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Abstract
Wepropose a new variational model in Sobolev–Orlicz spaces with non-standard growth conditions of the objective functional
and discuss its applications to image processing. The characteristic feature of the proposedmodel is that the variable exponent,
which is associated with non-standard growth, is unknown a priori and it depends on a particular function that belongs to the
domain of objective functional. So, we deal with a constrained minimization problem that lives in variable Sobolev–Orlicz
spaces. In view of this, we discuss the consistency of the proposed model, give the scheme for its regularization, derive the
corresponding optimality system, and propose an iterative algorithm for practical implementations.

Keywords Inverse problem · Nonconvex programming · Image reconstruction · Constrained minimization problems ·
Approximation methods · Sobolev–Orlicz space
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1 Introduction

Over the past few decades, remote sensing has been increas-
ingly contributing to many agricultural monitoring services
by providing worldwide systematic observations of the
so-called optical vegetation indexes. These indexes (like
Normalized Difference Vegetation Index (NDVI), Infrared
Percentage Vegetation Index (NPVI), and others) are well-
establishedproxies for crop conditions andgive early insights
into how well the crops are doing and if they are in need of
water or nutrients?
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From physical point of view, the remote sensing sensors
record earth’s reflectance in different wavelength and these
received reflectance values are processed to create separate
image for each wavelength. The reflectance values stored for
different wavelength in different layers, which are also called
spectral channels, are present in such satellite images. In par-
ticular, the satellites Sentinel-2 delivers 13 spectral channels
ranging from 10 to 60-m in pixel size. So, a hyperspectral
image simply define when more than one spectrum and at
least three wavelength data like RGB are recorded by sensor
to create composite of satellite images.
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Typically, to provide useful information of crop status,
it is important to monitor the selected agricultural fields in
different spectrum on a regular basis in order to retrieve the
complete time series of a vegetation index especially during
those periodswhenconditions on thefields changedrastically
(It can be essential growth stages such as plant emergence,
maturation period, and others.). However, in spite of the fact
that optical images have a high resolution and are easily
captured by low-cost cameras, the real-life satellite images
frequently suffer from different types of noise, blur, and other
atmosphere artifacts that can affect the radiation recovered
by the sensors in different spectral channels and in a different
manner. As a result, such satellite images lose their efficiency
for the crop field monitoring problems and their utilization
can lead to erroneous results and inferences.

In such situation, the problem we are going to deal with,
can be shortly described as follows. We have a hyperspectral
image u0 = [u1,0, u2,0, . . . , uM,0

]T ∈ L1(�;RM ) which is
corrupted by noise or blur, or such that the features of interest
in this image are hidden. Here, � ⊂ R

2 is a bounded open
domain with sufficiently smooth boundary ∂�. So, the chal-
lenge is to recover theoriginal imageu = [u1, u2, . . . , uM ]T ,
in fact, the hidden image features, from the observed datum
u0. In mathematical terms, this means that for each spectral
channel i = 1, . . . , M , one has to solve an inverse problem

Tiui + w = ui,0,

where the linear blur operator Ti models the process through
which the i-th spectral channel of uwent before observation,
andw is the unknown noise affecting themeasurements. Due
to the presence of the noise and the fact that the blurring
operator Ti is usually ill-conditioned or even non-invertible,
and w is the unknown noise affecting the measurements,
the recovery of u from the measurements u0 is an ill-posed
problem [4,28]. In general, the ill-posed nature of this prob-
lem implies that there are too many ways one can obtain an
approximate solution. A reasonable solution is to reformu-
late the image-deblurring problem by taking into account the
image formation and acquisition process as well as any avail-
able prior information about the properties of the image to
be restored.

Themost popular way for that is to represent the denoising
problem (in each separate spectral channel) in the form of an
appropriate variational problem

u ∈ Argmin
v∈B2

{
J (v) = R(v) + 1

2λ
‖T v − u0‖2B1

}
, (1)

where B1, B2 are two Banach spaces over �, u0 ∈ B1 is a
given image, λ > 0 is the tuning parameter, T ∈ L(B1, B1)

is a bounded linear operator, and R : B2 → R is the regular-
izing term which smooths the image u and represents some

kind of a priori information about the minimizer u. Here,
the term ‖Tu − u0‖2B1 is the so-called fidelity term of the
approach which forces the minimizer u to stay close to the
given image u0 (how close depends on the size of λ). As
for the choice of operator T , they usually set T = I d (the
identity in B1) for the image denoising problems, and T is
a symmetric kernel with a smaller support than the image
u for the deblurring problems. The choice of a proper reg-
ularization R(v), Banach spaces B1, B2, and a convenient
fidelity term ‖T v − u0‖2B1 are always challenging problems
since they affect the quality of the desired image and also the
consistency with the given data.

There is a wide choice of the regularization term proposed
in the literature to ensure the well-posedness of the denoising
problem (1). In the most cases, this term can be represented
as follows:

R(v) =
∫

�

|Dv|p dx with 1 ≤ p ≤ 2, (2)

where Dv stands for the generalized gradient.
In fact, itmeans thatwe can exploit the benefits of isotropic

diffusion (when p = 2) arising from the minimization prob-
lem (1), total variation-based diffusion (p = 1), and more
general anisotropic diffusion (1 < p < 2).

1.1 The Case p = 1 (Total VariationMinimization)

One of the classical regularization terms was the total vari-
ation (TV), introduced by Rudin et al. [48]. Basically, they
introduced in [48] the following variational model (shortly,
the ROF model)

min
u∈BV (�)

[∫

�

|Du| + ζ

2
‖u − f ‖2L2(�)

]
, (3)

where BV (�) stands for the space of functionswith bounded
variation [2,3], � ⊂ R

2 is an open bounded Lipschitz
domain, f ∈ L2(�) is a given image, f = u + ξ , ξ is the
‘noise’, and

∫
�
|Du| denotes the total variation seminorm of

u on �.
This model produces rather good results for removing

noise and preserving edges in structured images, meaning
images without texture-like components, i.e., without edges.
Moreover, the choice B2 = BV (�) is reasonable from
mathematical point of view, since the space of functions of
bounded variation is allowed for discontinuities which are
necessary for edge reconstruction. At the same time, it fails
in the presence of the latter. Namely, it cannot separate pure
noise, i.e., well oscillatory components, from texture, but
removes both equally. Also the ROF model suffers from the
so-called blocky effects and it can also develop ‘false edges’
which can mislead a human or computer into identifying
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erroneous features not present in the true image. These phe-
nomena were a subject of long intensive discussions in the
literature (see, for instance, [4,5,14,15,27,28,44,47]).

1.2 The Case 1 < p ≤ 2

As follows from (1)–(2), different types of diffusion can be
explored. In particular, setting p = 2 in (1), we arrive at the
isotropic diffusion which, in principle, solves the staircasing
problem. Here, the “staircase effect” means the creation in
the image of flat regions separated by artifact boundaries.
However, this model is not good for image reconstruction
since it has no mechanism for preserving edges. If we fix
some value p ∈ (1, 2), then we deal with an anisotropic dif-
fusion which is somewhere between TV-based and isotropic
smoothing. In spite of the fact that this type of diffusion can
be effective in reconstructing piecewise smooth regions, a
fixed value of 1 < p < 2 may not allow for discontinuities,
and thus obliterating edges.

1.3 High-Order Total Variation and Combination of
TV-Based with Isotropic Diffusion

To overcome the drawbacks mentioned above, various
modifications of the model (1) have been introduced. We
can briefly indicate here the Adaptive Total Variation model
[49] and a variety of high-order total variation regulariza-
tions (see [17,50] and the references therein). Recently, in
order to reduce the staircasing effect, in a series of papers
[6,11,12,50,53], authors proposed the models based on the
so-called total generalized variation (TGV) involving a lin-
ear combination of higher-order derivatives and the total
variation, on the total fractional-order derivatives, and on a
combination of the total variation seminorm and L p norms.

One of the successful high-order regularization was the
combination of TV and TV2 terms proposed by Chambolle
and Lions [15,16] (see also [46]). Namely, they proposed the
following specification of (1):

B2 = BV (�),

R(v) = 1

2β

∫

|Dv|≤β

|Dv|2 dx +
∫

|Dv|>β

|Dv| dx − β

2
. (4)

As follows from (4), in this model, the diffusion is strictly
perpendicular to the gradient, where |Dv| > β; that is,
where edges are most likely present, and it is isotropic where
|Dv| ≤ β. So, this model is successful in restoring images
where homogeneous regions are separated by distinct edges.
However, if the image intensities representing objects are
non-uniform or if an image is highly degraded, this model
may become sensitive to the threshold β.

Not so long ago, Brinkmann et al. [8] proposed a new
model that generalize most of the known regularizations,

including TV and TGV, and also the combination between
them. This model is based on the introduction of a vector
field whose nonzero entries are concentrated at the edges of
the image.

1.4 Regularization Terms with Variable Exponent
(1 ≤ p(x) ≤ 2)

This case is rather new in statement of the image denoising
problem, albeit the conjecture to utilize this idea was firstly
pushed forward by Blomgren et al. [5] at the end of 90th. In
particular, they proposed the following variant of regulariza-
tion term

B2 = BV (�), R(v) =
∫

�

|Dv|p(|Dv|) dx, (5)

where lims→0 p(s) = 2, lims→∞ p(s) = 1, and p is a
monotonically decreasing function. In spite of the natural
expectations that this model will reap the benefits of both
isotropic and TV-based diffusion, as well as a combination of
the two, its real exploitation was rather questionable because
of some principle difficulties coming from the absence of its
rigorous mathematically substantiation.

Further specifications of this approach can be found in
[18,19], where the authors discuss the following model:

min
u∈BV (�)∩L2(�)

[
R(u) + ζ

2
‖u − f ‖2L2(�)

]
, (6)

with

R(u) =
∫

�

{ 1
p(x) |Du|p(x), |Du| ≤ β,

|Du| − β p(x)−β p(x)

p(x) , |Du| > β.

