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Abstract

Diffusion MRI is a modern neuroimaging modality with a unique ability to acquire microstructural information by measuring
water self-diffusion at the voxel level. However, it generates huge amounts of data, resulting from a large number of repeated
3D scans. Each volume samples a location in g-space, indicating the direction and strength of a diffusion sensitizing gradient
during the measurement. This captures detailed information about the self-diffusion and the tissue microstructure that restricts
it. Lossless compression with GZIP is widely used to reduce the memory requirements. We introduce a novel lossless codec
for diffusion MRI data. It reduces file sizes by more than 30% compared to GZIP and also beats lossless codecs from the
JPEG family. Our codec builds on recent work on lossless PDE-based compression of 3D medical images, but additionally
exploits smoothness in g-space. We demonstrate that, compared to using only image space PDEs, g-space PDEs further improve
compression rates. Moreover, implementing them with finite element methods and a custom acceleration significantly reduces
computational expense. Finally, we show that our codec clearly benefits from integrating subject motion correction and slightly
from optimizing the order in which the 3D volumes are coded.

Keywords PDE-based image compression - DMRI - Q-space inpainting - Lossless medical image compression

1 Introduction

With the development of new medical imaging techniques
and constant refinement of existing ones, the associated stor-
age requirements have been reported to grow exponentially
each year [1]. This explains why medical image compression
is an active area of research.

Our work belongs to the family of compression algorithms
that are based on partial differential equations (PDEs). The
general idea behind this approach is to store a sparse subset
of the image information and to reconstruct the remaining
image via PDE-based inpainting [2].

PDE-based compression has a long tradition for the lossy
compression of natural images [2,3] and videos [4-6]. The
benefit of PDE-based approaches relative to transform-based
codecs like JPEG [7] and JPEG2000 [8] has often been most
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pronounced at high compression rates [3]. Even though this
strategy for lossy compression has also been transferred to
three-dimensional images [9], in medical imaging, lossless
compression is often preferred to ensure that all diagnosti-
cally relevant details are preserved. In some cases, it is even
legally forbidden to apply lossy compression for medical
image archival [10,11].

We recently introduced a PDE-based codec for 3D medical
images that stores the residuals between the original image
and an intermediate PDE-based reconstruction to ensure that
the final reconstruction is lossless, and we demonstrated that
this strategy led to competitive compression rates [12]. In our
current work, we extend this idea for the specific use case of
image datasets from diffusion MRI.

Diffusion MRI (dMRI) [13,14] is a variant of magnetic
resonance imaging in which diffusion sensitizing gradients
are introduced into the measurement sequence. If the hydro-
gennuclei that generate the MR signal undergo anet displace-
ment along the gradient direction during the measurement,
the signal is attenuated. Assuming that these displacements
result from (self-) diffusion, comparing diffusion-weighted
to non-weighted measurements permits computation of an
apparent diffusion coefficient.
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Taking measurements with different gradient directions
captures the directional dependence of the diffusivity. It
results from interactions between water and tissue microstruc-
ture and therefore carries information about structures that
are much smaller than the MR image resolution. Important
applications of dMRI include the detection of microstructural
changes that are related to aging or disease, and the recon-
struction of major white matter tracts, which is referred to as
fiber tracking or tractography [15].

The large number of repeated measurements in diffusion
MRI leads to large amounts of data. In practice, resulting
image datasets are often compressed using GZIP [16]. In
our previous work [12], we demonstrated that, compared to
this, PDE-based lossless compression can further reduce the
memory requirement of individual dMRI volumes by more
than 25%. However, applying our codec to each 3D volume
independently does not exploit the fact that measurements
for nearby gradient directions are usually similar. Moreover,
it is relatively time consuming.

In our current work, we address both of these limitations
by combining the previous idea of lossless compression via
image-space inpainting with a novel approach of PDE-based
inpainting in g-space, which is the space spanned by diffusion
sensitizing gradient directions and magnitudes. We find that
predictions from linear diffusion in q-space can be made with
low computational effort and are strong enough to further
improve compression rates.

The remainder of our work is organized as follows: Sect. 2
provides the required background and discusses prior work
on 4D image compression. Section 3 introduces the compo-
nents of our proposed codec. Section4 demonstrates that the
resulting compression rates exceed those of several baselines
and investigates the effects of specific design choices. Sec-
tion 5 concludes with a brief discussion.

2 Background and Related Work

We will now introduce the main ideas behind diffusion PDE-
based image inpainting and compression (Sect.2.1), clarify
the foundations of diffusion MRI and g-space (Sect.2.2), and
briefly review the literature on 4D medical image compres-
sion (Sect.2.3).

2.1 Diffusion PDE-Based Inpainting and
Compression

Inspired by their use for modeling physical phenomena, par-
tial differential equations (PDEs) have a long tradition for
solving problems in image processing. In particular, the PDE
describing heat diffusion has provided a framework for image
smoothing and inpainting [17-23].

