogy 2022. The past work explicitly described the density
functions for periodic sequences of zero-sized points. The
new work extends these analytic descriptions to periodic
sequences whose points have non-negative radii.

The proposed extension to the weighted case is motivated
by crystallography and materials chemistry [1] because all
chemical elements have different atomic radii. In dimension
1, the key motivation is the study of periodic time series
consisting of continuous and sequential (non-overlapping)
events represented by disjoint intervals. Any such interval
[a, b] ⊂ R for a ≤ b is the one-dimensional ball with the
center a+b

2 and radius b−a
2 .

The point-set representation of periodic crystals is the
most fundamentalmathematicalmodel for crystallinemateri-
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als because nuclei of atoms arewell-defined physical objects,
while chemical bonds are not real sticks or strings but
abstractly represent inter-atomic interactions depending on
many thresholds for distances and angles.

Since crystal structures are determined in a rigid form,
their most practical equivalence is rigid motion (a composi-
tion of translations and rotations) or isometry that maintains
all inter-point distances and includes also mirror reflections
[22].

Now we introduce the key concepts. Let R
n be Euclidean

space, Z be the set of all integers.

Definition 1.1 (a lattice �, a unit cell, a motif, a periodic
point set) For any linear basis v1, . . . , vn of R

n , a lattice is

� = {
n∑

i=1
civi : ci ∈ Z}. The unit cell U (v1, . . . , vn) =

{
n∑

i=1
civi : 0 ≤ ci < 1} is the parallelepiped defined by

the basis above. A motif M ⊂ U is any finite set of points
p1, . . . , pm ∈ U . A periodic point set [22] is the Minkowski
sum S = M + � = {u + v | u ∈ M, v ∈ �}. �

In dimension n = 1, a lattice is defined by any non-zero
vector v ∈ R, any periodic point set S is a periodic sequence
{p1, . . . , pm} + |v|Z with the period |v| equal to the length
of the vector v.
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Definition 1.2 (density functions for periodic sets of points
with radii) Let a periodic set S = � + M ⊂ R

n have a
unit cell U . For every point p ∈ M , fix a radius r(p) ≥ 0.
For any integer k ≥ 0, let Uk(t) be the region within the
cell U covered by exactly k closed balls B̄(p; r(p) + t) for
t ≥ 0 and all points p ∈ M and their translations by �. The
k-th density function ψk[S](t) = Vol[Uk(t)]/Vol[U ] is the
fractional volume of the k-fold intersections of these balls
within U . �

In Definition 1.2, the balls are growing at all points of S,
because centers p ∈ M are translated by all lattice vectors
v ∈ �. The initially different radii ri are motivated by real
lengths of continuous events in periodic time series for n = 1
and also by atomic radii of different chemical elements for
n = 3. Another (possibly, non-linear) growth of radii lead to
more complicated density functions.

The density ψk[S](t) can be interpreted as the probability
that a random (uniformly chosen in U ) point q is at a maxi-
mum distance t to exactly k balls with initial radii r(p) and
all centers p ∈ S.

For k = 0, the 0-th density ψ0[S](t) measures the
fractional volume of the empty space not covered by any
expanding balls B̄(p; r(p) + t)

In the simplest case of radii r(p) = 0, the infinite sequence
�[S] = {ψk(t)}+∞

k=0 was called in [6, section 3] the density
fingerprint of a periodic point set S. For k = 1 and small
t > 0 while all equal-sized balls B̄(p; t) remain disjoint, the
1st density ψ1[S](t) increases proportionally to tn but later
reaches a maximum and eventually drops back to 0 when
all points of R

n are covered of by at least two balls. See
the densities ψk , k = 0, . . . , 8 for the square and hexagonal
lattices in [6, Fig. 2].

The original densities helped find a missing crystal in
the Cambridge Structural Database, which was accidentally
confused with a slight perturbation (measured at a different
temperature) of another crystal (polymorph) with the same
chemical composition, see Sect. 7 [6].

The new weighted case with radii r(p) ≥ 0 in Defini-
tion 1.2 is even more practically important due to different
van der Waals radii, which are individually defined for all
chemical elements.

The key advantage of density functions over other isom-
etry invariants of periodic crystals (such as symmetries or
conventional representations based on a geometry of a min-
imal cell) is their continuity under perturbations, see details
in Sect. 2 reviewing the related past work.

The only limitation is the infinite size of densities ψk(t)
due to the unbounded parameters: integer index k ≥ 0 and
continuous radius t ≥ 0.

We state the following problem in full generality to moti-
vate future work on these densities.

Problem 1.3 (computation of ψk) Verify if the density func-
tions ψk[S](t) from Definition 1.2 can be computed in a
polynomial time (in the size m of a motif of S) for a fixed
dimension n. �

The main contribution of this work is the full solution
of Problem 1.3 for n = 1. Despite ψk[S](t) depends on
infinitely many k and t , Theorems 3.2, 4.2, 5.2, 6.2, and
Corollary 6.5.

2 Review of Related Past Work

Due to close contacts between bonded atoms, dense packings
approximate real crystals. Hence dense periodic packings
were studied for various objects including tetrahedra in R

3

[18] and were optimized for all regular polygons and each of
the 17 crystallographic groups in R

2 [16, 17].
Periodic Geometry was initiated in 2020 by the problem

[12, section 2.3] to design a computable metric on isometry
classes of lattices, which is continuous under perturbations
of a lattice basis.

Though, a Voronoi domain is combinatorially unstable
under perturbations, its geometric shape was used to intro-
duce two continuous metrics [12, Theorems 2, 4] requiring
approximations due to a minimization over infinitely many
rotations.

Similar minimizations over rotations or other continuous
parameters are required for the complete invariant isosets [2]
and density functions, which can be practically computed
in low dimensions [14] whose completeness was proved for
generic periodic point sets inR

3 [6, Theorem 2]. The density
fingerprint �[S] turned out to be incomplete [6, section 5]
in the example below.