}

dx . (7)

Here, β > 0 is a given threshold,

p(x) = 1 + 1

1 + k|∇Gσ ∗ f (x)|2 , (8)

(Gσ ∗ v) (x) determines the convolution of function v with
the N -dimensional Gaussian kernel Gσ ,

Gσ (x) = 1(√
2πσ

)N exp
(
−|x |2

2σ 2

)
, x ∈ R

N , (9)

and k > 0 and σ > 0 are fixed parameters.
A similar model to (6)–(9) has been later proposed in

[42], where, instead of (7), the authors considered the vari-
ant R(u) = 1

p(x) |Du|p(x) with the same choice of variable
exponent p(x).

The main benefit of the model (6)–(9) is the manner in
which it accommodates the local image information. Where
the gradient of the noisy image f is sufficiently large (i.e.,
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likely edges), only TV-based diffusion will be used. Where
the gradient is close to zero (i.e., homogeneous regions), the
model is isotropic.At all other locations, the filtering is some-
where between Gaussian and TV-based. However, as follows
from (8), the type of anisotropy in (6) is completely prede-
finedby the structure of the observed, noisy image f ,whereas
denoised image u may have other structure with other loca-
tion of edges and other shape of homogeneous regions.

In spite of the fact that there are many other different vari-
ants for the choice of regularization term using the so-called
directional total variation [9,10] and flexible space-variants
anisotropic regularization [12,39], to the best of our knowl-
edge, the development of effective choice of Banach spaces
B1, B2 and a proper regularization term R(v) for general
image denoising problem with different noise distributions
remains an open problem for nowadays.

1.5 The Choice of Fidelity Term

As for the choice of the fidelity term 1
2λ‖T v−u0‖2B1 in (1), it

mainly depends on the noise distribution. Inmost cases,when
thenoise is assumed tobe additivewithGaussiandistribution,
the L2-norm is considered (see, for example, [14]). At the
same time, if the image is corrupted by noise with different
statistical properties, other fidelity terms are investigated [7,
45,51]. For instance, when the image is corrupted by impulse
noise, a typical choice for the space B1 is L1(�). In fact, the
use of L1-norm is more robust to recover the exact solution
compared to the L2-norm, which suffers from the contrast
loss and other artifacts.

There exist many works in the literature regarding the
choice of the fidelity term, where the authors propose dif-
ferent variants including L1 + L2 data fidelity [29] and the
so-called infimal convolution combination of data fidelities
[13,26]. Recently, the non-convex functions have been per-
formed as a fidelity term and have achieved a considerable
success in removing complex non-smooth noise [25,53]. In
particular, the following concave variant of fidelity term has
been proposed in [1]:

P
(‖v − u0‖L1(�)

)
with P(t) = t

t + γ
,

where γ is a strictly positive constant used to control the
concavity rate. However, when the Gaussian noise level is
very high compared to the impulse one, the exploitation of
the concave variant of fidelity term can lead to the appearance
of some artifacts in denoised images. So, the correct choice
of the γ parameter, which controls the concavity rate, is a
nontrivial and challenging problem.

1.6 Motivations

A common feature of the models used in denoising and
deblurring problems is the fact that a true image u together
with the rest feasible solutions belongs to the same functional
space B2 (with B2 = BV (�) or B2 = W 1,s(�) in a particu-
lar cases), whereas it is natural to suppose that the regularity
of the restored image u should be low in places in � where
edges or discontinuities are present in u, and that it should be
high in places where u is smooth or contains homogeneous
features.

Because of the specifics of the satellite images with crop
fields, such images typically contain a significant portion of
edges (boundaries of the crop locations). That is why the
important question is to separate pure noise from edges.
Moreover, since a typical satellite image u0 can be viewed
as a number of separate scalar images (spectral channels)[
u1,0, u2,0, . . . , uM,0

]T which have been captured by differ-
ent sensors in different zones of electromagnetic spectrum
with different space resolution, the level of noise and its dis-
tribution can essentially variate from channel to channel.
Figure1 provides a visual comparison of red and near-
infrared channels for a satellite image from Sentinel-2. So,
it is plausible to suppose that different channels ui,0, u j,0,
i �= j , can ‘live’ in different functional spaces, for instance
ui,0 ∈ W 1,si (�) and u j,0 ∈ W 1,s j (�) with si �= s j . How-
ever, we cannot achieve such regularity for the recovered
images in the framework of the standard setting of denoising
problem. Even if we make use of the model (6)–(9), we can
easily deduce that any its solution u ∈ BV (�) ∩ L2(�) has
the following Sobolev regularity: u ∈ W 1,p(x)(�), where
the exponent p(x) is completely determined by the origi-
nal noisy image f , whereas regularity of images f and u
and their texture can be drastically different. It says that the
flexibility of the model (6)–(9) is not enough, especially for
the hyperspectral images. In view of this the idea to involve
into consideration the variational model (1) with an appro-
priate choice of variable character of exponent p(s) in the
regularization term (5), sounds more attractive.

1.7 Contribution

Themain purpose of this paper is to present a robust approach
for the denoising anddeblurring of non-smooth hyperspectral
satellite imagesu0 ∈ L1(�;RM ) using the energy functional
with nonstandard growth. In fact, we use the L1-norm of
the noise in the minimization function and a special form
of anisotropic diffusion tensor for the regularization term.
Namely, we deal with the following optimization problem:
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Fig. 1 Example. Left panel: the
original noisy satellite image.
Middle panel: its red channel.
Right panel: near-infrared
channel

J (v) =
∫

�

1

F(v(x))
|∇v(x)|F(v(x)) dx

+μ

∫

�

|T v(x) − u0(x)| dx −→ inf (10)

subject to the constraints

v ∈ W 1,F(v(·))(�), 1 ≤ γ0 ≤ v(x) ≤ γ1 a.e. in �, (11)

where u0 ∈ L1(�) is a particular spectral channel of
the original noisy image u0 = [

u1,0, u2,0, . . . , uM,0
]T ∈

L1(�;RM ), μ > 0 is the tuning parameter of the problem,
W 1,F(v(·))(�) stands for the so-called Sobolev–Orlicz space
associated with a feasible solution v, T ∈ L(L1(�)) is a
bounded linear operator with unbounded inverse,

F(v(x)) = 1 + g (|(∇Gσ ∗ v) (x)|) in �, (12)

(Gσ ∗ v) (x) determines the convolution of function v with
the N -dimensional Gaussian filter kernel Gσ (see (9)),

(∇Gσ ∗ v) (x) = ∫
RN ∇Gσ (x − y)̃v(y) dy, ∀ x ∈ �,

(13)

ṽ is zero-extensionofv outside�, |ξ | stands for theEuclidean
norm of ξ ∈ R

N given by the rule |ξ | = √
(ξ, ξ)RN , and

g : [0,∞) → (0,∞) is a continuous monotone decreasing
function such that g(0) = 1 and g(t) > 0 for all t > 0 with
lim

t→+∞ g(t) = 0.

In particular, the definition of variable exponent p(x) :=
F(u(x)) in the form 1+g (|(∇Gσ ∗ u) (x)|), where the edge-
stopping function g(s) is taken in the form of the Cauchy law

g(t) = 1

1 + (t/a)2
with an appropriate a > 0, (14)

implies that p(x) ≈ 1 in places in�where edges or disconti-
nuities are present in the spectral channels of an image u(x),
and p(x) ≈ 2 in places where u(x) is smooth or contains
homogeneous features (see Lemma 1).

As for the data fidelity term, in contrast to the quadratic
data-fitting term in the ROF model (3) (see also (1)), where
it is specialized for zero-mean Gaussian noise, we take this
term in L1-norm just in order to apply the model to other
types of noise, especially when the noise is impulsive or
contains gross outliers. Following this way, we are going
to increase the noise robustness of the model (10) albeit it
makes such variational problem completely non-smooth and,
hence, significantly more difficult from a minimization point
of view.

So, the main characteristic feature of this model is that
we involve into consideration the energy functional with the
nonstandard growth where the edge information for restora-
tion ofurec = [urec1 , . . . , urecM

]
is accumulated in the variable

exponents
[
F(urec1 (x)), . . . ,F(urecM (x))

]
. Basically, by anal-

ogy with the model (6)–(9), here we utilize a similar manner
of accommodating the local information. However, there is a
principle difference between the models (6)–(9) and (10). In
contrast to [18,19,42], we do not predefine the variable expo-
nent p(x) a priori using for that the original noisy image, but
instead we associate this characteristic with each feasible
solution. As a result, we admit that each feasible solution to
this problem lives in the corresponding ‘personal’ functional
space W 1,F(ui (·))(�). Formally it means that we look for the
true image urec such that

urec ∈ W 1,F(urec1 (·))(�) × W 1,F(urec2 (·))(�) × . . .

×W 1,F(urecM (·))(�).

As follows from the definition of Sobolev–Orlicz space
W 1,F(ureci (·))(�) (see Appendix B), its regularity is com-
pletely determined by the exponentF(ureci (·))which depends
on i-th spectral channel of the true image urec and, hence, is
unknown a priori. Moreover, as it was shown in Fig. 1, the
exponents

{
F(urec1 (·)),F(urec2 (·)), . . . ,F(urecM (·))} may sig-

nificantly differ from channel to channel. In particular, some
pixels, which are the local minimum points in red channel,
become local maximum points in near-infrared channel and
vice versa.Moreover, the different feasible solutions v1 �= v2
to the above problem live in different functional spaces: We
have v1 ∈ W 1,F(v1(·))(�), whereas v2 ∈ W 1,F(v2(·))(�). As
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a consequence, any minimizing sequence to this problem is,
in fact, a sequence living in the scale of variable spaces. As a
result, such notions as a convergence concept, compactness,
density and others should be specified for the case of variable
Sobolev–Orlicz spaces.

Thus, in spite of the fact that in the literature there aremany
approaches to the study of variational problems in abstract
functional spaces, the above-mentioned circumstances make
the problem (10) challenging (see [9,18,19,21,22,30] for the
recent studies in this field).