The heat equation captures the relationship between tem-
poral changes in a temperature d,u and the divergence of its
spatial gradient Vu,

doru = div(D - Vu) , ()

where D is the thermal diffusivity of the medium. In a homo-
geneous and isotropic medium, the diffusivity D is a constant
scalar. In a non-homogeneous isotropic medium, D would
still be a scalar, but depend on the spatial location. In an
anisotropic medium, heat dissipates more rapidly in some
directions than in others. In that case, D is a symmetric pos-
itive definite matrix that is referred to as a diffusion tensor.
In image processing, the gray value at a certain location
is interpreted as a temperature u, and Eq. (1) is coupled with
suitable boundary conditions. For image smoothing,

oru = div(D - Vu),
dyu =0,

Q2 x (0, 00),

92 x (0, 00) , @
where 2 is the image domain and # is the normal vector to
its boundary 9€2. The original image f : @ — R is used
to specify an initial condition # = f att = 0. For increas-
ing diffusion time ¢, u will correspond to an increasingly
smoothed version of the image.

In image inpainting, values are known at a subset of pixel
locations, and unknown values should be filled in. For this,
a Dirichlet boundary condition is introduced, which fixes
values at a subset K of pixel locations [2,20]

o,u = div(D - Vu), Q\K x (0, 00) ,
0,u =0, 022 x (0, 00) , 3)
u=rf, K x [0, c0) .

and a steady-state is computed at which 9,u ~ 0. The abil-
ity of PDEs to reconstruct plausible images even from a very
sparse subset of pixels made them useful for image compres-
sion [2-4].

Different choices of diffusivity D introduce considerable
flexibility with respect to shaping the final result. Fixing D =
1 turns Eq. (3) into second-order linear homogenous (LH)
diffusion
ou = Lu, Q\K x (0, 00) “)
with Lu = Au, where A denotes the Laplace operator, and
the steady state satisfies the Laplace equation Au = 0. Even
though the resulting reconstructions suffer from singularities
[2] and can often be improved by the more complex models
discussed below, they have been used to design compression
codecs for cartoon-like images [24], flow fields [25], and
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depth maps [26-28]. Its simple linear nature and fast conver-
gence to the steady-state also make LH diffusion an attractive
choice for real-time video compression [5,6].

Compared to LH diffusion, decreasing the diffusivity as a
function of image gradient magnitude permits a better preser-
vation of salient edges [18,29]. This is referred to as nonlinear
diffusion, since the results are no longer linear in the original
image f. Rather than just decreasing the overall diffusivity
close to edges, modeling D as an anisotropic diffusion tensor
permits smoothing along edges, while maintaining or even
increasing the contrast perpendicular to them. One widely
used model is referred to as edge-enhancing diffusion (EED)
[30].

All PDEs that have been discussed up to this point are of
second order. Fourth- and higher-order extensions have also
been studied, both for smoothing [31-35] and for inpaint-
ing [36,37]. In the simplest case, setting Lu = —A’u in
Eq. (4) leads to the biharmonic (BH) equation. In two and
three dimensions, it does not suffer from the singularities that
are present in the results of LH diffusion [2,38], while pre-
serving a simple linear nature. For this reason, BH has been
considered for the design of compression codecs [38—41].
However, it no longer satisfies a min-max principle [33] and
it increases running time and sensitivity to quantization error.

Our own previous work [37] proposed an anisotropic
fourth-order PDE in which a fourth-order diffusion tensor
is constructed from the image gradient in a similar way as
in second-order EED. We thus refer to it as fourth-order
edge-enhancing diffusion (FOEED). It was shown to result
in more accurate inpainting results than second-order EED,
and higher PDE-based compression rates, in several exam-
ples [12].

Our current work is concerned with compressing data
from diffusion MRI, which is similar to hyperspectral images
in that it contains a large number of values (channels) at each
location [40]. However, the channels in hyperspectral images
have a one-dimensional order, while our channels correspond
to positions on a spherical shell in g-space, which we will now
introduce.

2.2 Diffusion MRI

The signal in magnetic resonance imaging is generated by
the hydrogen atoms within water molecules. Their heat
motion is referred to as self-diffusion, since it takes place
despite a zero concentration gradient. The extent to which
this motion is restricted in a cellular environment correlates
with microstructural parameters such as cellular density or
integrity. Moreover, in the white matter of the human brain,
which contains the tracts that connect different brain regions,
self-diffusion can occur more freely in the local direction of
those tracts than perpendicular to it [42]. Therefore, measur-
ing the apparent diffusion coefficient in different directions
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provides relevant information about small-scale structures
that are below the image resolution of in vivo MRIL

This motivates the use of diffusion MRI. It goes back to the
idea of measuring diffusion by introducing a pair of diffusion
sensitizing magnetic field gradients into a nuclear mag-
netic resonance sequence [43]. Integrating it with spatially
resolved magnetic resonance imaging permits diffusion mea-
surements at a voxel level [13]. Repeating the measurements
with differently oriented gradients reveals a biologically rele-
vant directional dependence in various tissue types, including
muscle and the white matter of the brain [44].