Example 2.1 (periodic sequences S15, Q15 ⊂ R) Widdow-
son et al. [22, Appendix B] discussed homometric sets
that can be distinguished by the invariant AMD (Average
Minimum Distances) and not by diffraction patterns. The
sequences

S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z,

Q15 = {0, 1, 3, 4, 6, 8, 9, 12, 14} + 15Z

have the unit cell [0, 15] shown as a circle in Fig. 1.
These periodic sequences [7] are obtained as Minkowski

sums S15 = U + V + 15Z and Q15 = U − V + 15Z for
U = {0, 4, 9}, V = {0, 1, 3}. �

For rational-valued periodic sequences, [7, Theorem 4]
proved that r -th order invariants (combinations of r -factor
products) up to r = 6 are enough to distinguish such
sequences up to a shift (a rigid motion of R without reflec-
tions).
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Fig. 1 Circular versions of the periodic sets S15, Q15

The AMD invariant was extended to the Pointwise Dis-
tance Distribution (PDD), whose generic completeness [20,
Theorem 4.4] was proved in any dimension n ≥ 1. However,
there are finite sets in R

3 [13, Fig. S4] with the same PDD,
which were distinguished by more sophisticated distance-
based invariants in [19, 21].

The subarea of Lattice Geometry developed continuous
parameterizations for the moduli spaces of lattices consid-
ered up to isometry in dimension two [5, 11] and three [8].

For 1-periodic sequences of points in Rn , complete isom-
etry invariants with continuous and computable metrics
appeared in [10], see related results for finite clouds of unla-
beled points [9, 15].

3 The 0-th Density FunctionÃ0

This section proves Theorem 3.2 explicitly describing the 0-
th density function ψ0[S](t) for any periodic sequence S ⊂
R. All intervals are considered closed and called disjoint if
their open interiors (not endpoints) have no common points.

For convenience, scale any periodic sequence S to period
1 so that S is given by points 0 ≤ p1 < · · · < pm < 1
with radii r1, . . . , rm , respectively. Since the expanding balls
in R are growing intervals, volumes of their intersections
linearly change with respect to the variable radius t . Hence
any density function ψk(t) is piecewise linear and uniquely
determined by corner points (a j , b j ) where the gradient of
ψk(t) changes.

To prepare the proof of Theorem 3.2, we first consider
Example 3.1 for the simple sequence S.

Example 3.1 (0-th density function ψ0) Let the periodic
sequence S = {0, 1

3 ,
1
2 } + Z have three points p1 = 0,

p2 = 1
3 , p3 = 1

2 of radii r1 = 1
12 , r2 = 0, r3 = 1

12 ,
respectively. Figure2 shows each point pi and its growing
interval

Li (t) = [(pi − ri ) − t, (pi + ri ) + t] of the length 2ri + 2t

for i = 1, 2, 3 in its own color: red, green, blue.

Fig. 2 The sequence S = {0, 1
3 , 1

2 } + Z has the points of weights
1
12 , 0, 1

12 , respectively. The intervals around the red point 0 ≡ 1
(mod 1), green point 1

3 , blue point
1
2 have the same color for various

radii t , see Examples 3.1, 4.1, 5.1

Fig. 3 Left: the 0-th density function ψ0(t) for the 1-period sequence
S = {0, 1

3 , 1
2 } + Z with radii 0. Right: the 0-th density ψ0(t) for the

1-period sequence S whose points 0, 1
3 , 1

2 have radii 1
12 , 0, 1

12 , respec-
tively, see Example 3.1

By Definition 1.2, each density function ψk[S](t) mea-
sures a fractional length covered by exactly k intervals within
the unit cell [0, 1]. It is convenient to periodically map the
endpoints of each growing interval to the unit cell [0, 1].

For instance, the interval [− 1
12 − t, 1

12 + t] of the point
p1 = 0 ≡ 1 (mod 1) maps to the red intervals [0, 1

12 + t] ∪
[ 1112 − t, 1] shown by solid red lines in Fig. 2. The same image
shows the green interval [ 13 − t, 1

3 + t] by dashed lines and
the blue interval [ 5

12 − t, 7
12 + t] by dotted lines.

At the moment t = 0, since the starting intervals are dis-
joint, they cover the length l = 2( 1

12 + 0 + 1
12 ) = 1

3 . The
non-covered part of [0, 1] has length 1− 1

3 = 2
3 . So the graph

ofψ0(t) at t = 0 starts from the point (0, 2
3 ), see Fig. 3 (right).

At thefirst criticalmoment t = 1
24 when the green andblue

intervals collide at p = 3
8 , only the intervals [ 18 , 7

24 ] ∪ [ 58 , 7
8 ]

of total length 5
12 remain uncovered. Hence ψ0(t) linearly

drops to the point ( 1
12 ,

5
12 ). At the next critical moment t = 1

8
when the red and green intervals collide at p = 5

24 , only the
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interval [ 1724 , 19
24 ] of length 1

12 remain uncovered, so ψ0(t)
continues to ( 18 ,

1
12 ).

The graph ofψ0(t) finally returns to the t-axis at the point
( 16 , 0) and remains there for t ≥ 1

6 .
The piecewise linear behavior of ψ0(t) can be described

by specifying the corner points in Fig. 3: (0, 2
3 ), ( 1

24 ,
5
12 ),

( 18 ,
1
12 ), (

1
6 , 0). �

Theorem3.2 extendsExample 3.1 to anyperiodic sequence
S and implies that the 0-th density functionψ0(t) is uniquely
determined by the ordered gap lengths between successive
intervals.

Theorem 3.2 (description of ψ0) Let a periodic sequence
S = {p1, . . . , pm}+ Z consist of disjoint intervals with cen-
ters 0 ≤ p1 < · · · < pm < 1 and radii r1, . . . , rm ≥ 0.

Consider the total length l = 2
m∑

i=1
ri and gaps between suc-

cessive intervals gi = (pi − ri ) − (pi−1 + ri−1), where
i = 1, . . . ,m and p0 = pm − 1, r0 = rm. Put the gaps in
increasing order: g[1] ≤ g[2] ≤ · · · ≤ g[m].

Then the 0-th densityψ0[S](t) is piecewise linear with the
following (unordered) corner points: (0, 1−l) and (

g[i]
2 , 1−

l −
i−1∑

j=1
g[ j] − (m − i + 1)g[i]) for i = 1, . . . ,m, so the last

corner is (
g[m]
2 , 0).

If any corners are repeated, e.g., when g[i−1] = g[i], these
corners are collapsed into one corner. �

Proof By Definition 1.2 the 0-th density function ψ0(t)
measures the total length of subintervals in the unit cell
[0, 1] that are not covered by any of the growing intervals
Li (t) = [pi − ri − t, pi + ri + t], i = 1, . . . ,m. For t = 0,
since all initial intervals Li (0) are disjoint, they cover the

total length 2
m∑

i=1
ri = l.

