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Abstract
In this paper, we focus on the inverse problem of reconstructing distributional brain activitywith cortical andweakly detectable
deep components in non-invasive Electroencephalography. We consider a recently introduced hybrid reconstruction strategy
combining a hierarchical Bayesian model to incorporate a priori information and the advanced randomized multiresolution
scanning (RAMUS) source space decomposition approach to reduce modelling errors, respectively. In particular, we aim to
generalize the previously extensively used conditionally Gaussian prior (CGP) formalism to achieve distributional reconstruc-
tions with higher focality. For this purpose, we introduce as a hierarchical prior, a general exponential distribution, which we
refer to as conditionally exponential prior (CEP). The first-degree CEP corresponds to focality enforcing Laplace prior, but it
also suffers from strong depth bias, when applied in numerical modelling, making the deep activity unrecoverable. We sample
over multiple resolution levels via RAMUS to reduce this bias as it is known to depend on the resolution of the source space.
Moreover, we introduce a procedure based on the physiological a priori knowledge of the brain activity to obtain the shape
and scale parameters of the gamma hyperprior that steer the CEP. The posterior estimates are calculated using iterative statis-
tical methods, expectation maximization and iterative alternating sequential algorithm, which we show to be algorithmically
similar and to have a close resemblance to the iterative �1 and �2 reweighting methods. The performance of CEP is compared
with the recent sampling-based dipole localization method Sequential semi-analytic Monte Carlo estimation (SESAME) in
numerical experiments of simulated somatosensory evoked potentials related to the human median nerve stimulation. Our
results obtained using synthetic sources suggest that a hybrid of the first-degree CEP and RAMUS can achieve an accuracy
comparable to the second-degree case (CGP) while being more focal. Further, the proposed hybrid is shown to be robust to
noise effects and compares well with the dipole reconstructions obtained with SESAME.
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1 Introduction

This article aims to advance mathematical inverse meth-
odology in focal localization of brain activity at different
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depths based on non-invasive electroencephalography (EEG)
measurements [40]. In particular, we consider the chal-
lenging task of reconstructing simultaneous cortical and
sub-cortical brain activity by comparing advanced recon-
struction algorithms to find a solution. The EEG source
localization task generally constitutes an ill-posed inverse
problem [26], i.e., it does not have a unique solution and
is sensitive to different modelling and measurement errors.
Consequently, only a slight amount of noise in the mea-
surement can significantly affect the reconstruction found
by the inversion algorithm. This is especially the case for the
far-field activity components, e.g., sub-cortical activity. The
feasibility of depth-localization with non-invasive measure-
ments has recently been suggested in studies concentrating
on high-density measurements and filtering [44,52].
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We approach the source localization task presented via
the recently proposed [47] distributional reconstruction strat-
egy [47] that utilizes a hierarchical Bayesian model (HBM)
to incorporate a priori information and, at the same time,
decomposes the source space into randomized sets at sev-
eral different resolution levels to reduce modelling errors.
This hybrid technique comprises the iterative alternating
sequential (IAS) [11] posterior optimization method and the
so-called randomized multiresolution scan (RAMUS), i.e., a
Monte Carlo sampling approach that aims at marginalizing
the modelling erros over the source space decomposition.
In this article, we introduce an extended version of this
technique via the conditionally exponential prior (CEP),
i.e., an exponential power distribution also referred to as
a generalized normal distribution [39], which generalizes
the well-known concept of the conditionally Gaussian prior
(CGP) [11]. CEP includes a variable prior degree parame-
ter q that defines the �q -norm applied in the argument of
the exponential prior probability density function. Bayesian
formulation of the model allows us to use the methods of
statistical analysis to find an estimate for the brain activity,
especially, the expectation maximization (EM) and iterative
alternating sequential (IAS) method which are, in the case
of CEP, algorithmically similar to �q -reweighted methods
considered in [59] for q = 1, 2. But, as a difference, the
hierarchical prior structure allows taking into account [46]
the physical and physiological properties of the underly-
ing primary currents, here, in particular, the shape and scale
parameter steering of the gamma hyperprior of CEP.

Our focus is in particular on developing a new methodol-
ogy that is applicable in hybrid with the RAMUS technique
to enhance the detectability of both cortical and sub-cortical
activity [47]. RAMUS differs from the other recently intro-
duced parcellation techniques [16,35] as it does not try to
reduce variable dimension, i.e., source space size, or divide
spatially the problem to sub-problems but rather gathers
information from multiple randomized source spaces with
different resolutions to strengthen dipole localization at any
depth. A similar method with a coarse-to-fine hierarchy
has been shown to improve the detectability of sub-cortical
activity in [32]. However, this method limits its parcellation
to cortical level and changes the whole inversion problem
with its observations progressively, whereas RAMUS keeps
observation untouched, relying only on the sparsity of the
source space.

We show mathematically how the HBM approach, pre-
viously introduced in [11], can be extended to the case of
the CEP and how the resulting statistical framework can
be associated with the previously described CGP model
and the reweighted posterior optimization methods that are
applicable with RAMUS as they allow a hyperparameter pro-
gression over multiple resolution levels. In previous studies,
the RAMUS technique is applied with CGP [46,47] concen-

trating on the detectability of the deep components, while
here we investigate CEP as a potential focality enhancer. As
shown in [47], the numerical implementation of the method
is an important factor contributing to the eventual perfor-
mance of the inverse model. Therefore, we investigate EM
and IAS as two alternative techniques for maximizing the
posterior, and compare the prior degrees q = 1 and q = 2
in reconstructing different synthetic source configurations.
In the former case, the reconstruction is found by applying
the Lasso algorithm [56]. Similar Laplace prior models have
been previously studied in a Bayesian framework with vari-
ance components as hyperparameters in [3,55].

In the numerical experiments, we aim to find the best com-
bination of posterior maximizing algorithm and prior degree
considering the estimation accuracy obtained for cortical and
sub-cortical sources. RAMUS is applied to reduce the mod-
elling errors to improve the detection of deep components.
As a forward modelling technique, we apply the finite ele-
ment method (FEM) [36,37,45] which is advantageous in
the present application, since it, as a volumetric technique,
allows the headmodel to be decomposed intomultiple highly
accurate cortical and sub-cortical compartments. The results
are compared with estimates obtained with the Sequential
semi-analyticMonteCarlo estimation (SESAME) technique,
which is a recently introduced Monte Carlo-based algorithm
[53] for Bayesian dipole localization.

The syntheticmeasurements are produced according to the
well-studied somatosensory evoked potentials (SEPs) occur-
ring in the human median nerve stimulation [1,6,7,27,40].
The median nerve SEPs have known originators, i.e., loca-
tions of neural sources at given measurement time points..
The early components occurring ≤ 20 ms post-stimulus
involve sub-cortical far-field activity, i.e., activity far from the
electrodes, which we here simulate and reconstruct numeri-
cally utilizing the CEP model together with a realistic head
model segmentation. We consider especially the P14/N14,
P16/N16 and P20/N20 components, i.e., the positive (P) and
negative (N) 14, 16 and 20mspost-stimulus peaks in themea-
sured data with respect to the forehead potential. This setup
not only fulfills the requirements of our numerical experi-
ments but reflects to the source localization from real SEP
data peaks [48].

The results obtained suggest that the first-degree CEP pro-
vides an advantageous approach to detect focal near- and
far-field activity when it is applied together with the RAMUS
technique.Namely,while bothCEPprior degrees yield a sim-
ilar source localization accuracy, the activity reconstructed
via the first-degree CEP is overall more well-localized com-
pared to CGP. This was found to be the case for simultaneous
thalamic and cortical activity, approximating the simulated
originators of P20/N20, as well as for a sub-thalamic dipolar
or quadrupolar source configuration corresponding approx-
imately to the originators of P14/N14 and P16/N16 [9,41],
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respectively. Compared to SESAME, the proposed combi-
nation of RAMUS and CEP was found to be advantageous
considering its robustness to high noise effects. In turn,
SESAME can produce accurate localized activity in most
cases, while it tends to show false activity on the cortical
level in cases, where the cortical activity is absent (P14/N14
and P16/N16).