Several key parameters of the diffusion sensitization can
be summarized in the gradient wave vector

q= iVcsg, )
2

where y is the gyromagnetic ratio of hydrogen nuclei in
water, ¢ is the duration of the diffusion sensitizing gradients,
and g corresponds to their direction and strength. The normal-
ized MR echo magnitude |E(q, 7)| additionally depends on
the time t between the pair of gradient pulses. It is computed
as the ratio between the corresponding diffusion-weighted
measurement and an unweighted measurement with q = 0.
It is antipodally symmetric, |E(—q, 7)| = |E(q, 7)|.

The relevance of this g-space formalism derives from a
Fourier relationship between |E(q, t)| and the ensemble
average diffusion propagator P (R, t), which specifies the
probability of a molecular displacement R within a fixed
diffusion time [45]. An alternative parameterization of the
diffusion gradients is in terms of their direction and a factor
b =4n?|q|? (t — 8/3), which also accounts for the fact that
the diffusion weighting increases with the effective diffusion
time (t — §/3).

Due to practical constraints on the overall duration of
dMRI measurements, the sampling of g-space is usually lim-
ited to one or several reference measurements with q = 0, as
well as one or a few shells with constant ||q||, and thus con-
stant b. This is illustrated in Fig. 1. Such setups focus on the
directional dependence of the signal, and typically strive for
a uniform distribution of gradient directions on these shells
[46]. Our codec assumes dMRI data with such a “shelled”
structure, an assumption that is shared by well-established
algorithms in the field [47].

2.3 4D Medical Image Compression

Many medical imaging modalities, including magnetic reso-
nance imaging, computed tomography, and ultrasound, can
be used to image volumes repeatedly, in order to capture
time-dependent phenomena such as organ motion, perfusion,
or blood oxygenation. Considerable work has been done on
lossless and lossy compression of the resulting 4D (3D plus
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Fig. 1 Illustration of three diffusion sensitizing gradient directions on
a shell in ¢ space, with equal b = 700 (top left). The three diffusion-
weighted images have been measured with different gradient directions,
as indicated at the bottom left of each image. Comparing them reveals
the directional dependence of the dMRI signal

time) image data. Much of it has borrowed from video coding
and has often involved motion compensation [48,49], which
is combined with wavelet transforms [48,50-53] or hierar-
chical vector quantization [54] for compression.

Almost all of these works have compared their com-
pression rates to codecs from the JPEG family. We will
also compare our codec to JPEG-LS, lossless JPEG, and
JPEG2000. Additionally, we compare compression rates
against GZIP [16] which, in conjunction with the Neuroimag-
ing Informatics Technology Initiative (NIfTI) file format, is
currently most widely used to compress diffusion MRI data
in practice. To make this comparison fair, we also use Huff-
man coding or Deflate within our own codec, as opposed
to computationally efficient alternatives that might further
improve compression rates [55,56].

Even though the volumetric images in diffusion MRI are
also taken sequentially, their temporal order is less relevant
than the g-space structure that was described above: Mea-
suring with the same diffusion sensitizing gradients, but in
a different order, should yield equivalent information, even
though it permutes the temporal order. To the best of our
knowledge, no codec has been proposed so far that exploits
this very specific structure. There has been extensive work on
compressed sensing for diffusion MRI (see [57,58] and ref-
erences therein), but with a focus on reducing measurement
time, rather than efficient storage of the measured data.

Recent work has demonstrated the potential of deep learn-
ing for lossless compression of 3D medical images [59].

Extending this specifically for diffusion MRI is an interest-
ing future direction. However, our PDE-based approach has
the advantage of not requiring any training data. Since med-
ical data are a particularly sensitive type of personal data,
obtaining diverse large-scale datasets can be difficult, and
the potential of model attacks that could cause data leakage
is concerning [60,61].

3 Proposed Lossless Codec

Traditional PDE-based image compression [2,3,12,37] per-
forms inpainting in image space, which relies on piecewise
smoothness of the image. A key contribution of our current
work is to additionally exploit the smoothness in g-space. As
it can be seen in Fig. 1, dMRI signals that are measured with
similar gradient directions are correlated.

Our codec uses a spatial PDE for the first few volumes,
which is described in more detail in Sect.3.1. Once suffi-
ciently many samples are available so that a gq-space PDE,
described in Sect.3.2, produces stronger compression than
the spatial PDE, we switch to it.