Then the graph of ψ0(t) at t = 0 starts from the point
(0, 1 − l). So ψ0(t) linearly decreases from the initial value
ψ0(0) = 1 − l except for m critical values of t where one
of the gap intervals [pi + ri + t, pi+1 − ri+1 − t] between
successive growing intervals Li (t) and Li+1(t) shrinks to a
point. These critical radii t are ordered according to the gaps
g[1] ≤ g[2] ≤ · · · ≤ g[m].

The first critical radius is t = 1
2g[1], when a shortest gap

interval of the length g[1] is covered by the growing suc-
cessive intervals. At this moment t = 1

2g[1], all m growing
intervals Li (t) have the total length l + mg[1]. Then the 0-
th density ψ0(t) has the first corner points (0, 1 − l) and
(
g[1]
2 , 1 − l − mg[1]).
The second critical radius is t = g[2]

2 , when all intervals
Li (t) have the total length l+g[1] +(m−1)g[2], i.e., the next
corner point is (

g[2]
2 , 1−l−g[1]−(m−1)g[2]). If g[1] = g[2],

then both corner points coincide, soψ0(t)will continue from
the joint corner point.

The above pattern generalizes to the i-th critical radius
t = 1

2g[i], when all covered intervals have the total length
i−1∑

j=1
g[ j] (for the fully covered intervals) plus (m − i + 1)g[i]

(for the still growing intervals).
For the final critical radius t = g[m]

2 , the whole unit cell

[0, 1] is covered by the grown intervals because
m∑

j=1
g[ j] =

1 − l. The final corner is (
g[m]
2 , 0). 	


Example 3.3 applies Theorem 3.2 to get ψ0 found for the
periodic sequence S in Example 3.1.

Example 3.3 (using Theorem 3.2) The sequence S = {0, 1
3 ,

1
2 } + Z in Example 3.1 with points p1 = 0, p2 = 1

3 , p3 = 1
2

of radii r1 = 1
12 , r2 = 0, r3 = 1

12 , respectively, has l =
2(r1 + r2 + r3) = 1

3 and the initial gaps between successive
intervals

g1 = p1 − r1 − p3 − r3 =
(

1 − 1

12

)

−
(
1

2
+ 1

12

)

= 1

3
,

g2 = p2 − r2 − p1 − r1 =
(
1

3
− 0

)

−
(

0 + 1

12

)

= 1

4
,

g3 = p3 − r3 − p2 − r2 =
(
1

2
− 1

12

)

−
(
1

3
+ 0

)

= 1

12
.

Order the gaps: g[1] = 1
12 < g[2] = 1

4 < g[3] = 1
3 .

1 − l = 1 − 1

3
= 2

3
,

1 − l − 3g[1] = 2

3
− 3

12
= 5

12
,

1 − l − g[1] − 2g[2] = 2

3
− 1

12
− 2

4
= 1

12
,

1 − l − g[1] − g[2] − g[3] = 2

3
− 1

12
− 1

4
− 1

3
= 0.

By Theorem 3.2, ψ0(t) has the corner points

(0, 1 − l) =
(

0,
2

3

)

,

(
1

2
g[1], 1 − l − 3g[1]

)

=
(

1

24
,
5

12

)

,

(
1

2
g[2], 1 − l − g[1] − 2g[2]

)

=
(
1

8
,
1

12

)

,

(
1

2
g[3], 1 − l − g[1] − g[2] − g[3]

)

=
(
1

6
, 0

)

.

See the graph of the 0-th density ψ0(t) in Fig. 3. �

By Theorem 3.2, any 0-th density function ψ0(t) is
uniquely determined by the (unordered) set of gap lengths
between successive intervals. Hence we can re-order these
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intervals without changing ψ0(t). For instance, the periodic
sequence Q = {0, 1

2 ,
2
3 } + Z with points 0, 1

2 ,
2
3 of weights

1
12 ,

1
12 , 0 has the same set ordered gaps g[1] = 1

12 , d[2] = 1
3 ,

d[3] = 1
2 as the periodic sequence S = {0, 1

3 ,
1
2 } + Z in

Example 3.1.
The above sequences S, Q are related by the mirror

reflection t �→ 1 − t . One can easily construct many non-
isometric sequences with ψ0[S](t) = ψ0[Q](t). For any
1 ≤ i ≤ m − 3, the sequences Sm,i = {0, 2, 3, . . . , i +
2, i +4, i +5, . . . ,m+2}+ (m+2)Z have the same interval
lengths d[1] = · · · = d[m−2] = 1, d[m−1] = d[m] = 2 but
are not related by isometry (translations and reflections in
R) because the intervals of length 2 are separated by i − 1
intervals of length 1 in Sm,i .

4 The 1st Density FunctionÃ1

This section proves Theorem 4.2 explicitly describing the
1st density function ψ1[S](t) for any periodic sequence S
of disjoint intervals. To prepare the proof of Theorem 4.2,
Example 4.1 finds ψ1[S] for the sequence S from Exam-
ple 3.1.

Example 4.1 (ψ1 for S = {0, 1
3 ,

1
2 } + Z) The 1st density

functionψ1(t) can be obtained as a sumof the three trapezoid
functions ηR , ηG , ηB , each measuring the length of a region
covered by a single interval of one color, see Fig. 2.

At the initial moment t = 0, the red intervals [0, 1
12 ] ∪

[ 1112 , 1] have the total length ηR(0) = 1
6 . These red intervals

[0, 1
12 + t] ∪ [ 1112 − t, 1] for t ∈ [0, 1

8 ] grow until they touch
the green interval [ 7

24 ,
3
8 ] and have the total length ηR( 18 ) =

1
6 + 2

8 = 5
12 in the second picture of Fig. 2. So the graph of

the red length ηR(t) linearly grows with gradient 2 from the
point (0, 1

6 ) to the corner point (
1
8 ,

5
12 ).

For t ∈ [ 18 , 1
6 ], the left red interval is shrinking at the

same rate (due to the overlapping green interval) as the right
red interval continues to grow until t = 1

6 , when it touches
the blue interval [ 14 , 3

4 ]. Hence the graph of ηR(t) remains
constant for t ∈ [ 18 , 1

6 ] up to the corner point ( 16 ,
5
12 ).