This article is organized as follows: In Sect. 2 we present
a generalized exponential prior model to HBM-based source
localization and the EM and IAS algorithms as well as the
main principles behind RAMUS and SESAME. Section 3
concentrates on the implementation of this methodology.
The results are presented in Sect. 4 and discussed in Sect.
5. Finally, Sect. 6 concludes the study.

2 Methods

In this section, we introduce the hierarchical Bayesian frame-
work for CEP model. Next, the statistical iterative maximum
a posterior algorithms are derived for the model and, after
that, we give some hypothetical and theoretical background
for the randomized multiresolution scanning and the usage
of multiple source space resolutions. Finally, we introduce
Sequential semi-analytic Monte Carlo estimation and the
assumptions behind it.

2.1 Hierarchical Bayesian Framework for a
Conditionally Exponential Prior

We consider the linear EEG observation model

y = Lx + e, (1)

where x ∈ R
3n , y ∈ R

m and N (e; 0, σ 2) with σ a scale-
invariant prior. From Bayes’ rule we have π(x | y) ∝
π(y | x)π(x). The leadfield matrix L is obtained via the
finite element method applied to Maxwell’s equations in the
quasi-static approximation. The unknown x represents the
discretized primary current distribution J (vector field) of
the neural activity in a three-dimensional source space with n
possible source locations. At a given position, J is described
by a three-component vector or, equivalently, three entries
of x, i.e., a vector

(
x3μ−2, x3μ−1, x3μ

)
, where μ = 1 . . . n.

Given the likelihood function π(y | x) ∝
exp

(
− 1

2σ 2 ‖Lx − y‖22
)

and a subjectively selected prior

π(x), the posterior π(x | y) is assumed to contain all
the information about the underlying source activity. We
associate each component xi with an exponential power dis-
tribution

π(xi , 1/γi , q) ∝ γ
1/q
i exp

(−γi |xi |q
)

(2)

determined by the hyperparameter γi and the degree q of
the prior, which is selected to be either one or two in this
study. Our choice of hyperparameter differs from a common
choice, separable prior variance variables, that are reciprocal
to γi [11,23,51,58]. With this choice we gain two desir-
able properties: analytic expression for posteriormaximizing
hyperparameters and stability by avoiding a tendency to infin-
ity. Selecting between q = 1 and q = 2 allows one to
steer the focality of the reconstruction, since the exponential
distribution can be justified to be more heavy-tailed in the
former case (i.e., Laplace distribution). By introducing an
extra level of hierarchy in this prior (2), we aim to obtain a
minimization problem that allows reconstructing more focal,
intensity-unbiased or deeper sources, as suggested in [11,47],
compared to the minimization problem that employs a fixed
γi together with the Laplace prior, when q = 1, or the stan-
dard Gaussian prior, when q = 2. Consequently, the current
analysis belongs to the hierarchical Bayesian adaptive frame-
work introduced, e.g., in [38]. In particular, with γi being a
random variable following a Gamma hyperprior distribution,
i.e., γi ∼ Ga(κ, θ) for i = 1, . . . , 3n, where its density func-
tion is

π(γi ) = θκγ κ−1
i e−θγi

�(κ)
(3)

for κ, θ > 0. π(γi |xi ) is also a Gamma distribution, that is,
γi |xi ∼ Ga(γi |xi ; κ + 1/q, θ +|xi |q) by conjugacy. The full
posterior obeying a CEP
π(x | ) is given by

π(x, γ | y) ∝ π(y | x) π(x | γ ) π(γ )

= π(y | x)
3n∏

i=1

π(xi | γi ) π(γi ),
(4)

where π(x | γ ) and π(γ ) correspond to the CEP following
from (2) and the hyperprior, respectively. In the following
subsections, we use two different approaches to estimate the
mode of the marginal posterior π(x | y) given the CEP. The
first one relies on EM and the second one on IAS [11–13].

2.2 EM for the Hierarchical Adaptive Framework

The EM-based maximum a posteriori (MAP) estimate is
given by the system

x̂( j+1) = arg max
x

{
− 1

2σ 2 ‖Lx − y‖22
+ Eπ(γ |x̂( j))[logπ(x | γ )]

}
,

(5)
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where the expectation of logπ(x | γ )with respect to the con-
ditional probability density π(γ |x̂( j)) and π(γi |x̂ ( j)

i ) given

the MAP estimate x̂ ( j)
i for i = 1, . . . , 3n is

Eπ(γ |x̂( j))[logπ(x|γ )] =
3n∑

i=1

E
π(γi |x̂( j)

i )
[logπ(xi |γi )]

=
3n∑

i=1

∫ ∞

0
π(γi |x̂ ( j)

i ) logπ(xi |γi ) dγi

= −
3n∑

i=1

|xi |q
∫ ∞

0
γi π(γi |x̂ ( j)

i ) dγi +C,

(6)

with E
π(γi |x̂ ( j)

i )
[γi ] = ∫ ∞

0 γiπ(γi |x̂ ( j)
i ) dγi = κ+1/q

θ+|x̂ ( j)
i |q .

Therefore, we have the following optimization problem:

γ̄
( j)
i = κ + 1/q

θ + |x̂ ( j)
i |q

for i = 1, . . . , 3n

x̂( j+1) = arg min
x

{
1

2σ 2 ‖Lx − y‖22 +
3n∑

i=1

γ̄
( j)
i |xi |q

}

.

(7)

When q = 1, this resembles the Lasso problem, which,
expressed through (19), corresponds to a Laplace prior (16)
with a fixed γi . Notice that EM (7) finds the MAP esti-
mate using as prior the marginal distribution of xi , i.e.,
π(xi ) = ∫

γi
π(xi |γi ) π(γi ) dγi ,

π(xi ; κ, θ, q) ∝
( |xi |q

θ
+ 1

)−(κ+1/q)

, (8)

where κ and θ are the shape and scale parameter of
Ga(γi ; κ, θ), respectively.

2.3 Iterative Alternating Sequential algorithm

In IAS, we aim to estimating the MAP of the pair (x, γ )

by solving the optimization problem (x̂, γ̂ ) = argmaxx,γ π

(x, γ | y). A common procedure [42] is to evaluate it by
alternating optimization with respect to x and γ in the sim-
ilar manner to [14,20]. In particular, the MAP estimates can
be extracted by solving alternatingly and recursively the fol-
lowing two optimization problems

γ̂
( j) =arg max

γ
logπ(γ | y, x̂( j)),

x̂( j+1) =arg max
x

logπ(x | y, γ̂ ( j)
).

(9)

To express explicitly the two previous optimization prob-
lems, we write the full posterior π(x, γ | y) which is

π(x, γ | y) ∝ exp

(
− 1

2σ 2 ‖Lx − y‖22

−
3n∑

i=1

(
γi (|xi |q + θ) − (1/q + κ − 1) log γi

))
.

(10)

It follows that the optimization problem (9) can be written as

γ̂
( j)
i =κ + 1/q − 1

|x̂ ( j)
i |q + θ

for i = 1, . . . , 3n,

x̂( j+1) =arg min
x

{
1

2σ 2 ‖Lx − y‖22 +
3n∑

i=1

γ̂
( j)
i |xi |q

}

.

(11)

2.4 Difference and Similarity between EM and IAS
Approaches

One can observe that the difference between the problems of
(7) and (11) is the step of updating the parameter γ . In EM
algorithm, the update of γi is based on the estimation of the
expectation of γi (see 5) whereas in IAS, the update comes
from themode ofπ(γi |xi ). Sincewe have γi |xi ∼ Ga(γi ; κ+
1/q, θ +|xi |q), we saw that the two updates can be explicitly
expressed. In this article, we investigate how the prior degree
q = 1 or q = 2 affects the source reconstructions and how
the mode or expectation of γi as updating rules influence
the performance of an EEG source localization solver. With
these prior degrees, the algorithms resemble the separable �1
and �2 reweighting algorithms that are examined in [59].