The g-space PDE assumes that all volumes are in correct
spatial alignment, which might be violated in practice due to
subject motion. For this reason, our codec includes a mech-
anism for motion compensation, described in Sect.3.3. Our
overall compressed file format is specified in Sect. 3.4.

3.1 Lossless 3D Spatial Codec

The initial few volumes are compressed with an image space
PDE-based codec that follows our recent conference paper
[12]. To make our current work self-contained, we briefly
summarize the most relevant points, focusing on the forward,
i.e., encoding direction. The decoding process just mirrors
the respective steps. The codec is composed of three main
parts: data sparsification (initial mask selection), prediction
(iterative reconstruction), and residual coding.

Initial Mask Selection As an initial mask, our codec sim-
ply stores voxel intensities on a sparse regular grid. More
specifically, for a given 3D input image of size n; X ny X n3,
the initial mask is chosen as a hexahedral grid consisting
of voxels (41, 4z, 4i3), where i; € {0,1,..., [Z ),
jel,2,3.

Most lossy PDE-based codecs select a mask adaptively
[2,3], which better preserves important image features such
as edges and corners [24]. However, this introduces the need
to store the locations of the selected pixels, which can be
avoided by the use of fixed grids [27,62]. In the context of
lossless compression, we achieved higher compression rates
by combining the latter strategy with iterative reconstruction.
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Iterative Reconstruction Making PDE-based compression
lossless requires coding the differences between the original
image and the PDE-based reconstruction and is beneficial in
terms of compression rates to the extent that those residuals
are more compressible than the original image. In general,
residuals become more compressible the more accurate the
reconstruction is. Therefore, the overall compression rate can
be increased by iteratively coding residuals of some pixels,
and refining the remaining ones based on them.

Our previous work [12] explored different iterative schemes.

The variant that is used here codes the residuals in all remain-
ing face-connected neighbors of the current mask voxels, i.e.,
up to six voxels per mask voxel. Those neighbors become part
of the mask for the next iteration, and the process continues
until all voxels have been coded.

Among the PDEs that have been explored for inpaint-
ing, we currently consider the two that worked best in [12],
i.e., traditional edge-enhancing diffusion (EED) [20] and our
recent fourth-order generalization (FOEED) [37].

Residual Coding Residuals are computed in modular arith-
metic, so that they can be represented as unsigned integers.
The final compression of the initial mask and the residuals
is either done via a Huffman entropy encoder or the Deflate
algorithm, depending on which gives the smaller output file
size.

In cases where medical images contain a substantial
amount of empty space, e.g., a background region with
exactly zero image intensity, our previous work [12] found
that coding it separately using run length encoding (RLE) can
provide an additional benefit. Unfortunately, in dMRI, the
background is perturbed by measurement noise, which ren-
ders this approach ineffective. Therefore, our current work
does not include any dedicated empty space coding.

3.2 PDE-Based g-Space Inpainting

The general idea of g-space inpainting is illustrated in Fig. 2:
Once a certain number of diffusion-weighted images with
different gradient directions are known, we can use them
to predict images that correspond to a new direction. This
happens at the voxel level, so that the prediction at a given
location is entirely determined by values at the same location
in the known images.

This can be understood as “flipping” the setup from
Sect.3.1, where the mask consisted of pixel locations, and
the inpainting was repeated with an identical mask for each
channel. Instead, the mask now specifies the known channels,
and inpainting is repeated for each voxel in the volume.

3.2.1 Compressing Diffusion-Weighted Images

Since we assume that diffusion-weighted measurements are
on spherical shells in g-space (Sect.2.2), we inpaint with
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Fig. 2 An example of g-space inpainting to predict a diffusion-
weighted volume in gradient direction g5 (red double arrow) based on
four known volumes, illustrated as filled volumes in directions g; (black
arrows) (Color figure online)

Fig.3 The g space sampling of the dMRI data used in our experiments
(left), and the resulting triangulation that is used within the finite element
method

second-order linear homogeneous (LH) diffusion

0 = Au (6)

or fourth-order biharmonic (BH) smoothing

u=—Au @)

on the sphere, where A is the Laplace-Beltrami operator.
Given that our samples do not form a regular grid,

we numerically solve these equations using finite element

methods (FEMs) [63,64]. For this, we first construct a 3D
Delaunay tessellation from the set of all gradient vectors g;



Journal of Mathematical Imaging and Vision (2023) 65:644-656

649

and their antipodal counterparts —g;, and then extract a trian-
gular surface mesh from it. Figure 3 shows an example of the
given vectors (left), and the resulting triangular mesh (right).