In summary, the main contributions of our paper can be
enumerated as follows:

• The variational statement for the hyperspectral image
denoising and deblurring in the form of minimization
problem in Sobolev–Orlicz spaces with non-standard
growth conditions of the objective functional;

• Rigorous substantiation of the well posedness of the vari-
ational problem with non-standard growth functional;

• The proof of existence result to the proposed variational
problem;

• The iterative algorithm for the numerical implementa-
tions;

• Rigorous derivation of the first-order necessary condi-
tions for the approximating problem;

• The approximation scheme with fictitious control and
rigorous substantiation of the attainability properties of
its solutions.

The remainder of the paper is organized as follows: Sect. 2
focuses on the well-posedness of the proposed model for the
image denoising and deblurring problem, and on the solv-
ability issues. In Sect. 3, we propose an iterative algorithm
for the approximate solution of the denoising problem and
discuss its convergence properties. The deriving of optimal-
ity conditions for approximating problem and their rigorous
substantiation, we provide in Sect. 4. Since the proposed iter-
ative algorithm leads to the so-called weak solutions, the
possible ways for the relaxation of the constrainedminimiza-
tion problem (10) are discussed in Sect. 5. With that in mind
we introduce a family of minimization problems with ficti-
tious control and show that each of these problem is solvable
and their solutions converge to the solution of the original
problem in an appropriate topology. For illustration of the
proposed approach, we give in Sect. 6 some results of numer-
ical experiments with real satellite images. Finally, we give
in “Appendix” section the main auxiliary results concerning
theOrlicz spaces and Sobolev spaces with variable exponent.

2 Existence Result

Our main intention in this section is to show that constrained
minimization problem (10) is consistent and admits at least

one solution. Because of the specific form of the energy func-
tional J (v), we cannot assert that minimization problem (10)
is well defined on the entire set W 1,α(�) with some appro-
priate exponent α ≥ 1. Moreover, the structure and main
topological properties of the set of feasible solution to mini-
mization problem (10) are challenging issues. So, the study
of these issues for minimization problem (10) is the main
subject of this section. (We can refer to [5,9,18,23] for some
specific details that can appear in this case.)

We begin with the following key assumption: The true
intensities ui of all spectral channels for the retrieved image
u = [u1, . . . , uM ] are subjected to the constraints γ0,i ≤
ui (x) ≤ γ1,i a.e. in �, where

γ0,i = inf
x∈�

ui,0, γ1,i = sup
x∈�

ui,0. (15)

We say that a function urec = [
urec1 , urec2 , . . . , urecM

]T :
� → R

M is the result of restoration of a noise contaminated
image u0 : � → R

M if for a given regularization parameters
μ > 0 and given linear blur operators Ti ∈ L(L1(�)) with
i = 1, . . . , M , each spectral component ureci is the solution
of the following constrained minimization problem with the
nonstandard growth energy functional

Ji (v) : =
∫

�

1

F(v(x))
|∇v(x)|F(v(x)) dx

+μ

∫

�

|Ti (v(x)) − u0,i (x)| dx −→ inf
v∈�i

(16)

i.e., for each i = 1, . . . , M ,

ureci ∈ �i and Ji
(
ureci

) = inf
v∈�i

Ji (v) .

Here, �i is the set of feasible solutions to the problem (16)
which we define as follows:

�i =
{
v |v ∈ W 1,F(v(·))(�),

0 ≤ γ0,i ≤ v(x) ≤ γ1,i < +∞ a.e. in �
}
,

where F(v) is given by (2), and W 1,p(·)(�) is the Sobolev–
Orlicz space (for the details we refer to Appendix A).

Hereinafter, we associate with each spectral channel ureci

of the restoredoptical imageu rec = [urec1 , urec2 , . . . , urecM

]T :
� → R

M the so-called texture index pi : � → R following
the rule:

pi (x) := F(ui (x)) = 1 + g (|(∇Gσ ∗ ui ) (x)|) ,

∀ x ∈ �, ∀ i = 1, . . . , M, (17)

where g:[0,∞) → (0,∞) is the edge-stopping function
whichwe take in the form of the Cauchy law g(t) = 1

1+(t/a)2
.

123



478 Journal of Mathematical Imaging and Vision (2023) 65:472–491

As follows from representation (12) and smoothness of the
Gaussian filter kernel Gσ , we have the following estimates

|(∇Gσ ∗ v) (x)| ≤
∫

�

|∇Gσ (x − y)|v(y) dy

≤ ‖Gσ ‖C1(�−�)‖v‖L1(�)

≤ ‖Gσ ‖C1(�−�)|�|γ1,i ,

F(v(x)) = 1 + a2

a2 + (|(∇Gσ ∗ v) (x)|)2

≥ 1 + a2

a2 + ‖Gσ ‖2
C1(�−�)

‖v‖2
L1(�)

≥ 1 + δ,∀ x ∈ �,

F(v(x)) ≤ 2 in �,

where

δ = a2

a2 + ‖Gσ ‖2
C1(�−�)

|�|2γ 2
1,i

� 1,

‖Gσ ‖C1(�−�) = max
z=x−y

x∈�,y∈�

[|Gσ (z)| + |∇Gσ (z)|]

= 1

2πσ 2 e
−1
[
1 + 1

σ 2 diam�

]
.

The following result plays a crucial role in the sequel.

Lemma 1 Let {vk}k∈N ⊂ L∞(�) be a sequence of mea-
surable non-negative functions such that vk(x) → v(x)
weakly-∗ in L∞(�) for some v ∈ L∞(�), and each ele-
ment of this sequence is extended by zero outside of �.
Let {pk = 1 + g (|(∇Gσ ∗ vk)|)}k∈N be the corresponding
sequence of texture indices. Then,

pk(·) → p(·) = 1 + g (|(∇Gσ ∗ v) (·)|)
uniformly in � as k → ∞,

α := 1 + δ ≤ pk(x) ≤ β := 2,

∀ x ∈ �, ∀ k ∈ N, (18)

with δ = a2
[
a2 + ‖Gσ ‖2

C1(�−�)
sup
k∈N

‖vk‖2L1(�)

]−1

.(19)

Proof In view of the initial assumptions, the sequence
{vk}k∈N is uniformly bounded in L1(�). Hence, by smooth-
ness of the Gaussian filter kernel Gσ , it follows that

|(∇Gσ ∗ vk) (x)| ≤
∫

�

|∇Gσ (x − y)|vk(y) dy
≤ ‖Gσ ‖C1(�−�)‖vk‖L1(�),

pk(x) = 1 + a2

a2 + (|(∇Gσ ∗ vk) (x)|)2

≥ 1 + a2

a2 + ‖Gσ ‖2
C1(�−�)

‖vk‖2L1(�)

,

∀ x ∈ �.

Then, L1-boundedness of {vk}k∈N guarantees the existence
of a positive value δ ∈ (0, 1) (see (18)) such that estimate
(18) holds true for all k ∈ N. Moreover, as follows from the
relations

|pk(x) − pk(y)|
≤ a2

∣∣
∣
∣

|(∇Gσ ∗ vk) (x)|2 − |(∇Gσ ∗ vk) (y)|2
(
a2 + |(∇Gσ ∗ vk) (x)|2) (a2 + |(∇Gσ ∗ vk) (y)|2)

∣∣
∣
∣

≤
2‖Gσ ‖C1(�−�)

‖vk‖L1(�)

a2∣
∣
∣∣|(∇Gσ ∗ vk) (x)| − |(∇Gσ ∗ vk) (y)|

∣
∣
∣∣

≤
2‖Gσ ‖C1(�−�)

γ 2
1 |�|

a2∫

�
|∇Gσ (x − z) − ∇Gσ (y − z)| dz,

∀ x, y ∈ � with γ1 = sup
k∈N

‖vk‖L∞(�),

and smoothness of the function ∇Gσ (·), there exists a posi-
tive constant CG > 0 independent of k such that

|pk(x) − pk(y)| ≤ 2‖Gσ ‖C1(�−�)γ
2
1,i |�|CG

a2
|x − y|, ∀ x, y ∈ �.

Setting

C := 2‖Gσ ‖C1(�−�)γ
2
1,i |�|CG

a2
, (20)

we see that

{pk(·)} ⊂ S

=
{
h ∈ C0,1(�)

∣
∣
∣
∣
|h(x) − h(y)| ≤ C |x − y|, ∀ x, y, ∈ �,

1 < α ≤ h(·) ≤ β in �.

}

Since maxx∈�|pk(x)| ≤ β and each element of the sequence
{pk}k∈N has the same modulus of continuity, it follows that
this sequence is uniformly bounded and equi-continuous.
Hence, by Arzelà–Ascoli theorem, the sequence {pk}k∈N is
relatively compact with respect to the strong topology of
C(�). Taking into account the estimate (20) and the fact that
the set S is closed with respect to the uniform convergence
and

(∇Gσ ∗ vk) (x) → (∇Gσ ∗ v) (x) as k → ∞, ∀ x ∈ �
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by definition of the weak-∗ convergence in L∞(�), we
deduce: pk(·) → p(·) uniformly in � as k → ∞, where
p(x) = 1 + g (|(∇Gσ ∗ v) (x)|) in �. The proof is com-
plete. ��

For our further analysis, we make use of the follow-
ing result (we refer to [55, Lemma 13.3] for comparison)
concerning the lower semicontinuity property of the vari-
able L pk (·)-norm with respect to the weak convergence in
L pk (·)(�).