After that, the graph of ηR(t) linearly decreases (with gra-
dient−2) until all red intervals are fully covered by the green
and blue intervals at moment t = 3

8 , see the 6th picture in
Fig. 2.

Hence the trapezoid function ηR has the piecewise lin-
ear graph through the corner points (0, 1

6 ), (
1
8 ,

5
12 ), (

1
6 ,

5
12 ),

( 38 , 0). After that, ηR(t) = 0 remains constant for t ≥ 3
8 . Fig-

ure4 shows the graphs ofηR, ηG , ηB andψ1 = ηR+ηG+ηB .
�

Theorem 4.2 extends Example 4.1 and proves that any
ψ1(t) is a sum of trapezoid functions whose corners are
explicitly described. We consider any index i = 1, . . . ,m

Fig. 4 Left: the trapezoid functions ηR, ηG , ηB and the 1st den-
sity function ψ1(t) for the 1-period sequence S whose points 0, 1

3 , 1
2

have radii 1
12 , 0, 1

12 , see Example 4.1. Right: The trapezoid functions
ηGB , ηBR, ηRG and the 2nd density function ψ2(t) for the 1-period
sequence S whose points 0, 1

3 , 1
2 have radii 1

12 , 0, 1
12 , see Example 5.1

(of a point pi or a gap gi ) modulo m so that m + 1 ≡ 1
(mod m).

Theorem 4.2 (description of ψ1) Let a periodic sequence
S = {p1, . . . , pm}+ Z consist of disjoint intervals with cen-
ters 0 ≤ p1 < · · · < pm < 1 and radii r1, . . . , rm ≥ 0,
respectively. Consider thegaps gi = (pi−ri )−(pi−1+ri−1),
between successive intervals, where i = 1, . . . ,m and
p0 = pm − 1, r0 = rm. Then the 1st density ψ1(t) is the
sum of m trapezoid functions ηi , i = 1, . . . ,m, with the cor-
ners (0, 2ri ), (

gi
2 , g+2ri ), (

gi+1
2 , g+2ri ), (

gi+gi+1
2 + ri , 0),

where g = min{gi , gi+1}.
Hence ψ1(t) is determined by the unordered set of

unordered pairs (gi , gi+1), i = 1, . . . ,m. �

Proof The 1st density ψ1(t) equals the total length of sub-
regions covered by exactly one of the intervals Li (t) =
[pi − ri − t, pi + ri + t], i = 1, . . . ,m, where all inter-
vals are taken modulo 1 within [0, 1].

Hence ψ1(t) is the sum of the functions η1i , each mea-
suring the length of the subinterval of Li (t) not covered by
other intervals L j (t), j ∈ {1, . . . ,m} − {i}.

Since the initial intervals Li (0) are disjoint, each func-
tion η1i (t) starts from the value η1i (0) = 2ri and linearly
grows (with gradient 2) up to ηi (

1
2g) = 2ri + g, where

g = min{gi , gi+1}, when the growing interval Li (t) of the
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Fig. 5 The distances g, s, g′ between line intervals used in the proofs
of Theorems 4.2 and 5.2, shown here for k = 3

length 2ri + 2t = 2ri + g touches its closest neighboring
interval Li±1(t) with a shortest gap g.

If (say) gi < gi+1, then the subinterval covered only by
Li (t) is shrinking on the left and is growing at the same rate
on the right until Li (t) touches the growing interval Li+1(t)
on the right. During this growth, when t is between 1

2gi and
1
2gi+1, the trapezoid function ηi (t) = g remains constant.

If gi = gi+1, this horizontal line collapses to one point
in the graph of ηi (t). For t ≥ max{gi , gi+1}, the subinterval
covered only by Li (t) is shrinking on both sides until the
neighboring intervals Li±1(t) meet at a mid-point between
their initial closest endpoints pi−1 + ri−1 and pi+1 − ri+1.
This meeting time is

t = pi+1 − ri+1 − pi−1 − ri−1

2
= gi + 2ri + gi+1

2
,

which is also illustrated by Fig. 5. So the trapezoid function
ηi has the corners (0, 2ri ), (

gi
2 , 2ri + g), (

gi+1
2 , 2ri + g),

(
gi+gi+1

2 + ri , 0) as expected. 	

Example 4.3 applies Theorem 4.2 to get ψ1 found for the

periodic sequence S in Example 4.1.

Example 4.3 (using Theorem 4.2 for ψ1) The sequence S =
{0, 1

3 ,
1
2 } + Z in Example 4.1 with points p1 = 0, p2 = 1

3 ,
p3 = 1

2 of radii r1 = 1
12 , r2 = 0, r3 = 1

12 , respectively, has
the initial gaps between successive intervals g1 = 1

3 , g2 = 1
4 ,

g3 = 1
12 , see all the computations in Example 3.3.

Case (R). In Theorem 4.2 for the trapezoid function ηR =
η1 measuring the fractional length covered only by the red
interval, we set i = 1. Then ri = 1

12 , gi = 1
3 and gi+1 = 1

4 ,
so

gi + gi+1

2
+ ri = 1

2

(
1

3
+ 1

4

)

+ 1

12
= 3

8
,

g = min{gi , gi+1} = 1

4
, g + 2ri = 1

4
+ 2

12
= 5

12
.

Then ηR = η1 has the following corner points:

(0, 2ri ) = (0,
1

6
),

(gi
2

, g + 2ri
)

=
(
1

6
,
5

12

)

,

(gi+1

2
, g + 2ri

)
=

(
1

8
,
5

12

)

,

(
gi + gi+1

2
+ ri , 0

)

=
(
3

8
, 0

)

,

where the two middle corners are accidentally swapped due
to gi > gi+1 but they define the same trapezoid function as
in the first picture of Fig. 4.
Case (G). In Theorem 4.2 for the trapezoid function ηG = η2
measuring the fractional length covered only by the green
interval, we set i = 2. Then ri = 0, gi = 1

4 and gi+1 = 1
12 ,

so

gi + gi+1

2
+ ri = 1

2

(
1

4
+ 1

12

)

+ 0 = 1

6
,

g = min{gi , gi+1} = 1

12
, g + 2ri = 1

12
+ 0 = 1

12
.