Similar to PDE-based inpainting in the image domain, we
fix the known values by imposing Dirichlet boundary con-
ditions at the vertices corresponding to the previously coded
diffusion-weighted images, again accounting for antipodal
symmetry so that each known image determines the values
of two vertices. Once a steady state has been reached, the val-
ues at locations corresponding to diffusion-weighted images
that are yet to be coded can serve as predictions. Similar as
before, we compute residuals with respect to those predic-
tions in modular arithmetic and apply Huffman coding or
Deflate to them.

We found that once a sufficient number of diffusion-
weighted images are available as a basis of g-space inpaint-
ing, its residuals become more compressible than those from
iterative image space inpainting. Our codec adaptively deter-
mines a suitable point for switching from spatial to q-space
predictions. After the first diffusion-weighted volume, it
starts comparing the sizes of compressing subsequent vol-
umes with the spatial codec (Sect. 3.1) to the size when using
g-space inpainting and switches to it on the first volume
where it is beneficial. To limit computational effort, the spa-
tial codec is no longer tried for subsequent volumes.

3.2.2 Accelerated Computation

Since g-space inpainting happens at a voxel level, it should be
repeated for each voxel of the 3D image. However, the com-
putational cost of running the FEM solver for each voxel
separately is extremely high. Fortunately, linearity of the
PDEs and the fact that the Dirichlet boundary conditions
are imposed on the same vertices for each voxel permit a
significant speedup.

Formally, we can consider one time step of numerically
solving Eqs. (6) or (7), at time 7, as applying a discrete linear
differential operator D, which is determined by the vertices
and connectivity of our triangular mesh, on a discrete input
u® e Re,

a —p [um] ’ )

where ¢ is the number of channels (q-space samples per
voxel). The boundary conditions ensure that “1(ct~+1) = u,(f) at
positions k; that correspond to the fixed (previously coded)
channels.

The inpainting result is obtained as the fixed point u™®
ast — oo. It can be approximated by iterating D a sufficient

number of times, resulting in an operator Dpp that directly

maps
) = gy [u] ©

Degp is still linear, and we observe that its kernel is the
subspace corresponding to the unknown g-space samples, so
that their initialization in u® does not influence the steady
state [4]. Therefore, we can rewrite Eq.9 as

Drp [ll(o)] = Ml((?)DFP[ekl] + u,(g)DFP [ex,]
(10)

0
+...+ u](cn)DFP[ekn]»

where ey are the indicator vectors of the known samples k.

In other words, by computing wy ;= Dgplex j], we can
obtain weight vectors that specify how the known values are
combined to predict the unknown ones. They are analogous
to the “inpainting echoes” that have been computed in pre-
vious work [65] for the purpose of optimizing tonal data.
Onmitting the irrelevant initialization of the unknown values
from the input u”’, and the known values from the output
u'f?) yields a weight matrix W of shape m x n for n known
and m unknown values.

We compute the coefficients of W by running the FEM
n times. In the jth run, we set the value corresponding to
kj to one, all remaining values to zero. After numerically
solving the Laplace or Biharmonic PDE, the values at the m
unique vertices that correspond to unknown DWTIs yield the
jth column of W.

Finally, W allows us to make efficient predictions in each
voxel, by simply multiplying it to a vector that contains the
intensities in that voxel from the previously coded diffusion
gradients.

3.2.3 Implementation Details and Running Times

We numerically solve Egs. (6) and (7) via the open-source
FEM solver package FEniCSx [64]. For implementation
details, we refer to its tutorials [66]. Applying this solver
to each voxel of a 104 x 104 x 72 volume takes close to
two and four hours, respectively, for LH and BH PDEs on a
single 3.3 GHz CPU core.

The acceleration from the previous section reduces this to
only 1.6sand 2.4 s per volume, respectively. This includes the
time for building a Delaunay tessellation, which is computed
with SciPy [67], and extracting a surface mesh from it using
the BoundaryMesh method from FEniCSx.

3.2.4 Compressing b = 0 Images
Our general approach simplifies for unweighted volumes

with b = 0. Again, the first of them is compressed using
the spatial codec. If multiple b = 0 images were acquired
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3D Codec
(Sec.3.1)

Residual
Coding
(Sec.3.2.4)

Fig.4 Top A: Compression of the first b = 0 volume using the recently
proposed lossless 3D codec [ 12]. Bottom B: Compression of the remain-
ing b = 0 volumes using residuals in modular arithmetic. Residuals are
taken with respect to the first 5> = 0 volume, after motion correction

to increase the signal-to-noise ratio, our codec compresses
the remaining ones by taking the respective residuals with
respect to the first b = 0 volume, as illustrated in Fig.4.

3.3 Motion Correction

Subject motion commonly occurs during the lengthy dMRI
acquisitions and is typically accounted for by applying
motion correction based on image registration [68]. We also
include this step in our codec, since inpainting in q-space
requires a correct spatial alignment of all 3D volumes so that
predictions are based on information from the same location
within the brain.
We implement motion correction as follows:

1. We perform affine registration of each volume to the same
b = 0 volume, which is used as a common reference. This
yields a transformation matrix T x_, 5, which aligns DWI
volume X to the b = O reference.