Proposition 1 If a bounded sequence
{
fk ∈ L pk (·)(�)

}
k∈N

converges weakly in Lα(�) to f for some α > 1, then f ∈
L p(·)(�), fk⇀ f in variable L pk (·)(�), and

lim inf
k→∞

∫

�

| fk(x)|pk (x) dx ≥
∫

�

| f (x)|p(x) dx . (21)

Proof In view of the fact that

∣
∣
∣∣

∫

�

| fk(x)|pk (x) dx −
∫

�

p(x)

pk(x)
| fk(x)|pk (x) dx

∣
∣
∣∣

≤ ‖pk − p‖C(�)

∫

�

1

pk(x)
| fk(x)|pk (x) dx

≤ ‖pk − p‖C(�)

α

∫

�

| fk(x)|pk (x) dx by (A9)→ 0 as k → ∞,

we see that

lim inf
k→∞

∫

�
| fk(x)|pk (x) dx

= lim inf
k→∞

∫

�

p(x)

pk(x)
| fk(x)|pk(x) dx . (22)

Using the Young’s inequality ab ≤ |a|p/p + |b|p′
/p′, we

have

∫

�

p(x)

pk(x)
| fk(x)|pk (x) dx ≥

∫

�

p(x) fk(x)ϕ(x) dx

−
∫

�

p(x)

p′
k(x)

|ϕ(x)|p′
k (x) dx, (23)

for p′
k(x) = pk(x)/(pk(x) − 1) and any ϕ ∈ C∞

0 (RN ).
Then, passing to the limit in (23) as k → ∞ and utilizing

property (A8) and the fact that

lim
k→∞

∫

�

fk(x)ϕ(x) dx =
∫

�

f (x)ϕ(x) dx

for all ϕ ∈ Lα′
(�), (24)

we obtain

lim inf
k→∞

∫

�

| fk(x)|pk (x) dx ≥
∫

�

p(x) f (x)ϕ(x) dx

−
∫

�

p(x)

p′(x)
|ϕ(x)|p′(x) dx . (25)

Since the last inequality is valid for all ϕ ∈ C∞
0 (RN ) and

C∞
0 (RN ) is a dense subset of L p′(·)(�), it follows that

this relation also holds true for ϕ ∈ L p′(·)(�). So, taking
ϕ = | f (x)|p(x)−2 f (x), we arrive at the announced inequal-
ity (21). As a consequence of (21) and estimate (A4), we get:
f ∈ L p(·)(�).
To end the proof, it remains to observe that relation (24)

holds true for ϕ ∈ C∞
0 (RN ) as well. From this the weak

convergence fk⇀ f in the variable Orlicz space L pk (·)(�)

follows. ��
Remark 1 Arguing in a similar manner and using, instead of
(23), the estimate

lim inf
k→∞

∫

�

1

pk(x)
| fk(x)|pk (x) dx ≥

∫

�

f (x)ϕ(x) dx

−
∫

�

1

p′
k(x)

|ϕ(x)|p′(x) dx,

it can be shown that the lower semicontinuity property (21)
can be generalized as follows:

lim inf
k→∞

∫

�

1

pk(x)
| fk(x)|pk (x) dx ≥

∫

�

1

p(x)
| f (x)|p(x) dx . (26)

Following in some technical aspects the recent studies
[21,22,30], we give the following existence result.

Theorem 2 For each i = 1, . . . , M and given μ > 0, u0 ∈
L1(�;RM ), and Ti ∈ L(L1(�)), the minimization problem
(16) admits at least one solution ureci ∈ �i .

Proof Since �i �= ∅ and 0 ≤ Ji (v) < +∞ for all v ∈ �i , it
follows that there exists a non-negative value ζ ≥ 0 such that
ζ = inf

v∈�i
Ji (v). Let {vk}k∈N ⊂ �i be a minimizing sequence

to the problem (16), i.e.,

vk ∈ �i , ∀ k ∈ N, and lim
k→∞ Ji (vk) = ζ.

So, without loss of generality, we can suppose that Ji (vk) ≤
ζ + 1 for all k ∈ N. From this and the initial assumptions,
we deduce

∫

�
|vk(x)|α dx

≤
∫

�
γ α
1,i dx ≤ γ α

1,i |�|, ∀ k ∈ N,

∫

�
|∇vk(x)|pk(x) dx

≤ 2
∫

�

1

pk(x)
|∇vk(x)|pk(x) dx < 2(ζ + 1),∀ k ∈ N, (27)

where pk(x) = 1+g (|(∇Gσ ∗ vk) (x)|) in�, and, therefore,

sup
k∈N

[
sup
x∈�

pk(x)

]
≤ 2 (see Lemma 1).
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Utilizing the fact that vk(x) ≤ γ1,i for almost all x ∈ �,
we infer the following estimate

‖vk‖L1(�) ≤ γ1,i |�|, ∀ k ∈ N.

Then, arguing as in Lemma 1, it can be shown that pk ∈
C0,1(�) and

α := 1 + δ ≤ pk(x) ≤ β := 2, ∀ x ∈ �, ∀ k ∈ N, (28)

with δ = a2

a2 + ‖Gσ ‖2
C1(�−�)

γ 2
1,i |�|2 . (29)

Taking this fact into account, we deduce from (27), (28),
and (A4) that

‖vk‖W 1,α(�) =
(∫

�

[|vk(x)|α + |∇vk(x)|α
]
dx

)1/α

≤ (1 + |�|)1/α
(∫

�

[
|vk(x)|pk(x) + |∇vk(x)|pk (x)

]
dx + 2

)1/α

by (27)≤ (1 + |�|)1/α
(
γ 2
1,i |�| + 2ζ + 4

)1/α

uniformly with respect to k ∈ N. Therefore, there exist a
subsequence of {vk}k∈N, still denoted by the same index, and
a function ureci ∈ W 1,α(�) such that

vk → ureci strongly in Lq(�) f or all q ∈ [1, α∗),
vk⇀ureci weakly in W 1,α(�) as k → ∞, (30)

where, by Sobolev embedding theorem, α∗ = Nα
N−α

=
N+Nδ
N−1−δ

> 1 + δ.
Moreover, passing to a subsequence if necessary, we have

(see Proposition 1 and Lemma 1):

vk(x) → ureci (x) a.e. in �

vk⇀ureci weakly in L pk (·)(�),

∇vk⇀∇ureci weakly in L pk (·)(�;RN ),

pk(·) → preci (·) = 1 + g
(∣∣ (∇Gσ ∗ ureci

)
(·)∣∣)

uniformly in � as k → ∞, (31)

where ureci ∈ W 1,prec(·)(�).
Since γ0,i ≤ vk(x) ≤ γ1,i a.a. in � for all k ∈ N, it

follows from (31) that the limit function ureci is also subjected
to the same restriction. Thus, ureci is a feasible solution to
minimization problem (16).

Let us show that ureci is a minimizer of this problem. With
that in mind, we note that in view of the obvious inequality

|Ti (vk(x)) − u0,i (x)| ≤ (‖Ti‖L(L1(�))γ1,i + |u0,i (x)|
)
,

wehave:The sequence
{
Ti (vk(x)) − u0,i (x)

}
k∈N is bounded

in L1(�), equi-integrable in�, and in viewof (31), it strongly
converges in L1(�) to Ti

(
ureci

)− u0,i . Hence,

lim inf
k→∞

∫

�

|Ti (vk(x)) − u0,i (x)| dx

=
∫

�

∣∣Ti
(
ureci (x)

)− u0,i (x)
∣∣ dx . (32)

It remains to notice that due to the properties (27), (30),
the sequence

{|∇vk | ∈ L pk (·)(�)
}
k∈N is bounded andweakly

convergent to |∇ureci | in Lα(�). Hence, by Proposition 1, the
following lower semicontinuous property

lim inf
k→∞

∫

�

1

pk(x)
|∇vk(x)|pk (x) dx

≥
∫

�

1

preci (x)
|∇ureci (x)|preci (x) dx (33)

holds true.
As a result, utilizing relations (32) and (33), we finally

obtain

ζ = inf
v∈�i

Ji (v) = lim
k→∞ Ji (vk) = lim inf

k→∞ Ji (vk) ≥ Ji (u
rec
i ).

Thus, ureci is a minimizer to the problem (16), whereas its
uniqueness remains an open question. ��

3 Iterative Algorithm Based on the
Variational Convergence of Extremal
Problems

Our prime interest in this section is to propose an approxi-
mation approach to the solution of the minimization problem
(16) thatwould be effective fromnumerical simulations point
of view. After discussion of the main steps of the proposed
iterative algorithm, we supply it by a rigorous substantiation.
As an alternative approach to the study ofminimization prob-
lems (16), there can be recommended the modular-proximal
gradient algorithms in variable Lebesgue spaces that were
recently developed in [41]. However, the efficiency of such
algorithms in the context of a particular form of the objective
functional (65) seems to remain an open question nowadays.

Let i ∈ {1, . . . , M} be a given spectral channel. Mainly
basing on the concept of relaxation of extremal problems
and their variational convergence [31,33,38], we propose the
following algorithm. At the first step, we set up

p0(x) = 1 + g
(|(∇Gσ ∗ u0,i

)
(x)|) , ∀ x ∈ �, (34)

u0 = Argmin
v∈Bi,p0(·)

Ji (v, p0(·)), (35)
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where

Bi,p(·) = {v ∈ W 1,p(·)(�) : 1≤γ0,i ≤ v(x) ≤ γ1,i a.e. in �
}
,

Ji (v, p) = ∫� 1
p(x) |∇v(x)|p(x) dx + μ

∫
�|Ti (v(x)) − u0,i (x)| dx .

It is clear that Ji (v,F(v(·))) = Ji (v) for all v ∈ �i .
Then, for each k ≥ 1, we set

pk(x) = 1 + g
(∣∣
(
∇Gσ ∗ uk−1

)
(x)
∣∣
)

, ∀ x ∈ �,

uk = Argmin
v∈Bi,pk (·)

Ji (v, pk(·)). (36)

It is worth no notice that such definition of the elements
uk is correct. Indeed, arguing as in the proof of Theorem 2
and using convexity arguments, it can be shown that for each
p(·) ∈ S, there exists a unique element u0,p(·)i ∈ Bi,p(·) such
that u0,p(·)i = Argminv∈Bi,p(·) Ji (v, p(·)). This fact reflects
the principle difference between optimization problems (37)
and (16), where the problem (16) can be viewed as a min-
imization of the growth energy functional (16) with ‘the
frozen exponent’ pk(x).