2.5 RandomizedMultiresolution Scanning (RAMUS)

The RAMUS technique was applied in finding a MAP esti-
mate in order to maximize the robustness of the source
localization outcome for various source depths [47]. That is,
each MAP estimate was found for a large number of subsets
of the source space and the final estimate was found as the
average of all these subset-based estimates. In RAMUS, each
subset contains a given number of randomly and uniformly
distributed source positions. These subsets are divided into
resolution levels according to the source position count. The
estimates are evaluated in ascending order with respect to the
resolution, i.e., progressing from coarse (sparse) to fine reso-
lutions. Furthermore, the hyperparameter estimate obtained
at one resolution level is used as the initial guess for the
next one. The presence of coarse resolutions can be shown
to be essential, specially, regarding the distinguishability of
the deep activity [32], whereas finer resolutions can provide
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an enhanced accuracy for the detection of the near-field (cor-
tical) activity. The average estimate found for a randomized
set of source sub-spaces with a given number of sources
provides an enhanced robustness for each resolution, as it
diminishes discretization and modelling errors [47]. We con-
siderRAMUSas amodelling error reduction technique based
on the postulates presented in the following subsections.

2.5.1 Marginalization of Source Space Related Modelling
Errors

We assume that the estimated unknown variable x̂ depends
on uncertainties and modelling errors of the forward model
(FM), inverse algorithms (IA), and the statistical inverse
model itself (IM). Consequently, the modelling error is of
the form

ε( FM, IA, IM) = ŷ − L( FM) x̂( FM, IA, IM), (12)

where ŷ is noiseless data. As the statistical inverse model
is not affected by the discretization of the leadfield, we
assume the inverse error to be identically and indepen-
dently distributed with respect to the selection of the source
space. Consequently, a sample mean estimator obtained
through a Monte Carlo sampling process can be interpreted
to marginalize the error over the source space configurations
that are uniformly distributed [47].

2.5.2 A Coarse-to-Fine Optimization Process

RAMUSuses the hyperparameterγ as a surrogate [46]model
to reduce the optimization bias towards superficial brain
regions, which otherwise occurs with high-resolution source
spaces [32]; the hyperparameter obtained after processing
one resolution level constitutes the initial guess for the hyper-
parameter on the next level to maintain the activity of the
deep structures found with low-resolutions when the opti-
mizer proceeds toward the finest resolution level [47]. In this
study, each source set in the coarsest resolution level includes
10 source positions and the source count is multiplied by a
factor of 10 (sparsity factor) when moving up by one resolu-
tion level in the multiresolution hierarchy. The results were
averaged over 100 different multiresolution decompositions.

2.5.3 Sparse Source Distinction

The use of coarse resolution levels below the number of
measurement sensors is justified by the well-posedness of
the corresponding Diriclet boundary value (forward) prob-
lem [21]. In particular, the diffusion operator following
from the finite element discretization of the Maxwell’s
equations under the quasi-static approximation is symmet-
ric, continuous (bounded) and elliptic (coersive). By the

Lax-Milgram theorem, given a Lipschitz domain	, positive-
valued Lebesque integrable L∞(	) function σ , and a diverge
conforming [45] primary current distribution with a normal-
ized and square-integrable L2(	) divergence f , ‖ f ‖ = 1,
the weak form

∫
	

σ∇u · ∇v d	 = ∫
	

f v d	 has a unique
solution u which belongs to the Sobolev space H1(	) or to
its finite dimensional subspace S such that the weak form
is satisfied for any v in H1(	) or in S, respectively. Due to
this well-posedness, any two boundary datasets g1 and g2
which tend infinitesimally closer and closer g2 − g1 → 0
correspond to solutions u1 and u2 with a similar property
u1 − u2 → 0 and sources whose difference tends to zero
weakly, i.e.,

∣∣ ∫
	
( f2 − f1)v d	

∣∣ → 0 for any v in H1(	)

or in S. It follows that each source in an N dimensional
subspace S, sources f1, f2, . . . , fK can be distinguished
(| ∫

	
( fi − f j )v d	| ≥ ε for some ε > 0 for all non-

zero v in S and any pair i �= j) based on their boundary
datasets g1, g2, . . . , gK , if S is spanned by a set of func-
tions v1, v2, . . . , vN where any vi , i = 1, 2, . . . , N overlaps
with maximally one source f j , i.e., if the distribution of the
sources is sparse enough. With a finite number of measure-
ments, the maximum number of uniquely distinguishable
sources is limited by the number of sensors, i.e., the number
of linearly independent data vectors.

2.6 Sequential Semi-Analytic Monte Carlo
Estimation (SESAME)

When a posterior distribution of the source localization
problem cannot be expressed analytically, one possibility to
approximate such a distribution is to use a class of parti-
cle filters called sequential Monte Carlo sampler algorithms,
where one constructs a sequence of artificial distributions that
starts from an analytical distribution and converges smoothly
to the target distribution. SESAME by Sorrentino et al.
[53,54] utilizes this idea via the following artificial poste-
rior:

πi (x | y) = π0(x)πi (y | x) f (i), (13)

in which the power f (i) of the likelihood is given by

f (i) =
i∑

k=1

δk,

n∑

k=1

δk = 1 (14)

and n is the total number of iterations, sufficient to bring the
estimate satisfyingly close to the target posterior, and incre-
ments δk vary uniformly in the fixed interval

[
10−5, 10−1

]
.

The prior density π0 is based on the following assumptions:
[54]

1. the number of dipoles is Poisson distributed;
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2. the distribution of dipole locations and orientations is
uniform;

3. dipole amplitude is random variable 103U , where U is
uniform distributed in the interval (0, 1);

4. dipole location, amplitude and angle are independent
from each other.

The final dipole estimates are obtained via importance sam-
pling, i.e., as the weighted mean values from the conditional
distributions known as importance
weights. Unlike CEP, SESAME does not provide a sparse
solution, but a finite number of estimated dipole positions and
orientations that best explain the measurement data. There-
fore, SESAME needs the whole source space and leadfield
to work with, and applying a multiresolution decomposition
to it does not necessarily improve the estimation by design.

3 Implementation

The EM, IAS and SESAME source localization approaches
were implemented as additional packages (plugins) of the
MATLAB-based Zeffiro interface (ZI) code package1 [29]
which allows for using the detailed multi-compartment head
models obtained via high resolution magnetic resonance
imaging (MRI) data. ZI’s plugin has its ownuser interface and
an access to all the variables, parameters and handles. ZI uti-
lizes the volumetric FEM [37] in the forwardmodelling stage
which is why both cortical and sub-cortical compartments
can be modelled accurately without limiting their number.
The SESAME plugin combined ZI’s forward simulation rou-
tine also used in EM and IAS solver with the openly available
core procedure of SESAME2 [53,54]. The numerical cal-
culations were performed using Dell Precision 5820 Tower
Workstation with Intel Core i9-10900X X-series Processor
CPUs, Quadro RTX 4000 GPUs and 128 GB RAM.

3.1 Discretization and Source Model

In ZI, a given head model is discretized using a tetrahedral
finite element (FE) mesh. One-millimeter mesh resolution
[50] is applied in order to achieve a high enough accuracy
with respect to the strongly folded tissue structure of the brain
and thin layers of the skull. The source space is modelled
via the divergence conforming approach [36] in which the
primary current density of the brain activity is formed by a
superposition of dipole-like sources belonging to the Hilbert
space H(div) of vector fields with a square integrable L2(	)

divergence [4]. The H(div) model is advantageous, since it

1 https://github.com/sampsapursiainen/zeffiro_interface
2 https://github.com/i-am-sorri/SESAME_core

enables the accuratemodelling of bothwell-localized dipolar
and realistic distributed sources and, especially, since analyt-
ical dipoles are inapplicable (singular) as sources of the FEM
forward simulation.