2. When predicting a DWI volume P, we transform all
known volumes X via the affine transformation T, L by ©
T x _,, which can be computed from the transformations
in Step 1.

3. In addition to resampling each known volume X, we re-
orient its diffusion gradient direction gx according to
the rotational part of the transformation in Step 2. Omit-
ting this step would lead to incorrect relative orientations
of diffusion gradient directions [69], which could again
reduce accuracy of g-space inpainting.

@ Springer

Fig.5 Boundary effects in volume alignment. Top: Original DWI vol-
ume. Center and Bottom: Motion corrected with zero padding and
nearest neighbor extrapolation, respectively

Transforming images via a common reference allows us to
align them without having to perform image registration on
all pairs of volumes. This saves considerable computational
effort. Combining the two transformations and applying them
in a single step also reduces computational effort, and simul-
taneously reduces image blurring compared to a two-stage
implementation that would involve interpolating twice.

In addition to the computational expense, motion correc-
tion incurs the cost of having to store the affine matrices
Tx ., along with the compressed data. Experimental results
in Sect.4.4 will demonstrate that this storage cost is out-
weighed by the increase in compression rate when g-space
inpainting properly accounts for motion.

Subject movement correction and B-matrix reorientation
are done using the freely available FSL tools [68] and the
DIPY imaging library [70], respectively. A practically rel-
evant implementation detail concerns boundary effects. As
illustrated in Fig. 5, missing information can enter the field of
view when applying image transformations. We found that
g-space inpainting near the boundary of the domain works
more reliably if we resolve these cases with nearest neighbor
extrapolation, rather than with zero padding.
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3.4 Compressed File Format

In our current implementation, the relevant data are spread
over multiple files whose sizes are added when computing
compression rates.

The volumes that are compressed with the 3D lossless
codec (Sect.3.1) are stored with the same header as in [12].
Stated briefly, it contains the original minimum and maxi-
mum voxel values (4 bytes), sizes of the compressed data
streams for zero voxel binary mask and mask intensities
(8 bytes), the diffusivity contrast parameter (4 bytes), the
type of PDE (2 bits), the dilation mode (1 bit), and the types
of encoding for mask intensities and residuals (2 bits).

For each volume that is compressed with q-space inpaint-
ing, the header contains the original minimum and maximum
voxel values (4 bytes), the type of PDE (2 bits), the type of
encoding for the residuals (1 bit), and the volume number in
the original order (2 bytes).

Mask and residual values themselves are stored after com-
pression with pure Huffman coding or Deflate, depending on
what gave a smaller file size.

In addition, we store the NIfTI header (348 bytes) as well
as files containing b values and gradient vectors in their orig-
inal ASCII formats. For simplicity, affine transformations for
motion correction are also kept in the ASCII format gener-
ated by FSL FLIRT [68].

4 Results and Discussion
4.1 Data

We evaluate our codec on two dMRI datasets that were made
publicly available by Koch et al. [71] and are specifically
suited to investigate the impact of subject motion compen-
sation. Both datasets have been collected from the same
subject (male, 34 years) in the same scanner, a 3T MAG-
NETOM Skyra (Siemens Healthcare, Erlangen, Germany),
with an identical measurement sequence. For the first scan,
the subject received the usual instruction of staying as still
as possible during the acquisition. For the second scan, the
subject was asked to move his head, to deliberately introduce
motion artifacts.

From these datasets, we use the five non-diffusion weighted
(b = 0) MRI scans each, as well as 30 diffusion weighted
images (b = 700s/mm?, diffusion gradient duration § =
334ms, spacing T = 445ms). Each image consists of
104 x 104 x 72 voxels with a resolution of 2 x 2 x 2mm?>.
The data, and the effects of subject motion, are illustrated in
Fig.6.

4.2 DTl Baseline

We compare the signal predictions from our g-space PDE to
a simple baseline, which is derived from the diffusion tensor
imaging (DTI) model. DTI is widely used in practice, due
to its relative simplicity and modesty in terms of scanner
hardware and measurement time.

It rests on the assumption that the diffusion propagator
P(R, 7) is a zero-mean Gaussian whose covariance matrix
is proportional to the diffusion tensor D, a symmetric posi-
tive definite 3 x 3 matrix that characterizes the local diffusion
[14]. The signal model in DTI relates the diffusion-weighted
signal S(g, b) for a given b-value and gradient vector direc-
tion g = g/||g|| to the unweighted signal Sy according to

S8, b) = Spe P8 D8, (11)

Fitting D requires at least one reference MR image S, plus
diffusion-weighted images in at least six different directions,
which are usually taken with a fixed nonzero b-value. Equa-
tion (11) can then be used to predict the diffusion-weighted
signal in any desired direction. In our experiments, we com-
pare our PDE-based to DTI-based predictions that account
for the same set of known measurements.