Before proceeding further, we introduce the following set:

S =
{
h ∈ C(�)

∣
∣
∣
∣

|h(x) − h(y)| ≤ C |x − y|, ∀ x, y ∈ �,

α := 1 + δ ≤ h(x) ≤ β := 2, ∀ x ∈ �,

}

(37)

where C > 0 and δ > 0 are defined by (20) and (29), respec-
tively.

Utilizing the arguments of the proof of Theorem 2, it
can be shown that for given i = 1, . . . , M , μ > 0, and
u0 ∈ L1(�,RM ), the sequence

{
uk ∈ W 1,pk (·)(�)

}
k∈N is

compact with respect to the weak topology of W 1,α(�),
whereas the exponents {pk}k∈N are compact with respect to
the strong topology of C(�).

We say that a function ûi is a weak solution to the original
problem (16) if

ûi = Argmin
v∈B p̂i (·)

Ji (v, p̂i (·)), ûi ∈ Bi, p̂i (·),

p̂i (x) = 1 + g (|(∇Gσ ∗ ûi ) (x)|) , ∀ x ∈ �.

(38)

Remark 2 The relation between a weak solution and a solu-
tion to the problem (16) is very intricate. Since the uniqueness
of solutions to (16) is a rather questionable option, it fol-
lows that, in principle, these definitions can describe different
functions in �i . As immediately follows from (38), a weak
solution is a merely feasible one to the original problem.
However, if the problem (16) admits a unique solution
(u0i , p

0
i ) ∈ �i , then (38) implies that this function is con-

sidered as a weak solution. On the other hand, if u∗
i ∈ �i is

some solution to (16), then setting in (34) p0(x) = F(u∗
i (x))

for all x ∈ �, we immediately arrive at the conclusion:
(uk, pk) = (u∗

i ,F(u∗
i (x))) for all k ∈ N and, therefore, u∗

i is
a weak solution to the above problem. So, in general, it would
be provocative to assert that all weak solutions to the prob-
lem (16) are local minimizers of (16). In view of arguments
given above, these solutions are merely stationary points of
the original problem.

Our main goal in this section is to establish the existence
of a weak solution to the original problem (16) and show that
it can be attained by some iterative algorithm.

We begin with some technical results.

Lemma 2 For given values i ∈ {1, . . . , M}, μ>0, and u0 ∈
L1(�,RM ), the sequence of minimizers

{
uk ∈ W 1,pk (·)

(�)}k∈N of (36) is compact with respect to the weak topology
of W 1,α(�).

Proof Let us show that the sequence of minimizers
{
uk
}
k∈N

of (38) is bounded in the sense of condition (A9). Let û ∈
C1(�) be an arbitrary function such that γ0,i ≤ û(x) ≤ γ1,i
in �. Since

Ji (u
k, pk(·)) ≤ Ji (̂u, pk(·)), ∀ k = 0, 1, 2, . . . (39)

and

∫

�

1

pk(x)
|∇û(x)|pk (x) dx ≤

∫

�

1

pk(x)

(
1 + ‖û‖C1(�)

)pk (x)
dx

≤ |�|
α

(
1 + ‖û‖C1(�)

)2
,

∫

�
|Ti (̂u(x)) − u0,i (x)| dx ≤

∫

�

[
‖Ti‖ ‖û‖C1(�)

+ |u0,i (x)|
]
dx

≤ |�|‖Ti‖ ‖û‖C1(�)
+ ‖u0,i‖L1(�),

it follows that

sup
k∈N

Ji (u
k, pk(·)) ≤ sup

k∈N
Ji (̂u, pk(·)) ≤ Ĉ

with some constant Ĉ > 0.
From this and definition of the set Bi,pk (·), we deduce

∫

�

|uk(x)|α dx ≤ γ α
1,i |�|, ∀ k ∈ N, (40)

∫

�

|∇uk(x)|pk (x) dx

≤ 2
∫

�

1

pk(x)
|∇uk(x)|pk (x) dx < 2Ĉ, ∀ k ∈ N. (41)

Then, estimate (A4) implies that the sequence
{
uk
}
k∈N is

bounded in W 1,α(�). So, its weak compactness is a direct
consequence of the reflexivity of W 1,α(�). ��
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We notice that boundedness of the sequence
{
uk
}
k∈N in

W 1,α(�) and compactness of the embedding W 1,α(�) ↪→
Lq(�) for q ∈

[
1, Nα

N−α

)
imply the existence of an element

u∗ ∈ W 1,α(�) such that, up to a subsequence,

uk(x) → u∗(x) a.e. in �, (42)

uk → u∗ in Lq(�), and ∇uk⇀∇u∗ in Lα(�;RN ).

(43)

Then, using (42) and passing to the limit in two-side inequal-
ity γ0,i ≤ uk(x) ≤ γ1,i , we obtain

γ0,i ≤ u∗(x) ≤ γ1,i for a.a. x ∈ �. (44)

Utilizing this fact together with the pointwise convergence
(42), by the Lebesgue dominated convergence theorem, we
have

lim
k→∞F(uk(x)) = 1 + a2

a2 + ( lim
k→∞

∣∣ (∇Gσ ∗ uk
)
(x)
∣∣)2

= 1 + a2

a2 + (∣∣
(

∇Gσ ∗ lim
k→∞ uk

)
(x)
∣∣)2

= F(u∗(x)), ∀ x ∈ �. (45)

Since, by Arzelà–Ascoli theorem, the set {pk = 1 + g(∣∣ (∇Gσ ∗ uk−1
)
(x)
∣∣)}

k∈N is compact with respect to the
strong topology of C(�), it follows from (45) (see also the
proof of Lemma 1) that

pk → p∗ = F(u∗(x)) strongly in C(�)

as k → ∞, and p∗ ∈ S. (46)

Then, properties (42)–(46) and Proposition 1 imply:

u∗ ∈ Bi,p∗(·)
=
{
u ∈ W 1,p∗(·)(�) 1 ≤ γ0,i ≤ u(x) ≤ γ1,i a.e. in �

}
. (47)

Thus, the iterative procedure (36) has a cluster point
(u∗, p∗) ∈ Bi,p∗(·)×Swith respect to the convergence (42)–
(43), (46).

The main result of this section can be stated as follows:

Theorem 3 Let μ > 0, and u0 ∈ L1(�,RM ) be given data.
Then, for each i ∈ {1, . . . , M}, the sequence of approximated
solutions

{
(uk, pk)

}
k∈N possesses the asymptotic properties:

uk(x) → ũi (x) a.e. in �, (48)

uk → ũi in Lq(�), ∀ q ∈
[
1,

Nα

N − α

)
,

∇uk⇀∇ũi in Lα(�;RN ), (49)

pk → p̃i = F(̃ui ) strongly in C(�) as k → ∞, (50)

where ũi is a weak solution to the problem (16), that is,

ũi ∈ Bi, p̃i (·), ũi = Argmin
v∈Bi, p̃i (·)

Ji (v, p̃i (·)),

and, in addition, the following variational property holds
true

lim
k→∞Ji (u

k, pk(·)) = lim
k→∞

[

inf
v∈Bi,pk (·)

Ji (v, pk(·))
]

= inf
v∈Bi, p̃i (·)

Ji (v, p̃i (·)) = Ji (̃ui ). (51)

Proof As immediately follows from Lemma 2 and reason-
ing given above, the sequence

{
(uk, pk)

}
k∈N is compact with

respect to the convergence (48)–(50). Let (̃ui , p̃i ) be its clus-
ter point. In order to show that the function ũi is a weak
solution to the problem (16), we assume the converse—
namely, there is another function z ∈ Bi, p̃i (·) such that

Ji (z, p̃i (·)) = inf
v∈Bi, p̃i (·)

Ji (v, p̃i (·)) < Ji (̃ui , p̃i (·)) ≡ Ji (̃ui ).

(52)

Using the procedure of the standard direct smoothing, we set

uε(x) = 1

εN

∫

RN
K

(
x − s

ε

)
z̃(s) ds,

where ε > 0 is a small parameter, K is a positive compactly
supported smooth function with properties

K ∈ C∞
0 (RN ),

∫

RN
K (x) dx = 1, and K (x) = K (−x),

and z̃ is zero extension of z outside of �.
Since z ∈ W 1, p̃(·)(�) and p̃(x) ≥ α = 1 + δ in �, it

follows that z ∈ W 1,α(�). Then,

uε ∈ C∞
0 (RN ) for each ε > 0,

uε → z in Lα(�), ∇uε → ∇z in Lα(�;RN ) (53)

by the classical properties of smoothing operators. From this
we deduce that

uε(x) → z(x) a.e. in �. (54)

Moreover, taking into account the estimates

uε(x) =
∫

RN
K (y) z̃(x − εy) dy ≤ γ1,i

∫

RN
K (y) dy = γ1,i ,
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uε(x) ≥
∫

y∈ε−1(x−�)

K (y) z̃(x − εy) dy

≥ γ0,i

∫

y∈ε−1(x−�)

K (y) dy ≥ γ0,i ,

we see that each element uε is subjected to the pointwise
constraints

γ0,i ≤ uε(x) ≤ γ1,i a.e. in �, ∀ ε > 0.