The H(div) sources are distributed evenly in the active
compartments of the head model. The mesh-based source
orientations following from the FEM discretization are inter-
polated into Cartesian directions using the position-based
optimization approach [2] in the case of the 10-point stencil
[45] in which the source contained by a center tetrahedron is
modelled by six edge-wise and four face-intersecting sources
associated with the edges and faces of that tetrahedron. Each
source position is associated with the three Cartesian source
orientations. The source distribution of the cerebral cortex
was assumed to be parallel to its local surface normal due
to the normally oriented axons of the cortex [17]. This nor-
mal constraint was implemented by projecting the Cartesian
source field to the nearest surface normal direction in the grey
matter compartment. The source orientations of the other
compartments were unconstrained.

3.1.1 Accuracy Measures

The source localization accuracy with respect to a given
dipolar source was investigated by comparing its position,
orientation, and amplitude with the corresponding integral
means obtained for the reconstructed distribution. Each inte-
gral meanwas calculated in a region of interest (ROI) with 30
mm radius and center at the source position. The following
measures were evaluated: (1) the Euclidean distance and (2)
angle (degree) difference, and (3) the Briggsian logarithm
of the amplitude ratio between the reconstructed and actual
source, i.e., base 10 logarithm.

3.1.2 Focality Measures

We consider two different focality measures described in the
following. (1) Hard thresholding is calculated by dividing
the number of source positions, where the reconstruction is
greater than 75 % of its maximum within the ROI, by the
number of sources inside the ROI. (2) The earth mover’s dis-
tance (EMD), in units ofmm,measures theminimumamount
of work that needs to be done to shape and transfer a mass
distribution to match another mass distribution at another
location. The measure is originally defined as an analytical
distance function between probability distributions in met-
ric spaces in [31,57]. The linear optimization form and the
name of the distance originate fromRubner et al. [49].Weuse
EMD to compare distribution-like estimates that are spread
over the whole domain to a set of dipoles at point locations.
That is, we move the reconstruction mass to the set of true
dipole locations in a way that the workload is minimized.
In order to use EMD as a focality measure, we add a limit

123

https://github.com/sampsapursiainen/zeffiro_interface
https://github.com/i-am-sorri/SESAME_core


Journal of Mathematical Imaging and Vision (2022) 64:587–608 593

condition that the reconstruction mass beyond a certain dis-
tance away from the true source location is not moved. This
is necessary since, otherwise, the base level noise for which
a distributional source localization estimate exists in every
source location will dictate the EMD results. We choose this
moving limit to be 45 mm to have an approximately uniform
set of source points between cortical and sub-cortical true
sources. SESAME’s dipole estimation accuracy is measured
using the EMD, while the distributional measures are not
applicable [34].

3.1.3 Spherical Model for Source Localization Experiments

The quantitative performance of the EM and IAS tech-
niques andSESAMEwere analyzed using the isotropicalAry
model, which consists of three concentric spherical compart-
ments modelling the brain, skull, and skin. The radii of these
layers are 82, 86, and 92 mm and their electrical conductivi-
ties are 0.33, 0.0042, and 0.33 S/m, respectively. A spherical
model is used to minimize the effect of tissue structure on the
source localization accuracy. The Ary model was discretized
using one-millimeter accuracy and the source space within
the brain compartment consisted of 10,000 source positions.
This relatively large source space size was selected as it gives
an appropriate forward model accuracy and allows running
each inverse method examined in this study in a fewminutes.
While the distributional EM and IAS methods would allow
a greater source count without slowing down significantly,
which was observed to be the case for the dipole search of
SESAME.

3.1.4 MRI-Based Model for Source Localization Experiments

In the qualitative analysis, we used a multi-compartment
segmentation generated using open T1-weighted MRI data
obtained from a healthy subject. Using this data, a surface
segmentation was generated using the FreeSurfer software
suite 3. The number of individual source positions was
selected to be 100,000. The tissue conductivities suggested
in [19] were applied, i.e., 0.14, 0.33, 0.0064, 1.79, and 0.33
S/m for the white and grey matter, skull, cerebrospinal fluid
(CSF), and skin, respectively. In addition to these compart-
ments, a set of sub-cortical compartments were included in
the model. The conductivity of those was assumed to be 0.33
S/m.

3.1.5 Ary Model Experiments and Iteration Numbers

To analyze the accuracy and focality of the EM and IAS
source localization estimates, we generated a sample of 100
different realizations of noise vectors utilizing the zero-mean

3 https://surfer.nmr.mgh.harvard.edu/

Gaussian noise model with 5% standard deviation relative to
the largest absolute value in the simulated noiseless data vec-
tor.Mathematically, it is written asmax

∣∣y j
∣∣ for j = 1, ...,m.

Applying these noise realizations, a sample of EM and IAS
estimates was obtained for the source configuration (I)—
(III) evaluating the accuracy and focality measures for each
estimate, Fig.1. To study the sensitivity of the methods to
noise in more detail, we performed another experiment,
where the reconstruction accuracy measures were calculated
for seven different noise level standard deviations: 3, 5, 7,
9 11, 13, and 15 percents (signal-to-noise ratio (SNR) 30,
26, 23, 19, 18, and 16 decibels, respectively) considering the
data entry with the largest amplitude. A total of 25 estimates
were evaluated for every noise level.

Following the findings of [11,47], the number of iterations
applied to find a reconstruction was chosen to be 10. The
number of the Lasso fixed-point iteration steps applied in

Fig. 1 Visualization of near- (cortical) and far-field (sub-cortical)
source location in the spherical Ary (1st from the left) and MRI-based
head model (2nd and 3rd from the left). Each source position and ori-
entation is depicted by a pointer (green and red) which, in the case
of Ary model, is surrounded by a sphere showing the extent of the
corresponding ROI. Configuration (I) corresponding to P20/N20 com-
ponent of the median nerve SEP includes a superficial and deep dipole
which in the MRI-based model are located in the ventral posterolateral
(VPL) [24,28] thalamus (top row, middle) and in the Brodmann area 3b
[6,27] of the primary somatosensory cortex (bottom row, blue area on
the middle picture), respectively. The cortical source inherits its normal
orientation with respect to the cortical surface (here the white matter
surface) from that of the cortical neurons. The thalamic source is ori-
ented along the dorsal column–medial lemniscus pathway (blue dash)
which is a bundle of basically vertical neuron fibers conducting the
SEP from the median nerve through the brainstem and thalamus to the
primary somatosensory cortex. A single upward-pointing deep dipole
constitutes configuration (II) based on the P14/N14 component [41]. In
the MRI-based model, it is located in the upper part of the brainstem,
especially, in the medial lemniscus pathway [41]. Configuration (III)
is quadrupolar, i.e., a combination of two oppositely oriented dipoles, a
ventrolateral thalamic dipole with an upward orientation and a dipole in
the cuneate nucleus with an opposite orientation, creating the positive
and negative pole of P16/N16 [9,30], respectively
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Fig. 2 Convergence curves for IAS (red and orange) and EM (blue and
violet) algorithms calculated as �2-norm of difference of reconstruction
vectors of sequential iteration steps from spherical Ary model (top)
and MRI-based head model (bottom) with configuration (I) starting
by a zero vector. We find 15 iteration steps appropriate because both
algorithms are then stabilized. The calculation time of one iteration step
is 12.5 s

finding x̂( j+1) in (19) and (11) with q = 1 was chosen to be
15 based on the convergence of �2-normof the reconstruction
vector, see Fig. 2.