4.3 Comparing Lossless Codecs for Diffusion MRI

A comparison of file sizes that can be achieved on our two test
datasets with different lossless codecs is provided in Table 1.
As a baseline, the first two rows show results from coding
each 3D volume independently with our recently proposed
PDE-based codec [12], using second-order (R-IEED-1) and
fourth-order anisotropic diffusion (R-IFOEED-1). Addi-
tional savings of other codecs with respect to R-IEED-1 are
given in percent.

The second block in Table 1 shows results from sev-
eral variants of our proposed new codec, which adaptively
combines inpainting in g-space and image space. Highest
compression rates were achieved when combining linear
homogeneous (LH) diffusion in g-space with R-IFOEED-1
in image space, closely followed by R-IEED-1. Biharmonic
(BH) diffusion in g-space also produced useful, but slightly
weaker results.

Both g-space diffusion approaches achieved better com-
pression than predictions from DTI (Sect.4.2). This could
be due to the fact that the quadratic model of diffusivities in
Equation (11) is known to be an oversimplification in many
parts of the brain [72], and the PDE-based approaches pro-
vide more flexibility.

DTTI requires independent coding of at least seven 3D
volumes, which led us to fix this split in our experiments.
PDE-based imputation makes it possible to switch to g-space
inpainting earlier, and our adaptive selection does so after
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Fig.6 Example images from our two dMRI datasets, without deliber-
ate head motion (left) and with strong motion artifacts (right). In each
case, six corresponding sagittal slices from different diffusion weighted

images (DWIs) are shown. Note that subject motion leads to spatial mis-
alignments between DWIs, but also to artifacts within individual images

Table 1 Compressed file sizes from separate PDE-based compression of each 3D scan (baseline), from different variants of our proposed lossless

codec, as well as from GZIP and lossless codecs from the JPEG family

Scan 1: No deliberate motion

Scan 2: Strong head motion

Codec variant Split Size (bytes) Over R-IEED-1 (%) Split Size (bytes) Over R-IEED-1 (%)
R-IEED-1 16022666 - 16082537 -
R-IFOEED-1 15955826 +0.42 16019913 +0.39
gqLH o R-IFOEED-1 27/4 14984472 +6.50 26/5 15570493 +3.18
gqLH o R-IEED-1 27/4 14991732 +6.43 26/5 15578604 +3.13
gBH o R-IFOEED-1 27/4 15032384 +6.18 26/5 15681354 +2.50
gBH o R-IEED-1 27/4 15039644 +6.14 26/5 15689465 +2.44
DTI o R-IFOEED-1 2477 15099213 +5.76 24/7 15854216 +1.42
DTI o R-IEED-1 2477 15108244 +5.71 24/7 15861176 +1.38
GZIP 21841701 —36.32 21819641 —35.67
JPEG 17885953 —11.63 17905933 —11.34
JPEG-LS 17921807 —11.85 17893931 —11.26
JPEG2000 15993453 +0.18 15980005 +0.64

For hybrid codecs, the split indicates the number of volumes coded with g-space or spatial inpainting, respectively

four volumes in the low-motion data, after five volumes in
the data with strong motion.

Switching to g-space inpainting also speeds up our codec.
Our implementation of R-IEED-1 and R-IFOEED-1 requires
approximately 478 s and 6185 s, respectively, for one volume
on a single 3.3 GHz CPU core. Even though it would be pos-
sible to further optimize this, exploiting linearity in qLH and
gBH, as described in Sect. 3.2, significantly lowers the intrin-
sic computational complexity, so that even a straightforward
implementation only requires 1.64s and 2.4s per volume,
respectively.

It can be seen in Fig. 6 that subject motion during different
phases of the acquisition leads to different types of artifacts.
Results in Table 1 include the motion correction described in
Sect. 3.3, which compensates spatial misalignments of differ-
ent scans. However, motion can also lead to signal dropouts
or to distortions within scans, which our current codec does
not explicitly account for. This explains why g-space inpaint-
ing is less effective on the second as compared to the first

@ Springer

scan. However, even on this challenging dataset that exhibits
unusually strong artifacts, g-space inpainting still provides a
benefit compared to all other alternatives.

Finally, Table 1 shows results from several other lossless
codecs for comparison. GZIP is most widely used in practice,
but the resulting files are more than 35% larger than those
from our proposed codec. Among the lossless codecs from
the JPEG family, JPEG2000 is the only one that outperforms
R-IEED-1 for per-volume compression, and only by a small
margin. Our new hybrid methods that combine image space
and g-space inpainting always performed best.