Since, for each ε > 0, uε ∈ W 1,pk (·)(�) for all k ∈ N, it
follows that uε ∈ Bi,pk (·), i.e., each element of the sequence
{uε}ε>0 is a feasible solution to all approximating problems〈
infv∈Bi,pk (·) Ji (v, pk(·))

〉
. Hence,

Ji (u
k, pk(·)) ≤ Ji (uε, pk(·)), ∀ ε > 0, ∀ k = 0, 1, . . .(55)

Further, we notice that

lim inf
k→∞ Ji (u

k, pk(·)) ≥ Ji (̃ui , p̃i (·)) (56)

by Proposition 1 and Fatou’s lemma, and

lim
k→∞Ji (uε, pk(·)) = lim

k→∞

∫

�

1

pk(x)
|∇uε(x)|pk (x) dx

+μ

∫

�

|Ti (uε(x)) − u0,i (x)| dx . (57)

Since

1

pk(x)
|∇uε(x)|pk (x) → 1

p̃i (x)
|∇uε(x)| p̃i (x)

uniformly in � as k → ∞,

it follows from the Lebesgue dominated convergence theo-
rem and (57) that

lim
k→∞Ji (uε, pk(·)) = Ji (uε, p̃i (·)), ∀ε > 0. (58)

As a result, passing to the limit in (55) and utilizing properties
(56)–(58), we obtain

Ji (̃ui , p̃i (·)) ≤ Ji (uε, p̃i (·))
=
∫

�

1

p̃i (x)
|∇uε(x)| p̃i (x) dx

+μ

∫

�

|Ti (uε(x)) − u0,i (x)| dx, (59)

for all ε > 0. Taking into account the pointwise convergence
(see (54) and property (53))

|∇uε(x)| p̃i (x) → |∇z(x)| p̃i (x),
|Ti (uε(x)) − u0,i (x)| → |Ti (z(x)) − u0,i (x)|

as ε → 0, and the fact that, for ε small enough,

|∇uε| p̃i (·) ≤ (1 + |∇z|) p̃i (·) ∈ L1(�),

|Ti (uε(·)) − u0,i (·)| ≤ [‖Ti‖ (1 + |z(·)|) + |u0,i (·)|
] ∈ L1(�),

we can pass to the limit in (59) as ε → 0 by the Lebesgue’s
dominated convergence theorem. This yields

Ji (̃ui , p̃i (·)) ≤ lim
ε→0

Ji (uε, p̃i (·)) = Ji (z, p̃i (·)).

Combining this inequality with (59) and (52), we finally get

Ji (z, p̃i (·)) = inf
v∈Bi, p̃i (·)

Ji (v, p̃i (·)) < Ji (̃ui , p̃i (·))
≤ Ji (z, p̃i (·)),

that leads us to conflict with the initial assumption. Thus,

Ji (̃ui ) = Ji (̃ui , p̃i (·)) = inf
v∈Bi, p̃i (·)

Ji (v, p̃i (·)) (60)

and, therefore, ũi is a weak solution to the original prob-
lem (16). As for the variational property (51), it is a direct
consequence of (60) and (58). ��

4 Optimality Conditions

To characterize the solution u0,p(·) ∈ Bi,p(·) of the approx-
imating optimization problem

〈
infv∈Bi,p(·) Ji (v, p(·))

〉
, we

check that the functionalJi (v, p(·)) isGâteauxdifferentiable
with respect to v, that is,

lim
t→0

Ji (u
0,p(·) + tv, p(·)) − Ji (u

0,p(·), p(·))
t

=
∫

�

(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
dx

+μ

∫

�

u0,p(·)
|Ti
(
u0,p(·)

)− u0,i |
Ti (v) dx, ∀ v ∈ W 1,p(·)(�).

(61)

To this end, we note that

|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)
p(x)t

→
(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
as t → 0

almost everywhere in �. Since, by convexity,

|ξ |p − |η|p ≤ 2p
(
|ξ |p − 1 + |η|p−1

)
|ξ − η|,
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it follows that

∣
∣∣

1

p(x)t

(
|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)

) ∣∣∣

≤ 2
(
‖∇u0,p(·)(x) + t∇v(x)‖p(x)−1

+‖∇u0,p(·)(x)‖p(x)−1
)

‖∇v(x)‖
≤ const

(
|∇u0,p(·)(x)|p(x)−1 + |∇v(x)|p(x)−1

)
|∇v(x)|.

(62)

Taking into account that

∫

�

|∇u0,p(·)(x)|p(x)−1|∇v(x)| dx
≤ 2‖|∇u0,p(·)(x)|p(x)−1‖L p′(·)(�)

‖|∇v(x)|‖L p(·)(�)

≤ 2‖|∇u0,p(·)(x)|p(x)−1‖L p′(·)(�,RN )
‖∇v(x)‖L p(·)(�,RN ),

and
∫
�
|∇v(x)|p(x) dx by(A4)≤ ‖∇v‖2

L p(·)(�,RN )
+ 1, we see

that the right-hand side of inequality (62) is an L1(�)-
function. Therefore,

∫

�

|∇u0,p(·)(x) + t∇v(x)|p(x) − |∇u0,p(·)(x)|p(x)
p(x)t

dx

→
∫

�

(
|∇u0,p(·)(x)|p(x)−2∇u0,p(·)(x),∇v(x)

)
dx

as t → 0

by the Lebesgue’s dominated convergence theorem.
Utilizing similar arguments to the rest of terms in (10), we

deduce that the representation (61) for the Gâteaux differen-
tial of Ji (·, p(·)) at the point u0,p(·) ∈ Bi,p(·) is valid.

Thus, in order to derive some optimality conditions for
the minimizing element u0,p(·) ∈ Bi,p(·) to the problem
inf

v∈Bi,p(·)
Ji (v, p(·)), we note thatBi,p(·) is a nonempty convex

subset ofW 1,p(·)(�) and the objective functionalJi (·, p(·)) :
Bi,p(·) → R is strictly convex. Hence, the well-known clas-
sical result (see [43, Theorem 1.1.3]) and representation (61)
lead us to the following conclusion.

Theorem 4 Let pk(·) ∈ S be an exponent given by the iter-
ative rule (36). Then, the unique minimizer uk ∈ Bi,pk (·) to
the approximating problem inf

v∈Bi,pk (·)
Ji (v, pk(·)) is charac-

terized by

∫

�

(
|∇uk(x)|pk (x)−2∇uk(x),∇v(x) − ∇uk(x)

)
dx

+μ

∫

�

uk

|Ti
(
uk
)− u0,i |

(
Ti
(
v(x) − uk(x)

))
dx ≥ 0,

∀ v ∈ Bi,pk (·). (63)

5 On Approximation of the Reconstruction
Problem

It is clear that because of the nonstandard growth energy
functional and its non-convexity, constrained minimization
problem (16) is not trivial in its practical implementation. The
main difficulty in its study comes from the state constraints

0 ≤ γ0,i ≤ v(x) ≤ γ1,i a.e. in �, F(v(x))

= 1 + g (|(∇Gσ ∗ v) (x)|) (64)

that we impose on the variable exponent and the set of feasi-
ble solutions �i . The iterative algorithm that was proposed
in the previous sections allows to attain in the limit the so-
called weak solution to the minimization problem (16). So,
the question whether some optimal solutions can be reach-
able in such way remains open. This motivates us to pass to
another relaxation scheme of the original variational prob-
lem.

As themain step of this procedure, we propose to consider
the function p(·) := F(v(·)) as a fictitious control subjected
to some special constraints and interpret the fulfillment of
equality F(v(x)) = 1+g (|(∇Gσ ∗ v) (x)|)with some accu-
racy in �. To do so, we notice that if v ∈ �i is a feasible
solution to (16), then F(v(·)) is subjected to the two-side
inequality (28) with δ ∈ (0, 1) given by (29). Keeping this
in mind and following in some aspects the standard penalty
method (see, [52, Chapter 2], see also [34–37,40]), we con-
sider the following family of approximating problems:

Minimize Ji,ε(v, p) =
∫

�

1

p(x)
|∇v(x)|p(x) dx

+μ

∫

�

|Ti (v(x)) − u0,i (x)| dx

+1

ε

∫

�

|p(x) − 1 − g (|(∇Gσ ∗ v) (x)|)|2 dx (65)

subject to the constraints (v, p) ∈ �i,ε, where

�i,ε =
{
(v, p)

∣
∣
∣∣
v ∈ W 1,α(�), p ∈ Sad , Ji,ε(v, p) < +∞,

0 ≤ γ0,i ≤ v(x) ≤ γ1,i a.e. in �,

}

(66)

Sad =
{
h ∈ C(�)

∣
∣
∣∣
|h(x) − h(y)| ≤ C |x − y|, ∀ x, y ∈ �,

1 < α ≤ h(·) ≤ β in �.

}

(67)

with C > 0 given by (20), α = 1 + δ, and δ > 0 is given by
(29).

We assume that the parameter ε varies within a strictly
decreasing sequence of positive real numberswhich converge
to 0. So, when wewrite ε > 0, we consider only the elements
of this sequence.
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Definition 1 We say that a pair (v, p) is quasi-feasible to
minimization problem (16) if (v, p) ∈ �i,ε. We also say
that (u0i,ε, p

0
i,ε) ∈ W 1,p0ε (·)(�) ×C0,1(�) is a quasi-optimal

solution to the problem (16) if (u0i,ε, p
0
i,ε) ∈ �i,ε and

Ji,ε(u0i,ε, p
0
i,ε) = inf

(v,p)∈�i,ε
Ji,ε(v, p).

Remark 3 It is clear that the condition p ∈ Sad together with
the fact that Sad is a compact subset in C(�) imply: Every
cluster point of a sequence {pk}k∈N ⊂ Sad with respect to the
uniform topology is a regular exponent, i.e., it is an exponent
satisfying the log-Hölder continuity condition [55]. In this
case, the set C∞

0 (RN ) is dense in W 1,p(·)(�) [20] and this
fact plays a crucial role in approximation of minimization
problem (16).

The principle point in the statement of approximated prob-
lem (65) is the fact that we pass from the state constrained
optimizationproblem (16)with the variable exponent p(x) =
F(v(x)) strongly depending on the function of interest v to
its approximation where we eliminate the equality constraint
p(x) = F(v(x)) between the state v(x) and exponent p(x)
and allow such pairs run freely in their respective sets of
feasibility.

We begin with the following existence result.

Theorem 5 For each i = 1, . . . , M, every positive value ε >

0, and given μ > 0, ui,0 ∈ L1(�), and Ti ∈ L(L1(�)), the
minimization problem (65) has at least one solution.