The number of Monte Carlo samples is an iteration-
like parameter for SESAME that can be adjusted. The only
limiting factor for sample size is time and its effects on recon-
struction accuracy have always uncertainty in it. We decided
to use (a) a default value of 100 samples and (b) 700 sam-
ples that falls between the calculation times of CEP for both
prior degrees. With CEP, the calculation time for degree 2
with 10 EM/IAS iterations is 18.20±0.01 s and for degree 1
with 10 EM/IAS iterations and 15 Lasso iterations it is 3 min
1.4±0.1 s. SESAME does not have constant iteration cycles
because resampling is a random process and depends on the
measurement data. The calculation time with 700 samples is
1 min 20.5± 0.5 s in average. SESAME was also tried with
1000 samples, but the results did not differ from the case
of 700 samples. Longer processes were omitted as too time
consuming compared to EM/IAS.

Expectation Eπ(xi ;κ,θ,q)[xi]/θ1/q

Marginal prior π(xi ; κ, θ, q) with κ = 4.4

Fig. 3 Left: The ratio between the expectation Eπ(xi ; κ,θ,q)[xi ] of the
marginal prior and θ1/q as a function of the shape parameter value κ

from κ = 1.5 to κ = 6. The vertical line corresponds to the value
κ = 4.4 for which the cases q = 1 and q = 2 match. Right: The
marginal prior (normalized to one) with the expectation set to 3E-4,
approximating typical deviations due to noise. The shape parameter
is κ = 4.4 and the scale parameter θ = 1E-3, when q = 1, and
θ = 1E-6, when q = 2, resulting into Eπ(xi ; κ,θ,q)[xi ] = 3E-4 in both
cases. With these parameter choices the expectation can be assumed
to appropriately coincide with the amplitude of the expected random
fluctuations of the reconstruction and the intensity of the actual source
to be found is located in the tail part, i.e., it is an outlier with respect to
the noise level (Sect. 3.2)

Table 1 Collected information of the synthetic originators used in
numerical experiments

Name Time (ms) Location Type

P14/N14 14 Pons Dipolar (single dipole)

P16/N16 16 Thalamus/Cuneate
nucleus

Quadrupolar
(two opposite
dipoles)

P20/N20 20 Brodmann area
3b/Thalamus

Dipolar (cor-
tical and
sub-cortical
dipoles)

3.2 Physiology-Based Parameter Choice

To select the shape and scale parameter of the hyper-
prior optimally, we choose the expectation Eπ(xi ; κ,θ,q)[xi ]
of the marginal prior (8) as suggested in [46], i.e., so
that it corresponds to the expected entry-wise deviation of
the reconstruction vector, to match the random fluctuations
predicted by the hyperprior approximately with the noise-
induced fluctuations of the reconstruction. Consequently, the
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Fig. 4 The source localization accuracy measures (position, angle, and
amplitude) evaluated in the spherical Ary model (Sect. 3.1.3) with 5 %
noise for source configuration (I) and (II) from Sect. 3.2.1 applying the
EM and IAS algorithm. The histograms show the results obtained for
100 different reconstructions, each corresponding to a different realiza-

tion of the measurement noise. The measures concern the difference
between the actual source and the mass centre of the reconstructed dis-
tribution in the corresponding ROI. The units of the position, angle and
amplitude are, respectively, in mm, degrees and log10(Ar/As), where
Ar is the amplitude of the reconstructed and As of the actual source
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actual brain activity to be found will appropriately corre-
spond to the tail part of the hyperprior, i.e., the brain activity
constitutes a data outlier compared to themeasurement noise.
Due to the linear forward model, the relative noise level of
the reconstruction may be assumed to be roughly that of
the measurement noise. Thus, a random fluctuation may be
assumed to have an amplitude of the relative measurement
noise standard deviation (here 3 oe 5 %) multiplied by a
typical dipolar primary current amplitude in the brain, e.g.,
10 nAm (1E-8 Am) [26]. By taking into account that the
largest absolute value in the measurement data is set to one
microvolt which is a typical EEG measurement amplitude
[40] and the leadfield matrix is presented in SI-units, we
can conclude the relative noise level of reconstruction to
be α · 1E-8 · 1E6 in micro units, where α is the standard
deviation of the Gaussian noise associated with the likeli-
hood. If we choose 3 % as the likelihood, it follows that the
expected deviation is 3E-4. The shape parameter is chosen
to be κ = 4.4 for which the ratio between Eπ(xi ; κ,θ,q)[xi ]
and θ1/q is equal for both prior degrees q = 1 and q = 2,

i.e.,
Eπ(xi ; κ,θ,q)[xi ]

θ1/q

∣∣∣
q=1

= Eπ(xi ; κ,θ,q)[xi ]
θ1/q

∣∣∣
q=2

≈ 0.3. In this

way, we try to reduce the effect of the parameters in the com-
parison between prior degrees q, Fig. 3. Consequently, the
value of Eπ(xi ; κ,θ,q)[xi ] follows from the scale parameter
which is set to be θ = 1E-3 and θ = 1E-6 for q = 1 and
q = 2, respectively, in order to obtain the correspondence to
the noise as described above.

3.2.1 Synthetic Data of Somatosensory Evoked Potentials

As an example case in the numerical experiments, we con-
sider the detection of synthetic SEPs modelled according
to the SEPs occurring in human median nerve stimulation.
SEPs occur as a response to electrical pulses that stimulate the
median nerve in the wrist area. We modelled the originators
of three SEP components of which the P20/N20 compo-
nent originates 20 ms post-stimulus at 3b Brodmann area,
and involves simultaneous sub-cortical activity at the ven-
tral posterolateral (VPL) thalamus [24,28,41,48]. P20/N20
is preceded by far-field components P14/N14 and P16/-
N16 occurring at 14 and 16 ms post-stimulus, respectively.
P14/N14 originates in the brainstem, where the spike affer-
ent volley travels through medial lemniscus pathway [41] .
The quadrupolar P16/N16 includes a positive thalamic and a
negative sub-thalamic originator [9,30]. The first one of these
is located at the ventrolateral thalamus and the second one is
at the cuneate nucleus.

The following three configurations (I)–(III) of dipolar
sources were applied to model SEP components. Configura-
tion (I) consists of two sources modelling the simultaneous
near- (cortical) and far-field (thalamic) activity correspond-
ing to P20/N20. The amplitude of the cortical source is

Fig. 5 The focality measure hard threshold evaluated in the spherical
Ary model (Sect. 3.1.3) with 5 % noise for source configuration (I)
and (II) applying the EM and IAS algorithm. The histograms show the
results obtained for 100 different reconstructions, each corresponding
to a different realization of the measurement noise. The hard threshold
measure concerns the area where the intensity of the reconstruction is
at least 75 % of its maximum in the corresponding ROI
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Fig. 6 The earth mover’s distance (EMD) with 45 mm moving limit
evaluated in the spherical Ary model (Sect. 3.1.3) with 5 % noise for
source configuration (I) and (II) applying the EM and IAS algorithm

assumed to be 70 % of the thalamic one, modelling a situa-
tion in which the amplitude of the cortical activity intensifies
before reaching its maximum. (II) is formed by a single
source in the medial lemniscus pathway approximating the
sub-cortical activity of P14/N14. (III) includes a quadrupolar
configuration with an upward component in the ventral tha-
lamus and a downward component in the cuneate nucleus of
the brainstem [30]. Since the thalamic component is likely to
be peaked slightly after 16 ms [30], its amplitude is assumed
to be 77 % compared to the amplitude of the sub-thalamic
component. The present quadrupolar setup is not to be mixed
with a quadrupolar afferent volley which is difficult to be
detected as is. Instead the two dipolar components corre-
spond to two subsequent quadrupolar spikes with one of the
dipolar components visible due to a local discontinuity of the
conductivity distribution [9]. Thedetails of the originators are
collected in Table 1. A spherical and an MRI-based model
were applied in the source localization tests. Configuration
(III) was applied only to theMRI-basedmodel, which allows
distinguishing the thalamic and brainstem areas. In the first
one of these, the source positions were selected according to
[6,9] and, in the second one, they were placed in the afore-
mentioned originator areas (Fig. 1). The noise vector e in
(1) was assumed to be zero-mean Gaussian random variable
with diagonal covariance and 5% relative standard deviation
compared to the amplitude of the noiseless signal.