Then ηG = η2 has the following corner points exactly as
shown in the second picture of Fig. 4 (left):

(0, 2ri ) = (0, 0),
(gi
2

, g + 2ri
)

=
(
1

8
,
1

12

)

,

(gi+1

2
, g + 2ri

)
=

(
1

24
,
5

12

)

,

(
gi + gi+1

2
+ ri , 0

)

=
(
1

6
, 0

)

.

Case (B). In Theorem 4.2 for the trapezoid function ηB =
η3 measuring the fractional length covered only by the blue
interval, we set i = 3. Then ri = 1

12 , gi = 1
12 and gi+1 = 1

3 ,
so

gi + gi+1

2
+ ri = 1

2

(
1

12
+ 1

3

)

+ 1

12
= 7

24
,

g = min{gi , gi+1} = 1

12
, g + 2ri = 1

12
+ 2

12
= 1

4
.

Then ηB = η3 has the following corner points:

(0, 2ri ) = (0,
1

6
),

(gi
2

, g + 2ri
)

=
(

1

24
,
1

4

)

,

(gi+1

2
, g + 2ri

)
=

(
1

6
,
1

4

)

,

(
gi + gi+1

2
+ ri , 0

)

=
(

7

24
, 0

)

exactly as shown in the third picture of Fig. 4. �

5 Higher Density FunctionsÃk

This section proves Theorem 5.2 describing the k-th density
function ψk[S](t) for any k ≥ 2 and a periodic sequence S
of disjoint intervals.
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To prepare the proof of Theorem 5.2, Example 5.1 com-
putes ψ2[S] for S from Example 3.1.

Example 5.1 (ψ2 for S = {0, 1
3 ,

1
2 } + Z) The density

ψ2(t) can be found as the sum of the trapezoid functions
ηGB, ηBR, ηRG , each measuring the length of a double inter-
section, see Fig. 2.

For the green interval [ 13 − t, 1
3 + t] and the blue interval

[ 5
12 − t, 7

12 + t], the graph of the function ηGB(t) is piecewise
linear and starts at the point ( 1

24 , 0) because these intervals
touch at t = 1

24 .
The green-blue intersection [ 5

12 − t, 1
3 + t] grows until

t = 1
6 , when the resulting interval [ 14 , 1

2 ] touches the red
interval on the left. At the same time, the graph of ηGB(t) is
linearly growing (with gradient 2) to the corner ( 16 ,

1
4 ), see

Fig, 4.
For t ∈ [ 16 , 7

24 ], the green-blue intersection interval
becomes shorter on the left, but grows at the same rate on
the right until t = 7

24 when [ 18 , 5
8 ] touches the red interval

[ 58 , 1] on the right, see the 5th picture in Fig. 2. So the graph
of ηGB(t) remains constant up to the point ( 7

24 ,
1
4 ).

For t ∈ [ 7
24 ,

5
12 ], the green-blue intersection interval is

shortening from both sides. So the graph of ηGB(t) linearly
decreases (with gradient −2) and returns to the t-axis at the
corner ( 5

12 , 0) and then remains constant ηGB(t) = 0 for
t ≥ 5

12 .
Figure 4 shows all trapezoid functions for double inter-

sections and ψ2 = ηGB + ηBR + ηRG . �

Theorem 5.2 (description of ψk for k ≥ 2) Let a peri-
odic sequence S = {p1, . . . , pm} + Z consist of disjoint
intervals with centers 0 ≤ p1 < · · · < pm < 1 and
radii r1, . . . , rm ≥ 0, respectively. Consider the gaps gi =
(pi − ri ) − (pi−1 + ri−1) between the successive intervals
of S, where i = 1, . . . ,m and p0 = pm − 1, r0 = rm.

For k ≥ 2, the density function ψk(t) equals the sum
of m trapezoid functions ηk,i (t), i = 1, . . . ,m, each hav-

ing the following corner points: ( s2 , 0), (
g+s
2 , g), ( s+g′

2 , g),

(
g+s+g′

2 , 0), where g, g′ are the minimum and maximum
values in the pair {gi + 2ri , gi+k + 2ri+k−1}, and s =
i+k−1∑

j=i+1
g j + 2

i+k−2∑

j=i+1
r j . For k = 2, we have s = gi+1.

Hence ψk(t) is determined by the unordered set of the
ordered tuples (g, s, g′), i = 1, . . . ,m. �

Proof The k-th density function ψk(t) measures the total
fractional length of k-fold intersections among m intervals
Li (t) = [pi −ri −t, pi +ri +t], i = 1, . . . ,m. Nowwe visu-
alize all such intervals Li (t) in the line R without mapping
them modulo 1 to the unit cell [0, 1].

Since all radii ri ≥ 0, only k successive intervals can
contribute to k-fold intersections. So a k-fold intersec-
tion of growing intervals emerges only when two inter-

vals Li (t) and Li+k−1(t) overlap because their intersection
should be also covered by all the intermediate intervals
Li (t), Li+1(t), . . . , Li+k−1(t).

Then the density ψk(t) equals the sum of the m trapezoid
functions ηk,i , i = 1, . . . ,m, each equal to the length of the k-
fold intersection∩i+k−1

j=i L j (t) not covered by other intervals.
Then ηk,i (t) remains 0 until the first critical moment t when
2t equals the distance between the points pi+ri and pi+k−1−
ri+k−1 in R, see Fig. 5, so 2t =

i+k−1∑

j=i+1
g j + 2

i+k−2∑

j=i+1
r j = s.

Hence t = s
2 and ( s2 , 0) is the first corner point of ηk,i (t).

At t = s
2 , the interval of the k-fold intersection

∩i+k−1
j=i L j (t) starts expanding on both sides. Hence ηk,i (t)

starts increasing (with gradient 2) until the k-fold intersection
touches one of the neighboring intervals Li−1(t) or Li+k(t)
on the left or on the right.

The left interval Li−1(t) touches the k-fold intersection
∩i+k−1

j=i L j (t) when 2t equals the distance from pi−1 + ri−1

(the right endpoint of Li−1) to pi+k−1 − ri+k−1 (the left
endpoint of Li+k−1), see Fig. 5, so

2t =
i+k−1∑

j=i

g j + 2
i+k−2∑

j=i

r j = gi + 2ri + s.