Proof The proof follows the steps of that of Theorem 2.
Since the set �i,ε is nonempty, we can take a minimiz-
ing sequence {(uk, pk)}k∈N ⊂ �i,ε. Then, arguing as in
the proof of Theorem 2, we deduce the boundedness of
{(uk, pk)}k∈N inW 1,pk (·)(�)×C0,1(�) and, hence, the exis-
tence of a subsequence, still denoted in the same way, and a
pair

(
u0ε, p

0
ε

) ∈ �i,ε such that pk → p0ε in C(�), uk⇀u0ε in
W 1,α(�) and in variable W 1,pk (·)(�). Then, by the Sobolev
embedding theorem, we deduce that uk → u0ε strongly in
Lq(�) for all q ∈ [1, αN

N−α
), and, therefore, we can suppose

that uk(x) → u0ε(x) almost everywhere in � as k → ∞. As
a result, we have

γ0,i ≤ u0ε(x) ≤ γ1,i and α ≤ p0ε (x) ≤ β a.a. in �,

lim
k→∞

∫

�

|Ti (uk(x)) − u0,i (x)| dx

=
∫

�

|Ti (u0ε(x)) − u0,i (x)| dx,

lim inf
k→∞

∫

�

1

pk(x)
|∇uk(x)|pk (x) dx

by (26)≥
∫

�

1

p0ε (x)
|∇u0ε(x)|p

0
ε (x) dx

Thus,
(
u0ε, p

0
ε

) ∈ �i,ε. It remains to notice that

∣∣pk − 1 − g (|(∇Gσ ∗ uk) (x)|) ∣∣2

→ ∣∣p0ε − 1 − g
(∣∣
(
∇Gσ ∗ u0ε

)
(x)
∣∣
) ∣∣2 in C(�),

and the Lebesgue’s dominated convergence theorem implies

lim
k→∞

∫

�

∣∣pk − 1 − g (|(∇Gσ ∗ uk) (x)|) ∣∣2 dx

=
∫

�

∣∣p0ε − 1 − g
(∣∣
(
∇Gσ ∗ u0ε

)
(x)
∣∣
) ∣∣2 dx .

Utilizing these properties, we finally obtain

Ji,ε(u
0
ε, p

0
ε ) ≤ lim inf

k→∞ Ji,ε(uk, pk) = inf
(v,p)∈�i

Ji,ε(v, p).

So,
(
u0ε, p

0
ε

) ∈ �i,ε is an optimal pair to the problem (65). ��
Taking this existence result into account, we pass to the

study of approximation properties of the problems (65).
Namely, we establish the convergence of minima of (65) to
minima of (16) as ε tends to zero. In other words, we show
that some optimal solutions to (16) can be approximated by
the quasi-optimal solutions of this problem.

Theorem 6 Let
{
(u0ε, p

0
ε ) ∈ �i,ε

}
ε>0 be a sequence of mini-

mizers to the problem (65). Then, there exists a subsequence
of
{
(u0ε, p

0
ε )
}
ε>0, still denoted by the same index ε, such that

p0ε → p0 in C(�) as ε → 0, (68)

u0ε ⇀ u0 in W 1,α(�) as ε → 0, (69)

u0ε ⇀ u0 in W 1,p0ε (·)(�), u0 ∈ W 1,p0(·)(�), (70)

p0(x) = 1 + g
(∣∣
(
∇Gσ ∗ u0

)
(x)
∣∣
)

in �, (71)

Ji (u
0) = inf

(v)∈�i
Ji (v)

= lim
ε→0

inf
(u,p)∈�i,ε

Ji,ε(v, p) = lim
ε→0

Ji,ε(u
0
ε, p

0
ε ), (72)

where u0 ∈ �i .

Proof Let u∗ ∈ �i be an arbitrary feasible solution to the
original problem (16). We set p∗ = F(u∗(·)) in �. Then,
u∗ ∈ W 1,α(�), p∗ ∈ Sad , Ji,ε(u∗, p∗) = Ji (u∗) < +∞,
and, as a consequence, (u∗, p∗) ∈ �i,ε for each ε > 0.

Since Ji,ε(u0ε, p
0
ε ) ≤ Ji,ε(u∗, p∗) = Ji (u∗) =: C∗, it

follows from (65) that

sup
ε>0

∫

�

1

p0ε (x)
|∇u0ε(x)|p

0
ε (x) dx ≤ C∗, (73)

∫

�

∣∣p0ε (x) − 1 − g
(∣∣
(
∇Gσ ∗ u0ε

)
(x)
∣∣
) ∣∣2 dx

≤ εC∗, ∀ ε > 0. (74)

123



486 Journal of Mathematical Imaging and Vision (2023) 65:472–491

Since
{
p0ε ∈ C0,1(�)

}
is a bounded sequence in C(�) with

the samemodulus of continuity, it follows, by Arzelà–Ascoli
theorem, that this sequence is relatively compact with respect
to the strong topology of C(�). Without loss of generality,
we can suppose that there exists a function p0 ∈ C(�) such
that assertion (68) is valid. Moreover, as follows from defi-
nition of the setSad , the limit function p0 is subjected to the
pointwise constraints

α := 1 + δ ≤ p0(x) ≤ β := 2, ∀ x ∈ �. (75)

Arguing in a similar manner, we can infer from (73) and
the two-side inequality

0 ≤ γ0,i ≤ u0ε(x) ≤ γ1,i a.a. in �, ∀ ε > 0 (76)

that the sequence
{
u0ε
}
is relatively compact with respect to

the weak topology of W 1,α(�). Indeed, taking into account
(76) and observing that

sup
ε>0

∫

�

|u0ε(x)|p
0
ε (x) dx

by (76)≤ +∞,

sup
ε>0

∫

�

|∇u0ε(x)|p
0
ε (x) dx

≤
∫

�

supε>0 ‖p0ε‖C(�)

p0ε (x)
|∇u0ε(x)|p

0
ε (x) dx

by (73)≤ sup
ε>0

‖p0ε‖C(�)C
∗ < +∞,

we see that u0ε ∈ W 1,p0ε (·)(�) for all ε > 0 and the sequence
{
u0ε
}
is bounded in variable space W 1,p0ε (·)(�). Hence, this

sequence is bounded inW 1,α(�). Therefore, in view of com-
pleteness of W 1,α(�), there exists a function u0 ∈ W 1,α(�)

such that, up to a subsequence, property (69) holds true. As
a result, Proposition 1 and Sobolev embedding theorem lead
us to the conclusion:

u0ε⇀u0 in W 1,p0ε (·)(�), u0 ∈ W 1,p0(·)(�),

u0ε → u0 strongly in Lq(�) for all q ∈ [1, α∗), (77)

where α∗ = Nα
N−α

. So, we can suppose that u0ε(x) → u0(x)
a.e. in �. Then, passing to the limit in (76) as ε → 0, we see
that the limit function u0 is also subjected by the pointwise
constraints

0 ≤ γ0,i ≤ u0(x) ≤ γ1,i a.a. in �. (78)

Moreover, utilizing the estimate (74) and properties (68)–
(69), we get

lim
ε→0

∫

�

∣∣p0ε (x) − 1 − g
(∣∣
(
∇Gσ ∗ u0ε

)
(x)
∣∣
) ∣∣2 dx

=
∫

�

∣∣p0(x) − 1 − g
(∣∣
(
∇Gσ ∗ u0

)
(x)
∣∣
) ∣∣2 dx = 0.

Hence, p0(x) = 1+ g
(∣∣ (∇Gσ ∗ u0

)
(x)
∣∣) in �. Thus, u0 ∈

W 1,F(u0(·))(�). Combining this fact with (78), we see that
the limit function u0 is a feasible solution to minimization
problem (16).

Let us show that this function is optimal to the problem
(16). Since

lim
ε→0

∫

�

|Ti (u0ε(x)) − u0,i (x)| dx
by (77)=

∫

�

|Ti (u0(x)) − u0,i (x)| dx

it follows from Proposition 1 and Remark 1 that

lim inf
ε→0

Ji,ε(u
0
ε, p

0
ε ) ≥ Ji (u

0). (79)

Then, assuming the converse—namely, there is a function
û ∈ �i such that Ji (̂u) < Ji (u0), we get: (̂u, p̂) ∈ �i,ε for
all ε > 0 with p̂ := F(̂u(·)), and

Ji (̂u) ≡ Ji,ε (̂u, p̂) ≥ inf
(v,p)∈�i,ε

Ji,ε(v, p) = Ji,ε(u
0
ε, p

0
ε ),

Ji (̂u) ≥ lim sup
ε→0

Ji,ε(u
0
ε, p

0
ε ) ≥ lim inf

ε→0
Ji,ε(u

0
ε, p

0
ε )

by (79)≥ Ji (u
0). (80)

So, we come into contradiction with the initial assumption.
Thus, u0 is a solution of the original problem (16). In order
to establish the equality (72), it is enough, instead of (̂u, p̂),
to take (u0, p0) in (80). ��

Since Theorem 6 does not give an answer whether the
entire set of solutions to problem (16) can be attained in such
a way, the following result sheds some light on this matter.

Corollary 1 Let u0 ∈ � be a minimizer to optimization prob-
lem (16) such that there is a closed neighborhood U(u0) of
u0 in the norm topology of Lα(�) satisfying

Ji (u
0) < Ji (v) ∀ v ∈ �i ∩ U(u0). (81)

Then, there exists a sequence of local minima
{
(u0ε, p

0
ε )
}
ε>0

of problems (65) such that

(u0ε, p
0
ε ) → (u0,F(u0(·))) in the sense of Theorem 6.