4 Results

The accuracy and focality results obtained with the spherical
Ary model are shown as histograms in Figures 4, 5, 6 and
7 for 5 % noise. The CEP prior model reconstructs the
near- and far-field activity with both prior degrees q = 1 and
q = 2 and reconstruction techniques EM and IAS. While
the degree of the prior does not directly appear to affect the
accuracyof position andorientation, the reconstructionswere
overall more focal in the case q = 1 compared to q = 2.
With q = 1 the reconstruction of the near-field source was
more focal compared to that of the deep one, while with
q = 2 such a tendency was less obvious or absent. The EMD
and the hard threshold measuring the dynamical structure of
the reconstructed distribution (Sect. 3.1.2), show a similar
tendency among each other. Of these, EMD reveals smaller
relative differences, suggesting that the overall variation of
the reconstruction is rather similar for q = 1 and q = 2 or the
amount of artifacts is roughly the same, while the focality of
themaximum peak varies more significantly. Themutual dif-
ferences between the EM and IAS reconstruction techniques
are less obvious than those following from the depth of the
source, the degree of the prior and the noise level. The results
for SESAME show high accuracy for a near-field source,
but the localization error for a far-field source is diminished.
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Fig. 7 The source localization accuracy measures (position, angle,
amplitude, and maximum) evaluated in the spherical Ary model (Sect.
3.1.3) with 5 % noise for source configuration (I) and (II) applying the

SESAME algorithm with 100 and 700 samples. Results are obtained
with the same scheme as in the case of CEP

However, SESAME gives an accurate estimation for dipole
angle and amplitude regardless of the estimated location. It
can also be seen that in the case of the P14/N14 component,
there is no significant difference in the accuracy obtained
with 100 samples and 700 samples. EMD results for the con-
figuration (II) shows the effect of sample size on the location
estimates obtained for SESAME: themedian does not change
as much as 90 % credibility is shrunk.

The results obtained with the MRI-based head model are
visualized in Figures 8, 9, 10, 11, 12, 13 and in Figures 14, 15,
16 for 3 and5%noise, respectively. Thefirst-degreeCEP, i.e.,
the case q = 1, leads to an overall more focal reconstruction
compared to q = 2. Akin to the results obtained for the Ary
model, the near-field component, i.e., with the cortical pat-
tern obtained with configuration (I) is more focal with q = 1
than with q = 2; in the former case, it is clearly restricted to
the Brodmann 3b area, where cortical true source is located.
In the latter one, it spreads more clearly towards the back
areas of the brain: posterior cortex, e.g., Brodmann areas 5
and 7. Neither of the cases finds the accurate location of
the simultaneous deep activity that appears to be more focal
with q = 1. On the contrary, the dipole-estimating SESAME
finds both sources with high accuracy. For the single-source
configuration (II), agreeing with the case of the Ary model,

the estimated maximum activity of the deep source found
corresponds to the actual position and a similar amplitude is
obtainedwith bothq = 1 andq = 2,while in the former case,
the distribution ismore concentrated around the actual source
position at the medial lemniscus pathway, distinguishing the
upper brainstem as the area of activity. The EM and IAS
reconstruction methods were found to perform essentially
similarly for both source configurations,with themost signif-
icant differences in the deep component of the configuration
(I). SESAME finds the dipole location roughly, but produces
many false sources with significant dipole strength. For (III),
the thalamic and sub-thalamic components of the quadrupo-
lar configuration are detected with both prior degrees q = 1
and q = 2, the results being more focal in the former case
concerning, especially, the lateral localization accuracy; with
q = 1, the activity is more clearly limited to the left lobe of
the thalamus, while with q = 2, both lobes show activity.
SESAME detects activities also correctly, although, for 3 %
noise we obtain false cortical activities similarly to (II).

The result for multiple noise levels shown in Figs. 11 and
12 shows that, on the one hand, CEP localizes the near-field
component slightly better with q = 1 compared to q = 2. On
the other hand, CEP localizes the far-field component better
with q = 2. Between EM and IAS posterior maximizers,
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Configuration (I): Expectation maximization

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (I): Iterative alternating sequential

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (I): SESAME

Cortex inflated Deep

Fig. 8 The reconstructions obtained with the MRI-based head multi-
compartment model with 3 % noise for source configuration (I)
including two sources, one placed in the left 3b Brodmann area of the
central sulcus, pointing inwards in the direction of the local surface nor-
mal vector, and a vertical source placed in the ventral posterolateral part
of the left thalamus (Fig. 1). The actual source position is visualized by a
green pointer in each image. The first-degree conditionally exponential
prior (CEP), i.e., the case q = 1, leads to a more focal reconstruc-
tion than the second-degree CEP (q = 2). The dipole estimations of
SESAME are indicated by magenta pointers

there are no significant differences considering the overall
accuracy of the spherical Ary model and EEG. The dipole
amplitude reconstruction has a natural downward trend with
respect to increasing noise due to increasing dispersion. This
decreasing tendency is weaker with prior degree 1. The rea-
son for this can be explained by the lasso step, which acts
as an “inhibitor” of the propagation of the activity estimate.

Configuration (II): Expectation maximization

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (II): Iterative alternating sequential

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (II): SESAME

Cortex inflated Deep

Fig. 9 The reconstructions obtained with the MRI-based head multi-
compartment model with 3 % noise for source configuration (II),
including a single deep source placed in the brainstem (green pointer).
Themaximum found corresponds to the actual position, a similar ampli-
tude is obtained with both q = 1 and q = 2, the focality being greater
with q = 1. The EMand IAS reconstructionmethodswere found to per-
form essentially similarly for both source configurations with the most
significant differences in the deep component of the configuration (I).
Magenta pointers in SESAME section represents its dipole estimations

Comparing the result with SESAME, one can observe that,
with low noise, CEP is not as accurate on angle and ampli-
tude, yet it is more robust with respect to growing noise.With
configuration (I), SESAME did not find the cortical source
in two out of 25 cases at noise levels 13 and 15 % with both
sample sizes. The sub-cortical source was not detected with
100 samples in 7 cases at 7 %, 6 cases at 9 %, 11 cases at 11
%, 16 cases at 13 % and 22 cases at 15 % noise level. For the
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Configuration (III): Expectation maximization

Cortex inflated Deep

Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (III): Iterative alternating sequential

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (III): SESAME

Cortex inflated Deep

Fig. 10 The reconstructions obtained with the MRI-based head multi-
compartment model with 3 % noise for source configuration (III) with
a quadrupolar deep source configuration formed by two dipolar com-
ponents, one in the ventral part of the left thalamus [9] and another one
in lower medulla of the brainstem [30] (green arrows). The quadrupo-
lar configuration is detected with both q = 1 and q = 2, and also with
SESAME(magenta pointers). The reconstruction obtained ismore focal
in the former case

case of 700 samples, there were 6 cases at 7 %, 10 cases at 9
%, 20 cases at 11 %, 23 cases at 13 % and 23 cases at 15 %
noise level, where the sub-cortical source was not found.

Our comparison demonstrates that CEP, when imple-
mented in the context of the RAMUS technique, gives an
advantage to reconstruct far-field activities more accurately.
Looking at the EMD measurements with multiple noise lev-
els in Fig. 13, a clear difference is observed between the prior
degrees: the median of the first-degree CEP does not change
much, while the EMD of the second-degree CEP is increas-

ing, indicating an increase in the reconstructionmass, i.e., the
propagation of the estimated activity, since the localization
accuracy does not deteriorate so strongly. For SESAME, the
results show a progressive deterioration in both deep and cor-
tical source localization with a significant number of outliers
occurring in the case of 700 samples.