The right interval Li+k−1(t ′) touches the k-fold intersec-
tion ∩i+k−1

j=i L j (t ′) when 2t ′ equals the distance from pi + ri
(the right endpoint of Li ) to pi+k − ri+k (the left endpoint
of Li+k), see Fig. 5, so

2t ′ =
i+k∑

j=i+1

g j + 2
i+k−1∑

j=i+1

r j = s + gi+k + 2ri+k−1.

If (say) gi + 2ri = g < g′ = gi+k + 2ri+k−1, the k-
fold intersection∩i+k−1

j=i L j (t)first touches Li−1 at the earlier
moment t before reaching Li+k(t ′) at the later moment t ′. At
the earlier moment, ηk,i (t) equals 2(t − s

2 ) = gi + 2ri = g
and has the corner (

g+s
2 , g).

After that, the k-fold intersection is shrinking on the left
and is expanding at the same rate on the right. So the function
ηk,i (t) = g remains constant until the k-fold intersection
touches the right interval Li+k(t ′). At this later moment t ′ =
s+gi+k

2 +ri+k−1 = g′, ηk,i (t ′) still equals g and has the corner
(
s+g′
2 , g).
If gi + 2ri = g′ > g = gi+k + 2ri+k−1, the growing

intervals Li−1(t) and Li+k−1(t) touch the k-fold intersec-
tion ∩i+k−1

j=i L j (t) in the opposite order. However, the above

arguments lead to the same corners (
g+s
2 , g) and (

s+g′
2 , g) of

ηk,i (t). If g = g′, the two corners collapse to one corner in
the graph of ηk,i (t).

The k-fold intersection ∩i+k−1
j=i L j (t) becomes fully cov-

ered when the intervals Li−1(t), Li+k(t) touch. At this
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moment, 2t equals the distance from pi−1 + ri−1 (the right
endpoint of Li−1) to pi+k − ri+k (the left endpoint of Li+k),

see Fig. 5, so 2t =
i+k∑

j=i
g j + 2

i+k−1∑

j=i
r j = gi + 2ri + s +

gi+k + 2ri+k−1 = g + s + g′. The graph of ηk,i (t) has the

corner (
g+s+g′

2 , 0). 	

Example 5.3 applies Theorem 5.2 to get ψ2 found for the

periodic sequence S in Example 3.1.

Example 5.3 (using Theorem 5.2 for ψ2) The sequence S =
{0, 1

3 ,
1
2 } + Z in Example 4.1 with points p1 = 0, p2 = 1

3 ,
p3 = 1

2 of radii r1 = 1
12 , r2 = 0, r3 = 1

12 , respectively, has
the initial gaps g1 = 1

3 , g2 = 1
4 , g3 = 1

12 , see Example 3.3.
In Theorem 5.2, the 2nd density function ψ2[S](t) is

expressed as a sum of the trapezoid functions computed via
their corners below.
Case (GB). For the function ηGB measuring the double inter-
sections of the green and blue intervals centered at p2 = pi
and p3 = pi+k−1, we set k = 2 and i = 2. Then we
have the radii ri = 0 and ri+1 = 1

12 , the gaps gi = 1
4 ,

gi+1 = 1
12 , gi+2 = 1

3 , and the sum s = gi+1 = 1
12 . The

pair {gi + 2ri , gi+2 + 2ri+1} = { 14 + 0, 1
3 + 2

12 } has the
minimum value g = 1

4 and maximum value g′ = 1
2 . Then

η2,2[S](t) = ηGB has the following corners as in the top
picture of Fig. 4 (right):

( s

2
, 0

)
=

(
1

24
, 0

)

,

(
g + s

2
, g

)

=
(
1

2
(
1

4
+ 1

12
),
1

4

)

=
(
1

6
,
1

4

)

,

(
s + g′

2
, g

)

=
(
1

2
(
1

12
+ 1

2
),
1

4

)

=
(

7

24
,
1

4

)

,

(
g + s + g′

2
, 0

)

=
(
1

2
(
1

4
+ 1

12
+ 1

2
), 0

)

=
(

5

12
, 0

)

.

Case (BR). For the trapezoid function ηBR measuring the
double intersections of the blue and red intervals centered
at p3 = pi and p1 = pi+k−1, we set k = 2 and i = 3.
Then we have the radii ri = 1

12 = ri+1, the gaps gi =
1
12 , gi+1 = 1

3 , gi+2 = 1
4 , and s = gi+1 = 1

3 . The pair
{gi+2ri , gi+2+2ri+1} = { 1

12+ 2
12 ,

1
4+ 2

12 } has theminimum
g = 1

4 and maximum g′ = 5
12 . Then η2,3[S](t) = ηBR has

the following corners as expected in the second picture of
Fig. 4 (right):

( s

2
, 0

)
=

(
1

6
, 0

)

,

(
g + s

2
, g

)

=
(
1

2

(
1

4
+ 1

3

)

,
1

4

)

=
(

7

24
,
1

4

)

,

(
s + g′

2
, g

)

=
(
1

2

(
1

3
+ 5

12

)

,
1

4

)

=
(
3

8
,
1

4

)

,

(
g + s + g′

2
, 0

)

=
(
1

2
(
1

4
+ 1

3
+ 5

12
), 0

)

=
(
1

2
, 0

)

.

Case (RG). For the trapezoid function ηRG measuring the
double intersections of the red and green intervals centered
at p1 = pi and p2 = pi+k−1, we set k = 2 and i = 1.
Then we have the radii ri = 1

12 and ri+1 = 0, the gaps
gi = 1

3 , gi+1 = 1
4 , gi+2 = 1

12 , and s = gi+1 = 1
4 . The pair

{gi +2ri , gi+2+2ri+1} = { 13 + 2
12 ,

1
12 +0} has the minimum

g = 1
12 and maximum g′ = 1

2 . Then η2,1[S](t) = ηRG has
the following corners:

( s

2
, 0

)
=

(
1

8
, 0

)

,

(
g + s

2
, g

)

=
(
1

2

(
1

12
+ 1

4

)

,
1

12

)

=
(
1

6
,
1

12

)

,

(
s + g′

2
, g

)

=
(
1

2

(
1

4
+ 1

2

)

,
1

12

)

=
(
3

8
,
1

12

)

,

(
g + s + g′

2
, 0

)

=
(
1

2

(
1

12
+ 1

4
+ 1

2

)

, 0

)

=
(

5

12
, 0

)

.

as expected in the third picture of Fig. 4 (right). �

6 Properties of NewDensities

This section proves the periodicity of the sequence ψk with
respect to the index k ≥ 0 in Theorem 6.2, which was a bit
unexpected from original Definition 1.2. We start with the
simpler example for the familiar 3-point sequence in Fig. 2.