Proof By the strict local optimality of u0, we have that it is
the unique solution of the problem

min
v∈�i ,v∈U(u0)

Ii (v). (82)
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Fig. 2 Example. Left panel:
noisy satellite image. Middle
panel: reconstruction using total
variation (TV) approach. Right
panel: reconstruction using the
approach introduced in this
paper

For every ε > 0, let us consider the following optimization
problems:

min
(v,p)∈�i,ε,v∈U(u0)

Ji,ε(v, p). (83)

Since the set
{
(v, p) ∈ �i,ε, v ∈ U(u0)

}
is nonempty, it fol-

lows that the problem (83) has at least one solution (u0ε, p
0
ε )

for every ε > 0. Now, arguing as in the proof of Theorem 6,
we deduce that (u0ε, p

0
ε ) → (ũ0, p̃0) in the sense of conver-

gences (68)–(72), and ũ0 is a solution of (82). Since u0 is the
unique solution of (82), we infer that u0 = ũ0 and, therefore,
(u0ε, p

0
ε ) → (u0,F(u0(·))) in the sense of Theorem 6. This

implies the existence of ε0 > 0 such that u0ε belongs to the
interior of U(u0) for every ε ≤ ε0. Consequently, (u0ε, p

0
ε )

is a local minimum of (65) for every ε ≤ ε0. This concludes
the proof. ��

6 Numerical Experiments

In order to illustrate the proposed algorithm for the denois-
ing of satellite hyperspectral images, we have provided some
numerical experiments with Ti = I d for three channels
i = R,G, B. As input data, we have used some Sentinel-
2 images over the Dnipro area, Ukraine (see Fig. 2). This
region represents a typical agricultural area with medium
sides fields of various shapes.

To conduct the numerical simulations, we have dropped
the two-side constraints 1≤γ0,i ≤ v(x) ≤ γ1,i from the
sets Bi,p(·), and instead, we controlled the fulfilment of this
condition at each time step of the numerical approxima-
tions. The solution procedure uses a parabolic equation with
time as an evolution parameter, or equivalently, the gradient
descent method. It means that we utilize the iterative algo-
rithm, described in Sect. 3, and Theorem 4. As a result, at
k-th step of the iterative algorithm we solve the following
Cauchy–Neumann problem:

∂uk

∂t
= div

(
|∇uk |pk (x)−2∇uk

)

−μ
T ∗
i u

k

|Ti
(
uk
)− u0,i | , (t, x) ∈ (0,∞) × �, (84)

uk(0, x) = u0,i ∀ x ∈ �, (85)

∂uk(t, ·)
∂n

= 0 on ∂� (86)

with pk(·) defined in (36).
As t increases, we approach a denoised version of our

image and the k-th iteration. The numerical scheme in two
spatial dimensions is as follows. We let:

xl = lh, y j = jh, l, j = 0, 1, . . . , N with Nh = 1,

tn = n�t, n = 0, 1, . . . , unl j = uk(tn, xl , y j ),

u0l j = u0,i (lh, jh).

Then, the numerical approximation to the problem (84)–(86)
takes the form:

un+1
l j = unl j

+�t

h
�x−

⎛

⎜
⎜
⎝

�x+unl j√(
�x+unl j

)2 +
(
m
(
�

y
+unl j , �

y
−unl j

))2 + ε

⎞

⎟
⎟
⎠

+�t

h
�x−

⎛

⎜⎜
⎝

�
y
+unl j√(

�
y
+unl j

)2 +
(
m
(
�x+unl j , �

x−unl j

))2 + ε

⎞

⎟⎟
⎠

−�tμ
T ∗
i u

n
l j

|Ti unl j − u0l j + ε| , ∀ l, j = 1, . . . , N (87)

with boundary conditions

un0 j = un1 j , unN j = unN−1, j , unl0 = unl1, unlN = unl,N−1.

Here,�x±ul j = ± (ul±1, j − ul j
)
,�y

±ul j = ± (ul, j±1 − ul j
)
,

and

m(a, b) = minmod (a, b) = sgn a + sgn b

2
min (|a|, |b|) .

123



488 Journal of Mathematical Imaging and Vision (2023) 65:472–491

A step size restriction is imposed for stability by condition:
�/h2 ≤ C .

For numerical simulations in this section, we set: ε =
0.01, σ = 0.5, a = 5, β = 2, γ0,i = 1, γ1,i = 255, Ti = I d,
i = 1, 2, 3. For the three-channel satellite image depicted on
the left panel in Fig. 2, we have conducted k = 5 iterations
with the time step�t = 0.01 at each iteration to obtain result
seen on the right panel in Fig. 2. For comparison, Fig. 2b
shows the result of a denoising using the ROF model (3).
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Appendix A: On Orlicz Spaces

Let p(·) be a measurable exponent function on � such that
1 < α ≤ p(x) ≤ β < ∞ a.e. in �, where α and β are given
constants. Let p′(·) = p(·)

p(·)−1 be the corresponding conjugate
exponent. It is clear that

1 ≤ β

β − 1
︸ ︷︷ ︸

β ′

≤ p′(x) ≤ α

α − 1︸ ︷︷ ︸
α′

a.e. in �,

where β ′ and α′ stand for the conjugates of constant expo-
nents. Denote by L p(·)(�) the set of all measurable functions
f (x) on � such that

∫
�
| f (x)|p(x) dx < ∞. Then, L p(·)(�)

is a reflexive separable Banach space with respect to the Lux-
emburg norm (see [20,24] for the details)

‖ f ‖L p(·)(�) = inf
{
λ > 0 ρp(λ

−1 f ) ≤ 1
}

, (A1)

where ρp( f ) := ∫
�
| f (x)|p(x) dx .

It is well known that L p(·)(�) is reflexive provided α > 1,
and its dual is L p′(·)(�), that is, any continuous functional
F = F( f ) on L p(·)(�) has the form (see [55, Lemma 13.2])
F( f ) = ∫

�
f g dx , with g ∈ L p′(·)(�).

Proposition 7 The infimum in (A1) is attained if ρp( f ) > 0.
Moreover,

i f λ∗ := ‖ f ‖L p(·)(�) > 0, then ρp(λ
−1∗ f ) = 1. (A2)

Taking this result and condition 1 ≤ α ≤ p(x) ≤ β into
account, we see that

1

λ
β∗

∫

�

| f (x)|p(x) dx ≤
∫

�

∣∣
∣∣
f (x)

λ∗

∣∣
∣∣

p(x)

dx

≤ 1

λα∗

∫

�

| f (x)|p(x) dx,
1

λ
β∗

∫

�

| f (x)|p(x) dx ≤ 1 ≤ 1

λα∗

∫

�

| f (x)|p(x) dx .

Hence, (see [20,24,54] for the details)

‖ f ‖α
L p(·)(�)

≤
∫

�

| f (x)|p(x) dx ≤ ‖ f ‖β

L p(·)(�)
,

if ‖ f ‖L p(·)(�) > 1,

‖ f ‖β

L p(·)(�)
≤
∫

�

| f (x)|p(x) dx ≤ ‖ f ‖α
L p(·)(�)

,

if ‖ f ‖L p(·)(�) < 1, (A3)

and, therefore,

‖ f ‖α
L p(·)(�)

− 1 ≤
∫

�

| f (x)|p(x) dx ≤ ‖ f ‖β

L p(·)(�)
+ 1,

∀ f ∈ L p(·)(�), (A4)

‖ f ‖L p(·)(�) =
∫

�

| f (x)|p(x) dx,
if ‖ f ‖L p(·)(�) = 1. (A5)

The following estimates are well known (see, for instance,
[20,24,54]): If f ∈ L p(·)(�), then

‖ f ‖Lα(�) ≤ (1 + |�|)1/α ‖ f ‖L p(·)(�), (A6)

‖ f ‖L p(·)(�) ≤ (1 + |�|)1/β ′ ‖ f ‖Lβ(�),

β ′ = β

β − 1
, ∀ f ∈ Lβ(�). (A7)

Let {pk}k∈N ⊂ C0,δ(�), with some δ ∈ (0, 1], be a given
sequence of exponents. Hereinafter, in this subsection, we
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assume that

p, pk ∈ C0,δ(�) for k = 1, 2, . . . , and

pk(·) → p(·) uniformly in � as k → ∞. (A8)

We associate with this sequence the following collection{
fk ∈ L pk (·)(�)

}
k∈N. The characteristic feature of this set

of functions is that each element fk lives in the corre-
sponding Orlicz space L pk (·)(�). We say that the sequence{
fk ∈ L pk (·)(�)

}
k∈N is bounded if (see [32, Section 6.2])

lim sup
k→∞

∫

�

| fk(x)|pk (x) dx < +∞. (A9)

Definition 2 A bounded sequence
{
fk ∈ L pk (·)(�)

}
k∈N is

weakly convergent in the variable Orlicz space L pk (·)(�) to
a function f ∈ L p(·)(�), where p ∈ C0,δ(�) is the limit of
{pk}k∈N ⊂ C0,δ(�) in the uniform topology of C(�), if

lim
k→∞

∫

�

fkϕ dx =
∫

�

f ϕ dx, ∀ϕ ∈ C∞
0 (RN ). (A10)

Appendix B: Sobolev Spaces with Variable
Exponent

We recall here well-known facts concerning the Sobolev
spaces with variable exponent. Let p(·) be a measurable
exponent function on � such that 1 < α ≤ p(x) ≤ β < ∞
a.e. in �, where α and β are given constants. We associate
with it the so-called Sobolev–Orlicz space

W 1,p(·)(�)

:=
{
u ∈ W 1,1(�) :

∫

�

[
|u(x)|p(x) + |∇u(x)|p(x)

]
dx < ∞

}

(B11)

and equip it with the norm ‖u‖
W 1,p(·)

0 (�)
= ‖u‖L p(·)(�) +

‖∇u‖L p(·)(�;RN ).
It is well known that in general, unlike classical Sobolev

spaces, smooth functions are not necessarily dense in W =
W 1,p(·)

0 (�). Hence, with variable exponent p = p(x) (1 <

α ≤ p ≤ β), we can associate another Sobolev space,

H = H1,p(·)(�) as the closure of the set

C∞(�) in W 1,p(·)(�)-norm.

Since the identityW = H is not always valid, it makes sense
to say that an exponent p(x) is regular if C∞(�) is dense in
W 1,p(·)(�).

The following result reveals the important property that
guarantees the regularity of exponent p(x) [55].

Proposition 8 Assume that there exists δ ∈ (0, 1] such that
p ∈ C0,δ(�). Then, the set C∞(�) is dense in W 1,p(·)(�),
and, therefore, W = H.
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