As shown by the box plot, the results obtained are gener-
ally of lower qualitywhen noise is increased. Considering the
MRI-based headmodel, the focality of the estimates obtained
with q = 1 maintains pronounced compared to the case of
q = 2 with the 5 % noise level. Moreover, EM yields a
superior reconstruction of the simultaneous cortical and deep
activity of P20/N20 compared to the IAS algorithm. Since
the histograms and box plots for elevated noise do not sug-
gest significant differences between EM and IAS, we deem
that these observations might be due to the increased overall
level of uncertainty.

5 Discussion

In this study, we investigated the newly introduced hybrid
of hierarchical Bayesian modelling (HBM) and random-
ized multiresolution scanning (RAMUS) approach [47] as a
method to enhance the performance of focal depth localiza-
tion in EEG. Technically, RAMUS constitutes a frequentist
hybrid solver that is applied to reduce the unknown mod-
elling errors of the Bayesian source localization process.
Namely, it relies on the frequentist principle according to
which the actual distribution the randomvariables (modelling
errors) obey is unknown, but that it is possible to estimate
those via sampling. A frequentist model is applied due to
the necessity that the modelling accuracy is limited, i.e.,
there is no a priori information available beyond some limit,
e.g., the resolution of the head model. While hybrid methods
have been introduced and their importance has been shown
in various contexts [60,61], there is no general agreement
on how to combine Bayesian and Frequentist methodolo-
gies, and therefore we consider RAMUS here rather as
a technique to improve the posterior optimization process
than as a fully independent statistical method. Future work
considering RAMUS as a frequentist method is, however,
well-motivated method development goal to find out, e.g.,
the expected loss of the proposed sample mean estimator
[38].

Here, the conditionally Gaussian prior (CGP) model [11],
previously applied in the context of RAMUS in [47,48], was
interpreted as a special case of the conditionally exponential
prior (CEP) to improve its focal reconstruction capability.
These two priors were compared in numerical experiments
using two different reconstruction techniques: the expecta-
tion maximization (EM) and iterative alternating sequential
(IAS) algorithm, and as an alternative sampling-based tech-
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Fig. 11 The source localization accuracymeasures (position, angle and
amplitude) for multiple noise levels. A total of 25 estimates have been
calculated for each noise level. The error measures are evaluated in the

spherical Ary model for source configurations (I) and (II) as shown in
Sect. 3.2.1 by applying CEP with the EM and IAS algorithm and both
prior degrees 1 and 2

nique the recently introduced sequential semi-analyticMonte
Carlo estimation (SESAME) technique [53,54].WhereasEM
and IAS find the primary source current density of the brain
as a distribution, SESAME reconstructs a finite set of dipolar
sources.

The performance of the CEP was analyzed numerically
using both the spherical three-compartment Ary model and
an MRI-based multi-compartment model. The first one of
these was applied in quantitative accuracy and focality anal-
ysis considering multiple noise levels and focusing more
carefully on the reconstructions within 5 % noise, and the
second one, MRI-based, in a qualitative investigation, espe-

cially, to learn about the possible physiological relevance of
the reconstruction difference. The EM and IAS method were
implemented in the context of RAMUS to enable the simul-
taneous detection of both cortical and sub-cortical activities.
In particular, as shown in Sect. 3.2, the combination of
CEP and RAMUS allows selecting the source-wise shape
and scale parameters of the hyperprior through the physio-
logical properties of the brain activity [26,40] relating the
expected reconstruction noise and amplitude levels to those
suggested in [46]. This combination omits the group effects
following from a single focal activity being associated with
multiple densely distributed sources. This is possible, since in
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Fig. 12 Dipole reconstruction errors for SESAME-based source localization estimates calculated for multiple noise levels. Each box-plot bar has
been obtained based on 25 reconstructions

Configuration (I)

Configuration (II)

Configuration (I): SESAME

Configuration (II): SESAME

Fig. 13 The earth mover’s distance (EMD) evaluated in a 45mm radius
sphere co-centered with the true source for noise levels from 3 to 15
%. For SESAME, the dipoles with a distance greater than 45 mm to
the true source location were excluded from the EMD evaluation. Each
box-plot bar has been obtained using 25 different reconstructions

RAMUS, the initial reconstruction is first found for a coarse
and randomly distributed set of sources (here a set of 10
source positions) and after that propagated towards a denser

distribution of sources. If this is not the case, the scale param-
eters need to be adjusted based on the density of the source
space: the greater the source space size, the smaller the scale
[29,46].

To reconstruct the far-field components optimally regard-
less of the electrode positioning, a multiresolution method
such as RAMUS might be required to apply the source spar-
sity technique [32,47]. Reflecting the observed results with
the experimental localization errors obtainedwith a spherical
headmodel [18], RAMUSassisted reconstruction techniques
are below (< 8mm including outliers) the experimental limit
found for a far-field source (8.8 – 11.3 mm in [18] with SNR
between 25 and 15 dB). Thus, both CGP and CEP, when
combined with RAMUS and physiology-based parameter
selection, proved to be robust to an increased noise level
up to 15 % (16 dB SNR) of the entry-wise maximum mea-
surement deviation. This is an interesting finding, given that
methods have been developed to reduce the effect of noise
[10,33]. While SESAME outperforms the other techniques
numerically with low noise, the spread (the interquartile
range between 25 and 75%quantiles) of its localization error
is greater than the experimentally obtained limit, when the
noise level is above 13%(18dB). In the case of SESAME, the
superior dipole estimation quality obtained with low noise
can at least partially follow from the usage of dipoles in
both generating the synthetic dataset and reconstructing the
activity. This qualitatively implies that SESAME’s posterior
distribution is relatively narrow and thus very vulnerable
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Configuration (I): Expectation maximization

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (I): Iterative alternating sequential

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (I): SESAME

Cortex inflated Deep

Fig. 14 The reconstructions obtainedwith 5%noise and theMRI-based
head multi-compartment model for source configuration (I) including
two sources, one placed in the left 3b Brodmann area of the central
sulcus, pointing inwards in the direction of the local surface normal
vector, and a vertical source placed in the ventral posterolateral part of
the left thalamus (Fig. 1). The actual source position is visualized by a
green pointer in each image. Magenta pointers are dipole realizations
of SESAME

when modelling errors and measurement noise are present
(similarly to overfitting problems). On the other hand, CEP
which employs the distributed source model (in the likeli-
hood) and sparsity priors, has more flexibility in the sense
that it does not assume the activity to be limited in only a few
locations and a strict number of sources.

Based on the results obtained with low or moderate noise,
it is evident that RAMUS tends to spread the far-field com-
ponents if this tendency is not taken into account a priori.
CEP seems to provide a potential alternative for limiting

Configuration (II): Expectation maximization

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (II): Iterative alternating sequential

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (II): SESAME

Cortex inflated Deep

Fig. 15 The reconstructions obtainedwith 5%noise and theMRI-based
head multi-compartment model for source configuration (II), including
a single deep source placed in the brainstem (green pointer). The dipole
estimations of SESAME are presented by magenta pointers

the spread that occurs with CGP, while CGP can still be
considered advantageous for distinguishing activity when
multiple sources are simultaneously active. When coupled
with RAMUS, the CEP was found to localize deep activity
with both prior degrees q = 1 and q = 2. Relying on the
results, the source localization performance provided by the
first-order prior can be seen to be crucial for the focal detec-
tion of both nearand far-field activity. In the case q = 1, the
near-field fluctuations (cortical patterns) in configuration (I)
as well as the far-field (thalamic and sub-thalamic) compo-
nents in (II) and (III) were observed to be more concentrated
to their actual positions, which is potentially significant in
identifying activity in the corresponding brain regions. For
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Configuration (III): Expectation maximization

Cortex inflated Deep
Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (III): Iterative alternating sequential

Cortex Cortex Deep

Case q = 1

Cortex inflated Deep
Case q = 2

Configuration (III): SESAME

Cortex inflated Deep

Fig. 16 The reconstructions obtained with 5 % noise and the MRI-
based head multi-compartment model for source configuration (III)
with a quadrupolar deep source formed by two dipolar components,
one in the ventral part of the left thalamus [9] and another one in lower
medulla of the brainstem [30] (green arrows). SESAME has found both
of the dipole locations with high accuracy (magenta pointers)

the configuration (II) involving simultaneous near- and far-
field components, the deep activity obtained with q = 1, was
slightly deviated with respect to the actual position, clearly
following from the difficulty to recover a weakly detectable
deep source in the presence of the near-field activity. This dif-
ference is, nevertheless, minor in the case of the MRI-based
head model which distinguishes the sub-cortical areas as dis-
entangled compartments. Overall, the EM and IAS methods
were found to provide qualitatively similar results.