Example 6.1 (periodicity ofψk in the index k)Let the periodic
sequence S = {0, 1

3 ,
1
2 } + Z have three points p1 = 0, p2 =

1
3 , p3 = 1

2 of radii r1 = 1
12 , r2 = 0, r3 = 1

12 , respectively.
The initial intervals L1(0) = [− 1

12 ,
1
12 ], L2(0) = [ 13 , 1

3 ],
L3(0) = [ 5

12 ,
7
12 ] have the 0-fold intersection measured by

ψ0(0) = 2
3 and the 1-fold intersection measured by ψ1(0) =

1
3 , see Figs. 3 and 4.

By the time t = 1
2 the initial intervals will grow to

L1(
1
2 ) = [− 7

12 ,
7
12 ], L2(

1
2 ) = [− 1

6 ,
5
6 ], L3(

1
2 ) = [− 1

12 ,
13
12 ].

The grown intervals at the radius t = 1
2 have the 3-fold inter-

section [− 1
12 ,

7
12 ] of the length ψ3(

1
2 ) = 2

3 , which coincides
with ψ0(0) = 2

3 .
With the extra interval L4(

1
2 ) = [ 5

12 ,
19
12 ] centered at p4 =

1, the 4-fold intersection is L1 ∩ L2 ∩ L3 ∩ L4 = [ 5
12 ,

7
12 ].

With the extra interval L5(
1
2 ) = [ 56 , 11

6 ] centered at p5 = 4
3 ,

the 4-fold intersection L2∩L3∩L4∩L5 is the single point 56 .
With the extra interval L6(

1
2 ) = [ 1112 , 13

12 ] centered at p6 = 3
2 ,

the 4-fold intersection is L3 ∩ L4 ∩ L5 ∩ L6 = [ 1112 , 13
12 ].

Hence the total length of the 4-fold intersection at t = 1
2 is

ψ4(
1
2 ) = 1

3 , which coincides with ψ1(0) = 1
3 .
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Fig. 6 The densities ψk , k = 0, . . . , 9 for the 1-period sequence S whose points 0, 1
3 , 1

2 have radii 1
12 , 0, 1

12 , respectively. The densities ψ0, ψ1, ψ2
are described in Examples 3.1, 4.1, 5.1 and determine all other densities by periodicity in Theorem 6.2

For the larger t = 1, the six grown intervals

L1(1) =
[

−13

12
,
13

12

]

, L2(1) =
[

−2

3
,
4

3

]

,

L3(1) =
[

− 7

12
,
19

12

]

, L4(1) =
[

− 1

12
,
25

12

]

,

L5(1) =
[
1

3
,
7

3

]

, L6(1) =
[
5

12
,
31

12

]

have the 6-fold intersection
[

5
12 ,

13
12

]
of length ψ6(1) = 2

3

coinciding with ψ0(0) = ψ3(
1
2 ) = 2

3 . �

Corollary 6.2 proves that the coincidences in Example 6.1
are not accidental. The periodicity of ψk with respect to k is
illustrated by Fig. 6.

Theorem 6.2 (periodicity of ψk in the index k) The density
functions ψk[S] of a periodic sequence S = {p1, . . . , pm}+
Z consisting of disjoint intervals with centers 0 ≤ p1 <

· · · < pm < 1 and radii r1, . . . , rm ≥ 0, respectively, satisfy
the periodicity ψk+m(t + 1

2 ) = ψk(t) for any k ≥ 0 and
t ≥ 0. �

Proof When the grown intervals have a radius t + 1
2 , their

(k + m)-fold intersection has the fractional length equal to
ψk+m(t + 1

2 ) and can be a union of several intervals. Let I
be one of these intervals, p be the mid-point of I . Collapsing
the interval [p − 1

2 , p + 1
2 ] of length 1 to p removes exactly

m points from S.
If we decrease by 1

2 the radius ri + t + 1
2 of any interval

Ji centered at a point to the left of p, the right endpoint of Ji
remains at the same position, because the center of Ji moved

by 1
2 closer to p. Similarly, the collapse above preserves the

left endpoint of any interval centered at a point to the right
of p.

Hence the interval I around p remains between its original
endpoints and now belongs to the k-fold intersection of all
intervals without considering the removedm intervals whose
endpoints were within the interval [p − 1

2 , p + 1
2 ) that was

collapsed to p.
Taking all intervals I that form the (k +m)-fold intersec-

tion, we get the k-fold intersection of the shorter intervals,
so ψk+m(t + 1

2 ) = ψk(t). 	

Example 6.3 (Theorem6.2 form = 1 inFig.7)Let a 1-period
sequence S have one point p1 = 0 of a radius 0 < r < 1

2 .
The grown interval [−r − t − 1

2 , r + t + 1
2 ] around 0 has the

1-fold intersection I = [r + t − 1
2 ,

1
2 − r − t] centered at

p = 0 and not covered by the adjacent intervals centered at
±1, so ψ1(t + 1

2 ) = 1 − 2(t + r).
After collapsing [− 1

2 ,
1
2 ] to 0, which is excluded from S,

the periodic sequence has newpoints± 1
2 of the smaller radius

r + t . The new shorter intervals have the same endpoints
− 1

2 + (r + t) and 1
2 − (r + t) around p = 0. Now I =

[r + t − 1
2 ,

1
2 − r − t] is not covered by any shorter intervals,

so the get the same length of the 0-fold intersection:ψ0(t) =
1 − 2(t + r). �

The symmetry ψm−k(
1
2 − t) = ψk(t) for k = 0, . . . , [m2 ],

and t ∈ [0, 1
2 ] from [3, Theorem 8] no longer holds for points

with different radii. For example, ψ1(t) �= ψ2(
1
2 − t) for the

periodic sequence S = {0, 1
3 ,

1
2 } + Z, see Fig. 4. If all points

have the same radius r , [3, Theorem 8] implies the symmetry
after replacing t by t + 2r .
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Fig. 7 Top: Example 6.3 illustrates the proof of Theorem6.2 form = 1.
Bottom: the density functions ψk of S = Z whose points have a radius
0 < r < 1

4 satisfy the periodicity ψk+1(t + 1
2 ) = ψk(t) for any k ≥ 0

and t ≥ 0

The main results of [3] implied that all density func-
tions cannot distinguish the non-isometric sequences S15 =
{0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z and Q15 = {0, 1, 3, 4, 6, 8
, 9, 12, 14} + 15Z of points with zero radii. Example 6.4
shows that the densities for sequences with non-zero radii are
strictly stronger and distinguish the sequences S15 � Q15.