4.4 Benefit from Motion Correction

Table 2 investigates the benefit of motion correction (Sect. 3.3)
by showing file sizes when removing motion correction from

our codec, and comparing the results to ones with motion cor-

rection (Table 1), indicating the benefit in percent.
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Table 2 Compressed file sizes when omitting motion compensation, and the relative benefit from motion correction

Scan 1: No deliberate motion

Scan 2: Strong head motion

Codec variant Split Without correction Benefit (%) Split Without correction Benefit (%)
qLH o R-IFOEED-1 27/4 15113407 +0.85 16/15 16456557 +5.38
qLH o R-IEED-1 27/4 15122438 +0.86 16/15 16478088 +5.46
qBH o R-IFOEED-1 27/4 15302805 +1.77 16/15 16582150 +5.43
qBH o R-IEED-1 27/4 15311836 +1.78 16/15 16603681 +5.51
DTI o R-IFOEED-1 2477 15396194 +1.93 2477 16946648 +6.45
DTI o R-IEED-1 24/7 15405225 +1.93 2477 16955494 +6.45
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Fig.7 Given a set of previously coded DWIs, the closest strategy (left)
selects the volume whose gradient vector has the smallest angular dis-
tance from the known ones, to maximize expected prediction accuracy.
The furthest strategy (right) maximizes the angular distance, aiming for
amore uniform coverage of the sphere for subsequent steps. The sketch
shows the directions selected in the first three steps as black double
arrows, the fourth direction as a red dot

Even on the first scan, in which the subject tried to keep
his head still, compensating for small involuntary movements
yields a slight benefit. The effect is largest when imputing
via qBH and DTI. This might be explained by the fact that
gLH satisfies the min-max principle, which makes it more
robust against inaccuracies in its inputs, and provides another
argument in its favor.

When strong head motion is present (second scan), restor-
ing a correct voxel alignment via motion correction becomes
essential for g-space inpainting. Without it, the switch to q-
space imputation happens much later, and the overall file size
is larger than when coding each volume independently. This
is explained by the fact that our codec always applies dif-
ference coding to the » = 0 images and that this becomes
detrimental when those images are strongly misaligned.

4.5 Effect of Re-ordering DWIs

Since g-space imputation relies on the previously (de)coded
diffusion weighted images, its accuracy depends on the order
in which we process the gradient directions.

Two contradictory greedy strategies are illustrated in
Fig.7: Always selecting the closest gradient direction, i.e.,

Table 3 Compressed file size for scan 1 (without strong motion) when
ordering the diffusion-weighted images differently

Codec variant Closest selection Furthest selection

qLH o R-IEED-1 15031703 14991732
qBH o R-IEED-1 15153333 15039644
qDTI o R-IEED-1 15290105 15108244

The ordering affects the accuracy of g-space imputation

the one with the smallest angular distance from the already
known ones, can be expected to result in the most accurate
prediction, in the same spirit as our spatial codec (Sect.3.1)
iteratively grows a mask of known pixels around an initial
set of seed points.

On the other hand, the spatial codec starts with a seed mask
that covers the full domain sparsely, but uniformly. Achieving
something similar motivates selecting the gradient direction
that is furthest from any of the known ones. Even though
this strategy can be expected to lead to lower accuracy, and
therefore to less compressible residuals in the first few iter-
ations, later iterations might benefit from the more uniform
coverage of the overall (spherical) domain.

Table 3 presents the effect of these two selection strategies
on final file sizes. The results are from the first scan, without
strong motion. Overall, greedily selecting the furthest gradi-
ent vector gives slightly smaller overall file sizes. Therefore,
this is the strategy that we followed in all other experiments.

5 Conclusion

In this work, we introduced a PDE-based lossless image com-
pression codec that explicitly exploits both the spatial and the
g-space structure in diffusion MRI. To our knowledge, it is
the first codec that has been tailored to this type of data. We
demonstrated a clear improvement over PDE-based codecs
that treat each volume separately, and over other established
baselines including GZIP and spatial codecs from the JPEG
family.
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We evaluated several variants of our codec, and found
that g-space predictions with linear homogeneous diffusion
permitted the highest compression rates among them. With
our proposed method for accelerated computation, it could
also be applied at a very reasonable computational cost. We
further demonstrated the importance of including motion cor-
rection, and propose an efficient implementation that is based
on affine image transformations via a common reference.
Finally, we found that the order of coding the diffusion-
weighted volumes had a relatively minor effect, but that a
greedy strategy that strives to cover the sphere as uniformly
as possible provides a small benefit.

In the future, one might attempt to replace the switching
between image space and g-space inpainting with a PDE
that jointly operates on the product space. However, this is
likely to substantially increase the computational effort, and
introduces the issue of properly balancing image space and
g-space diffusion. Similarly, employing nonlinear PDEs for
g-space predictions might further increase compression rates,
but is likely to cause a high computational cost.
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