The combination of first-degree CEP and RAMUS con-
stitutes a potential technique for localizing focal sources
with limited distinguishability, e.g., SEP-originators. Those
are classically observed via invasive depth electrodes, i.e.,

stereo-EEG, to improve the visibility of the weak compo-
nents. The present results suggest overall that non-invasive
measurementsmight be successfully used to detect focal deep
sources via an efficient source localization strategy, e.g., the
CEP. The feasibility of detecting deep activity non-invasively
has been shown recently [44,52]. Studies concerning the
originators of median nerve SEPs [5,8,9,30] associate a sig-
nificant uncertainty on the early far-field components. Of the
median nerve SEP components, the clearest visibility has
been obtained for P14/N14, considered here as an example.
P14/N14 is observed when the median nerve SEP propagates
within the brainstem. The components P16/N16, modelled
in this study, and P18/N18 occurring 16 and 18 ms post-
stimulus, respectively, are likely to involve more than one
deep originator and there is yet no exact knowledge on the
actual location of those. The P20/N20 component, also con-
sidered here, is the first one involving cortical activity, the
presence of which, if not taken into account appropriately,
might hinder the detection of simultaneous deep activity.
Basedonour results, the originators of theP14/N14, P16/N16
and P20/20 component might be non-invasively detectable.
Furthermore, the identification of these might be enhanced
with the first-degree CEP (q = 1). Surely, the detectability
of different SEP originators will need to be carefully studied
further both via numerical simulations and with experimen-
tal data in order to gain a deeper insight into the practical
applicability of the CEP.

The present source localization approach provides a
potential solution for investigating the function and connec-
tivity of the neural activity networks with focal and weakly
detectable far-field components, the analysis of the SEP
originators being only one example of potential future appli-
cations. To obtain an optimal performance in connectivity
analysis, RAMUS will need to be employed as a part of a
dynamical process, where a reconstruction is obtained based
on multiple time points. A dynamical version of RAMUS
can be obtained either via a straightforward extension of the
present single-time sampling (averaging) process or, alter-
natively, by applying data from multiple points in a single
sampling run, where the source correlations could also be
taken into account. Our present approach to use a single
simulated time step as a basis of the reconstruction can be
considered to be themost relevant, when the investigated pro-
cesses, e.g., the early SEP components, have a short duration
(a fewmilliseconds), i.e., when the number of available mea-
surements per time point is likely to be small.

6 Conclusion

This paper introduced a hybrid of CEP and RAMUS as a
means to enhance the focality of the reconstructions in the
localization of near- and far-field sources in EEG measure-
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ments. This combination was shown to allow selecting the
shape and scale parameters of the hyperprior relying on a typ-
ical brain activity andmeasurement amplitude, incorporating
the noise level due to different uncertainty factors, e.g., mea-
surement and forward modelling errors, thus differentiating
it from iterative reweighted �1 and �2 methods. We observed
that CEP, when combined with RAMUS, provides robust
source localization estimates up to a 15 % noise level and
that it outperforms SESAME when the noise is high. The
first-degree CEP was found to improve the focality of the
source localization estimate compared to the second-degree
case, which corresponds to the previously introduced CGP.
This improvement was found to be significant, especially in
the reconstruction of both near- and far-field sources, e.g., to
distinguishing activity in the thalamus simultaneously with a
source in the Brodmann 3b area or a dipolar or a quadrupolar
source configuration focally in the brainstem. These findings
might be crucial, for example, in reconstructing and analyz-
ing SEPs, e.g., the originators of the P20/N20, P14/N14 and
P16/N16 components of the median nerve SEP, respectively.
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A Iterative Alternating Sequential Algorithm

Here we present the standard form of the iterative alternating
sequential (IAS) algorithm (as appeared in [11] for a con-
jugate hyperprior). In particular, the IAS solves the MAP
estimate (x(MAP),λ(MAP)) = argmax{π(x,λ | y)} as follows:

B Randomized Source Space Decomposition
and RAMUS Algorithm

Here, we describe how the source space decompositions are
obtained and then we present the pseudoalgorithm of the
RAMUS.

1. Initialization. Choose the number of resolution level R
and the sparsity factor s. The number of sources in each
r = 1, ..., R resolution level is nr = 
nsr−R�, where 
·�
is the floor function, i.e., rounding down function.

2. Sampling step. Generate a desired number D samples
of randomized source spaces for each resolution level.
These samples are called multiresolution decomposi-
tions {D(r)

k }Dk=1. The multiresolution decompositions are
formed by sampling nr uniform random center points
within active brain tissue. Apply nearest point interpo-
lation scheme between center points and source space
such that every point set Bk contains the source points
nearest to the kth center point. Thereby, disjoint point
sets B1, ..., BKm covers the whole source space and rep-
resents the resolution: more there is center point, higher
is the resolution. For every p ∈ Bk , the unknown x(p)

is set to be equal. This holds for every interpolation set,
respectively.
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C Solving the Lasso problem via Expectation
Maximization

Here, we revisit the sparsity constraint problem (also referred
to as Lasso problem) [56] andwe explain how it can be solved
usingExpectationMaximization (EM) [22,25,38]. TheLasso
problem [56] is to solve

x̂ := arg min
x

{
1

2σ 2 ‖Lx − y‖22 +
3n∑

i=1

γi |xi |
}

, (15)

where γi are fixed tuning parameters. Using a similar expres-
sion as in (15), we can conclude the following Bayesian
framework. Given the Gaussian likelihood function of the
form exp

(
− 1

2σ 2 ‖Lx − y‖22
)
and the Laplace prior π(x) =

∏N
i=1 π(xi ), where

π(xi ) = Lap(xi ; 0, 1/γi ) = γi

2
exp (−γi |xi |) (16)

Thereby, we have that the maximum a posteriori (MAP) esti-
mation obtained via Bayes’ rule is equivalent to the Lasso
problem (15). Using the previous decomposition and denot-
ing w2 = (w2

1, . . . , w
2
n), we can apply the Expectation

Maximization (EM) algorithm [15,22] to iteratively solve
the optimization problem

x( j+1) := argmax
x

{
Eπ(w2|x( j))[log(π(y | x)π(x | w2)π(w2))]}.

(17)

The above optimization problem can be represented in the
form

x( j+1) := argmin
x

{
1

2σ 2 ‖Lx − y‖22 +
3n∑

i=1

1

2
x2i Eπ(w2

i |x ( j)
i )

[
w2
i

]}

.

(18)

The expectation (E) step of EM is given by E
π(w2

i |x ( j)
i )

[w2
i ]

= ∫ ∞
0 w2

i π(w2
i |x ( j)

i ) dw2
i . We can use the Bayes’ rule for

π(w2
i |xi ) to show that

E
π(w2

i |x ( j)
i )

[w2
i ] = γi

|x ( j)
i | . That is why we solve the mini-

mization problem

x( j+1) := argmin
x

{
1

2σ 2 ‖Lx − y‖22 +
3n∑

i=1

γi

2|x ( j)
i |

x2i

}

(19)

which is the maximization (M) step (i.e., the point estimate
for x). For unimodal posterior we set γi = γi/σ in (19) [43].
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