Example 6.4 (ψk for S15, Q15 with neighbor radii) For any
point p in a periodic sequence S ⊂ R, define its neighbor
radius as the half-distance to a closest neighbor of p within
the sequence S.

This choice of radii respects the isometry in the sense that
periodic sequences S, Q with zero-sized radii are isometric

Fig. 8 The densities ψk , k = 0, . . . , 10, distinguish (already
for k ≥ 2) the sequences (scaled down by period 15)
S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z (top) and Q15 =

{0, 1, 3, 4, 6, 8, 9, 12, 14} + 15Z (bottom), where the radius ri of any
point is the half-distance to its closest neighbor. These sequences with
zero radii have identical ψk for all k, see [3, Example 10]
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Fig. 9 For the periodic sequence S = {0, 1
8 , 1

4 , 3
4 }+Zwhose all points

have radii 0, the 2nd density ψ2[S](t) has the local minimum at t = 1
4

between two local maxima

Fig. 10 For the sequence S =
{
0, 1

81 , 1
27 , 1

9 , 1
3

}
+ Z whose all points

have radii 0,ψ2[S] equal to the sumof the shownfive trapezoid functions
has three maxima

if and only if S, Q with neighbor radii are isometric. Figure8
shows that the densities ψk for k ≥ 2 distinguish the non-
isometric sequences S15 and Q15 scaled down by factor 15
to the unit cell [0, 1], see Example 2.1. �

Corollary 6.5 (computation of ψk(t)) Let S, Q ⊂ R be peri-
odic sequences with at most m motif points. For k ≥ 1, one
can draw the graph of the k-th density functionψk[S] in time
O(m2). One can check in time O(m3) if �[S] = �[Q]. �

Proof To draw the graph ofψk[S] or evaluate the k-th density
function ψk[S](t) at any radius t , we first use the periodicity
from Theorem 6.2 to reduce k to the range 0, 1, . . . ,m. In
time O(m logm), we put the points from a unit cellU (scaled
to [0, 1] for convenience) in the increasing (cyclic) order
p1, . . . , pm . In time O(m) we compute the gaps gi = (pi −
ri ) − (pi−1 + ri−1) between successive intervals.

Fig. 11 For the sequence S =
{
0, 1

64 , 1
16 , 1

8 , 1
4 , 3

4

}
+Zwhose all points

have radii 0, ψ3[S] has 5 local maxima

For k = 0, we put the gaps in the increasing order
g[1] ≤ · · · ≤ g[m] in time O(m logm). By Theorem 3.2 in
time O(m2), we write down the O(m) corner points whose
horizontal coordinates are the critical radii where ψ0(t) can
change its gradient.

We evaluate ψ0 at every critical radius t by summing up
the values of m trapezoid functions at t , which needs O(m2)

time. It remains to plot the points at all O(m) critical radii
t and connect the successive points by straight lines, so the
total time is O(m2).

For any larger fixed index k = 1, . . . ,m, in time O(m2)

we write down all O(m) corner points from Theorems 4.2
and 5.2, which leads to the graph of ψk(t) similarly to the
above argument for k = 0.

To decide if the infinite sequences of density functions
coincide: �[S] = �[Q], by Theorem 6.2 it suffices to
check only if O(m) density functions coincide: ψk[S](t) =
ψk[Q](t) for k = 0, 1, . . . , [m2 ].

To check if two piecewise linear functions coincide, it
remains to compare their values at all O(m) critical radii t
from the corner points in Theorems 3.2, 4.2, 5.2. Since these
values were found in time O(m2) above, the total time for
k = 0, 1, . . . , [m2 ] is O(m3). 	


All previous examples show densities with a single local
maximum. However, the new R code [4] helped us discover
the opposite examples.

Example 6.6 (densities with multiple maxima) Fig. 9 shows
a simple 4-point sequence S whose 2nd density ψ2[S] has
two local maxima. Figures10 and 11 show complicated
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Fig. 12 Percentages of cases when the density functions ψk(t), k = 1, . . . , 5 (shown in five different colors) have one or multiple local maxima
for 1000 sequences of 10 points with zero radii, which are uniformly sampled in the internal [0, 1]

sequences whose density functions have more than two
maxima. Figure12 shows that two local maxima are more
common than one maximum for random sequences. �

7 Conclusions and FutureWork

In comparison with the past work [3], the key contributions
of this paper are the following.

• Definition 1.2 extended the density functions ψk to any
periodic sets of points with radii ri ≥ 0.

• Theorems 3.2, 4.2, 5.2 explicitly described all ψk and
allowed us to justify a quadratic algorithm for computing
any ψk for any periodic sequence S of points with radii
in Corollary 6.5, illustrated by new Examples 3.1, 3.3,
4.1, 4.3, 5.1, 5.3, 6.1, 6.3.

• Theorem 6.2 now proves the periodicity of the density
functions ψk with respect to k in much greater detail
than its simpler analog [3, Theorem 8], which was stated
only for points with radii 0.

• The code [4] helped us distinguish the sequences S15 �

Q15 in Example 6.4 and quantify frequencies of random
sequences whose density functions have multiple local
maxima, see Example 6.6.

Here are the open problems for future work.

• Verify if density functions ψk[S](t) for small values of k
distinguish all non-isometric periodic point sets S ⊂ R

n

at least with radii 0.
• Characterize the periodic sequences S ⊂ R whose all
density functions ψk for k ≥ 1 have a unique local max-
imum, not as in Example 6.6.

• Similar to Theorems 3.2, 4.2, 5.2, analytically describe
the density functionψk[S] for periodic point sets S ⊂ R

n

in higher dimensions n > 1.
• Design an incremental algorithm to compute all ψk[S]
when a new point is added to a motif of S.
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